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Highlights 

• This paper considers some of the properties of sequences {𝑣𝑚,𝑛}. 

• The relationship between a generalized continued fraction and arbitrary sequence explores. 

• This paper considers partial recurrence relation related to the third order recurrence relation. 
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Abstract 

This paper explores a connection between third order recursive sequences and generalized 

continued fractions by analogy with second order recursive sequences and ordinary two-

dimensional continued fractions. It does this with a partial recurrence relation which is related to 

the original third order recurrence relation, and raises a related conjecture.  
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1. INTRODUCTION 

 

We define 3 basic 3rd order linear recursive sequences {𝑡𝑚,𝑛} 𝑚 = 0,1,2 by initial values for 𝑛 = 0,1,2  and 

the 3rd order linear homogeneous recurrence relation 

𝑡𝑚,𝑛 = 𝑃1𝑡𝑚,𝑛− 1 + 𝑃2𝑡𝑚,𝑛−2 + 𝑃3𝑡𝑚,𝑛−3, 𝑛 ≥ 3, (1) 

 

in which the 𝑃𝑗 are arbitrary integers so that (1) is essentially analogous to Horadam’s generalized sequence 

for his 2nd order {𝑤𝑛} [1]. For later convenience, we shall take the initial values as 𝑡𝑚,0 = 𝑡𝑚,1= 𝑡𝑚,2 =
1 when  𝑃1 = 0, 𝑃2 = 𝑃3 = 1, a Padovan sequence [2] – sequence A00031 in Sloane [3].   

We also define related arrays of sequences {𝑣𝑚,𝑛} for any integer m by a partial recurrence relation  

𝑣𝑚,𝑛 = 𝑣𝑚−1,𝑛−1 + 𝑃3−𝑛𝑣𝑚−1,2, 0 < 𝑚 < 3, 𝑛 > 0, (2) 

  

with boundary conditions  

𝑣𝑚,0 = 𝑃3𝑡𝑛 and 𝑣0,𝑛 = 𝑃3−𝑛. (3) 

 

The purpose of this paper is to explore some of the properties of this array.
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2. PARTIAL RECURRENCE RELATION 

 

We first show that the characteristic equation associated with (1) is related to the partial recurrence relation 

by  

                                              𝑥3 = ∑ 𝑃3−𝑛𝑥𝑛 → 𝑥𝑚+3 = ∑ 𝑣𝑚,𝑛𝑥𝑛

2

𝑛=0

2

𝑛=0

                                                                (4) 

the proof of which follows by induction on 𝑚. 

When 𝑚 = 0, 

∑ 𝑣0,𝑛 𝑥𝑛

2

𝑛=0

= ∑ 𝑃3−𝑛𝑥𝑛

2

𝑛=0

 

 

 

= 𝑥3.  

 

When 𝑚 = 1, 

∑ 𝑣1,𝑛𝑥𝑛 = ∑(𝑣0,𝑛−1 + 𝑃3−𝑛𝑣0,2)𝑥𝑛

2

𝑛=0

2

𝑛=0

 

 

 

= 𝑥 ∑ 𝑣0,𝑛−1𝑥𝑛−1 + 𝑣0,2 ∑ 𝑃3−𝑛𝑥𝑛

2

𝑛=0

2

𝑛=0

 

 

 

= 𝑥 ∑ 𝑣0,𝑛𝑥𝑛

1

𝑛=0

+ 𝑣0,2𝑥3 

 

 

 

 

= 𝑥 ∑ 𝑣0,𝑛𝑥𝑛

2

𝑛=0

 

 

= 𝑥 ∑ 𝑃3−𝑛𝑥𝑛2
𝑛=0   

 

= 𝑥4. 
 

 

Assume the result is true for  𝑚 = 2,3, ... , 𝑠. Then 

𝑥𝑠+4 = ∑ 𝑣𝑠,𝑛𝑥𝑛+1

2

𝑛=0

 

 

= 𝑣𝑠,2𝑥3 + ∑ 𝑣𝑠,𝑛𝑥𝑛+1

1

𝑛=0

 

 

= 𝑣𝑠,2𝑥3 + ∑ 𝑣𝑠,𝑛−1𝑥𝑛

2

𝑛=0

 

 

= 𝑣𝑠,2𝑥3 + ∑(𝑣𝑠+1,𝑛 − 𝑃3−𝑛𝑣𝑠,2)𝑥𝑛

2

𝑛=0
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= 𝑣𝑠,2𝑥3 − 𝑣𝑠,2 ∑ 𝑃3−𝑛𝑥𝑛 + ∑ 𝑣𝑠+1,𝑛𝑥𝑛

2

𝑛=0

2

𝑛=0

 

 

= 𝑣𝑠,2(𝑥3 − 𝑃3 − 𝑃2𝑥 − 𝑃1𝑥2) + ∑ 𝑣𝑠+1,𝑛𝑥𝑛

2

𝑛=0

 

 

= ∑ 𝑣𝑠+1,𝑛𝑥𝑛2
𝑛=0 .  

 

 

3. APPLICATION 

 

We now apply this to the case where 𝑃1 = 0, 𝑃2 = 𝑃3 = 1, which Hildebrand [4] used as an example in old-

fashioned numerical analysis; that is, for 

𝑥6 = ∑ 𝑣3,𝑛𝑥𝑛 = 1 + 2𝑥 + 𝑥22
𝑛=0 . (5) 

 

We also have from (4) that 

1

)3( 3

+=

=

x

xf
 

 

 

which is, in effect, the auxiliary equation for the corresponding third order Padovan sequence, some 

properties of which have been developed in [5-9]. If we apply the result (4), we see initially that 

12)5(

)4(

1)3(

2

2

++=

+=

+=

xxf

xxf

xf

 

 

and so on by using (4) until 

128801226030170625)48( 2 ++= xxf  

and 

170625299426226030)49( 2 ++= xxf  

 

which conforms with Gnanadoss [10], to find that if we use 1.3x =  as an approximation of the dominant 

root of ,013 =−− xx then a better approximation with the Bernoulli iteration can be given by 

...,324717973.1
)48(

)49(
=

f

f
 

which agrees with Hildebrand. 

 

 

4. GENERALIZED CONTINUED FRACTIONS 

 

Fibonacci numbers have many connections with ordinary continued fractions both pure (complex analysis 

and number theory) [11,12], and applied (linguistics and numerical analysis) [13]. Here we consider a 

plausible case for how a generalized continued fraction can be related to arbitrary order sequences. Previous 

work (for example [14,15]) has tended to focus on going from the continued fraction algorithm to the 

recurrence relation or difference equation, whereas we are attempting to go in the opposite direction. 

From (2) we can write, both formally and more generally, that for 𝑗 = 0,1,2, (𝑗 = 1 is the case in (2)): 
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𝑣3−𝑗,𝑛 = 𝑣2−𝑗,𝑛−1 + 𝑃𝑗𝑣𝑚−1,2, 𝑛 > 0, 

and 

𝑣2,𝑛 = 𝑣1,𝑛−1 + 𝑃1𝑣2,2 

so that if we put  

𝑎𝑗
(𝑛)

= 
𝑣𝑗−1,𝑛

𝑣2,𝑛
  

then 

𝑣2−𝑗,𝑛−1
𝑣2,𝑛

⁄

𝑣2,𝑛+1
𝑣2,𝑛

⁄
 = 

(
𝑣2−𝑗,𝑛

𝑣2,𝑛 ⁄ )−𝑃𝑗

(
𝑣1,𝑛

𝑣2,𝑛
⁄ )−𝑃𝑗

 
 

and if 
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if we set .,1)(

0 na n =  

An ordinary periodic continued fraction is an irrational root of a quadratic equation with irrational roots; in 

particular, the convergents satisfy second order linear recurrence relations with suitable initial conditions 

with the nth convergent 
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where 

,11 −+ += nnnn ppap   

and 

.11 −+ += nnnn qqaq   

 

For k a non-negative integer and ,1,...,2,1,)( −= niRa k

i
let [16] 

  1
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1
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2
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1

)( ,...,, −− == n
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and let 
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1
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1
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with 
)(

1
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1

kk ba  , so that for 11: −− → nn EET  
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which is a Jacobi-Perron Algorithm (JPA) of the vector
)0(a as a sequence  )(ka  of vectors in 1−rE  and 

Bernstein has demonstrated how this is a generalization of the continued fraction algorithm [16]. 

 

 



1093  Anthony G. SHANNON, Omur DEVECI / GU J Sci, 34(4): 1089-1094 (2021) 

 
 

5. CONCLUDING SUGGESTIONS 

 

This raises the related question that given the connection between the ordinary continued fraction and the 

Euclidean Algorithm, can the latter also be generalized along the following lines.  

Instead of relating two integers, suppose we connect two pairs of integers (a,b) and (c,d) in steps analogous 

to the ordinary Euclidean Algorithm.  

Suppose c > a > b > d, so that 

                      ( ) ( ) ( )( )
1 1 1

2 1 1 2 1 2 1

( , ) ( , ) ( , )

( , ) , ,

... ( , ) ( , ).n

c d x a b c x a x b d

a b x c x a x b d a x c x a b x x b d

x u v b a

= + − − +

= − − + + − − − − +

= + − −

                               (6) 

For example, consider the vector pair (17,1) and (65,0): 

)65,0()23,1(2)19,2(

)23,1()19,2(1)4,3(

)19,2()4,3(4)3,14(

)4,3()3,14(1)1,17(

)3,14()1,17(3)0,65(

−+=−

+−=

−+=−

+−=

−+=

 

 

 

(7) 

 

in which from (6), the partial quotients are 

.2,1,4,1,3 54321 ===== xxxxx  

In a sense (7) contains two Euclidean Algorithms, namely 

0122

1213

23414

314117

1417365

+=

+=

+=

+=

+=

 

 

 

 

(8) 

and 

.0133

1314

34419

419123

1923265

+=

+=

+=

+=

+=

 

 

 

(9) 

 

The partial quotients in (8) are the same as those in (9) but in reverse order. 

Conjecture: Consider the following equation 

𝑡𝑚,𝑛(𝑖) = 𝑖𝑃1𝑡𝑚,𝑛− 1 − 𝑃2𝑡𝑚,𝑛−2 − 𝑖𝑃3𝑡𝑚,𝑛−3, 𝑛 ≥ 3   (10) 

  

and consider the initial values as the same. Then it should be possible to obtain new results using complex 

numbers among the equations in this paper.  
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