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Abstract − Idempotent elements in a ring 𝑅 are the elements with the condition 𝒂𝟐 = 𝒂. This paper 

introduces the criterion of any element in a refined neutrosophic ring to be idempotent. Also, the 

concept of symmetric and supersymmetric elements in a neutrosophic ring 𝑅(𝐼), and a refined 

neutrosophic ring 𝑅(𝐼1, 𝐼2) are defined. Also, the invertibility of these elements is discussed. 
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1. Introduction 

Neutrosophic algebra is a new trend in pure mathematics; it is considered a combination between the 

neutrosophic set introduced by Smarandache and classical algebra. 

Many neutrosophic algebraic structures were defined and studied in a wide range such as neutrosophic 

groups, neutrosophic rings, neutrosophic vector spaces, and neutrosophic modules. See [1-6]. 

Recently, many generalized concepts came to light, such as refined neutrosophic rings, Boolean rings, and 

𝑛-refined neutrosophic rings [7-14]. These generalizations were built over the idea of splitting the 

indeterminacy 𝐼 into many logical degrees. In the case of refined structures, 𝐼 is splitting into two sub-

indeterminacies 𝐼1, 𝐼2 with the following property 𝐼1𝐼2 = 𝐼1, 𝐼1
2 = 𝐼1, 𝐼2

2 = 𝐼2 [9]. Also, 𝐼 is splitting into n 

sub-indeterminacies 𝐼1, … , 𝐼𝑛 in the case of n-refined structures. See [12,13]. 

Idempotents in a ring 𝑅 are the elements with the property 𝑎2 = 𝑎. They were handled and classified in 

neutrosophic rings with semi idempotents in [15,16]. Through this paper, we introduce the condition of any 

element in a refined neutrosophic ring 𝑅(𝐼1, 𝐼2) to be idempotent. Two new kinds of special elements 

(symmetric and supersymmetric elements) in neutrosophic rings and refined neutrosophic rings are presented 

and classified. These elements have many interesting properties, especially in neutrosophic fields and refined 

neutrosophic fields. Also, their algebraic structure will be discussed in previous cases. 

2. Preliminaries 

Definition 2.1. [13] Let (𝑅, +,×) be a ring. Then, 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ∶  𝑎, 𝑏 ∈ 𝑅} is called the neutrosophic ring 

where 𝐼 is a neutrosophic element with the condition 𝐼2 = 𝐼. 
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If 𝑅 is a field, then 𝑅(𝐼) is called a neutrosophic field. 

A neutrosophic field is not a field by classical meaning, since 𝐼 is not invertible. 

Definition 2.2. [1] Let 𝑅 be a ring and 𝑅(𝐼) be the related neutrosophic ring and 𝑃 = 𝑃0 + 𝑃1𝐼 =

{𝑎0 + 𝑎1𝐼 ∶  𝑎0 ∈ 𝑃0 , 𝑎1 ∈ 𝑃1}; 𝑃0, 𝑃1 are two subsets of 𝑅. 

(a) We say that 𝑃 is an AH-ideal if 𝑃0, 𝑃1 are ideals in the ring 𝑅. 

(b) We say that 𝑃 is an AHS-ideal if 𝑃0 = 𝑃1. 

Remark 2.3. [11] The element 𝐼 can be split into two indeterminacies 𝐼1 , 𝐼2 with conditions: 

I1
2 = I1 , 𝐼2

2 = 𝐼2 , 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1 

Definition 2.4. [11] If 𝑋 is a set, then 𝑋(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2) ∶ 𝑎 , 𝑏 , 𝑐 ∈ 𝑋 } is called the refined 

neutrosophic set generated by 𝑋 , 𝐼1, 𝐼2. 

Definition 2.5. [11] Let (𝑅, +,×) be a ring, (𝑅(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated 

by 𝑅 ,𝐼1, 𝐼2. 

Theorem 2.6. [11] Let (𝑅(𝐼1, 𝐼2) , + ,×) be a refined neutrosophic ring, then it is a ring. It is called a 

neutrosophic field if 𝑅 is a classical field. 

Definition 2.7. [17] Let 𝑅 be a ring, 𝑎 be any element in 𝑅. Then, it is called idempotent if and only if 𝑎2 = 𝑎. 

3. Idempotents in 𝑹(𝑰𝟏, 𝑰𝟐) 

Theorem 3.1. Let 𝑅 be any ring (noncommutative ring in general), 𝑅(𝐼1, 𝐼2) be its corresponding refined 

neutrosophic ring. Assume that 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is an arbitrary element in 𝑅(𝐼1, 𝐼2). Then, 𝑥 is idempotent in 

𝑅(𝐼1, 𝐼2) if and only if 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅. 

PROOF. Let 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) be an idempotent in 𝑅(𝐼1, 𝐼2), then 

𝑥2 = (𝑎2, [𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏]𝐼1, [𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2]𝐼2) = 𝑥 

Thus, [𝑎2 = 𝑎],(*)[ 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑏],  (**)[𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑐], hence a is an idempotent 

in 𝑅. 

Now, we compute (𝑎 + 𝑐)2 = 𝑎2 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2, we can find from (**) that (𝑎 + 𝑐)2 = 𝑎2 + 𝑐 = 𝑎 + 𝑐, 

thus 𝑎 + 𝑐 is idempotent in 𝑅. 

Also, we have (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏, by (*) we get 

(𝑎 + 𝑏 + 𝑐)2 = (𝑎2 + 𝑐2 + 𝑎. 𝑐 + 𝑐. 𝑎) + (𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏) = (𝑎 + 𝑐) + 𝑏 = 𝑎 + 𝑏 + 𝑐 

Thus, 𝑎 + 𝑏 + 𝑐 is idempotent in 𝑅. 

For the converse, we suppose that 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅, then we get 

(1) [𝑎2 = 𝑎]. 

(2) (𝑎 + 𝑐)2 = 𝑎2 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑎 + 𝑐. By using equation (1), we get 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑐. 

(3) (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐. By using (1) and (2), 

we get (𝑎 + 𝑏 + 𝑐)2 = 𝑎 + 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + (𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2) + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐. Thus, 

𝑎 + 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + (𝑐) + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐 

 Hence, 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑏. 
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Now, we compute 𝑥2 = (𝑎2, [𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏]𝐼1, [𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2]𝐼2) = (𝑎, 𝑏𝐼1, 𝑐𝐼2) = 𝑥. So, it 

is idempotent in the refined neutrosophic ring 𝑅(𝐼1, 𝐼2). 

Example 3.2. Let 𝑅 = 𝑍3 be the ring of integers modulo 3, 𝑅(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2) ∶ 𝑎, 𝑏, 𝑐 ∈ 𝑍3} be its 

corresponding refined neutrosophic ring. The set of idempotents in 𝑅 is 

𝑀 = {0,1}, the set of idempotents in 𝑅(𝐼1, 𝐼2) according to Theorem 3.1 is: 

𝑁 = {(1, 𝐼1, 2𝐼2), (1,0,2𝐼2), (1,2𝐼1, 0), (1,0,0), (0,0,0), (0, 𝐼1, 0), (0,0, 𝐼2), (0,2𝐼1, 𝐼2)} 

The following theorem determines the number of idempotents in 𝑅(𝐼1, 𝐼2). 

Theorem 3.3. If the ring 𝑅 has 𝑚 idempotents, then the corresponding refined neutrosophic ring 𝑅(𝐼1, 𝐼2) has 

𝑚3 idempotents. 

PROOF. According to Theorem 3.1, for each idempotent 𝑎 ∈ 𝑅, we have 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is idempotent in 

𝑅(𝐼1, 𝐼2), if and only if 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅, thus 𝑐 can be taken by 𝑚 ways, and 𝑏 is the 

same. By this argument, we get the fact that 𝑅(𝐼1, 𝐼2) has 𝑚 × 𝑚 × 𝑚 = 𝑚3 idempotents. 

4. Symmetric Elements 

This section is devoted to studying a new kind of special elements in a neutrosophic ring and a refined 

neutrosophic ring with its algebraic structures. 

Definition 4.1. Let 𝑅 be a ring, 𝑅(𝐼) be the corresponding neutrosophic ring. An arbitrary element 𝑥 = 𝑎 +

𝑏𝐼 ∈ 𝑅(𝐼) is called symmetric if and only if 𝑎 = 𝑏. The set of all symmetric elements in a neutrosophic ring 

is denoted by 𝑆(𝐼).  

Definition 4.2. Let 𝑅 be a ring, 𝑅(𝐼1, 𝐼2) be the corresponding refined neutrosophic ring. An arbitrary element 

𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) ∈ 𝑅(𝐼1, 𝐼2) is called symmetric if and only if 𝑎 = 𝑏 = 𝑐. The set of all symmetric elements 

in a refined neutrosophic ring is denoted by 𝑆(𝐼1, 𝐼2). 

Theorem 4.3. Let 𝑅(𝐼) be a neutrosophic ring, 𝑆(𝐼) be the set of all symmetric elements. Then, (𝑆(𝐼), +) is a 

subgroup of (𝑅(𝐼), +) and (𝑆(𝐼), +) ≅ (𝑅, +). 

PROOF. Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 𝑆(𝐼), 𝑥 − 𝑦 = (𝑎 − 𝑏) + (𝑎 − 𝑏)𝐼 ∈ 𝑆(𝐼), 

thus 𝑆(𝐼) is a subgroup of (𝑅(𝐼), +). (It is known that (𝑅(𝐼), +) is an abelian group by the definition of the 

ring). 

We define 𝑓: 𝑅 → 𝑆(𝐼); 𝑓(𝑎) = 𝑎 + 𝑎𝐼, suppose that 𝑎, 𝑏 ∈ 𝑅, then 𝑓(𝑎 + 𝑏) = (𝑎 + 𝑏) + (𝑎 + 𝑏)𝐼 =

𝑓(𝑎) + 𝑓(𝑏). 

𝑓 is a well-defined map since if 𝑎 = 𝑏, then 𝑎 + 𝑎𝐼 = 𝑏 + 𝑏𝐼, i.e. 𝑓(𝑎) = 𝑓(𝑏). Clearly, 𝑓 is bijective; thus, 

it is an isomorphism. 

Theorem 4.4: Let 𝑅(𝐼1, 𝐼2) be a refined neutrosophic ring, 𝑆(𝐼1, 𝐼2) be the set of all symmetric elements. Then, 

(𝑆(𝐼1, 𝐼2), +) is a subgroup of (𝑅(𝐼1, 𝐼2), +) and (𝑆(𝐼1, 𝐼2), +) ≅ (𝑅, +). 

PROOF. The proof is similar to that of Theorem 4.3. 

Theorem 4.5. Let 𝐾(𝐼) be a neutrosophic field, 𝑆(𝐼) be the set of all symmetric elements. If 𝐶ℎ𝑎𝑟(𝐾)  =  2, 

then 𝑆(𝐼) is a field and 𝑆(𝐼) ≅ 𝐾. 

PROOF. We must prove that (𝑆(𝐼)/{0}, . ) is a group. Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 

𝑆(𝐼)/{0}, we have 𝑥. 𝑦 = (𝑎. 𝑏) + (𝑎. 𝑏 + 𝑎. 𝑏 + 𝑎. 𝑏)𝐼 = (𝑎. 𝑏) + (𝑎. 𝑏)𝐼 ∈ 𝑆(𝐼), since 𝑎. 𝑏 + 𝑎. 𝑏 =

2𝑎. 𝑏 = 0 (under the assumption 𝐶ℎ𝑎𝑟(𝐾)  =  2). The inverse of 𝑥 is 𝑥−1 = 𝑎−1 + 𝑎−1𝐼 because 𝑥. 𝑥−1 =

(𝑎𝑎−1) + (𝑎𝑎−1 + 𝑎𝑎−1 + 𝑎𝑎−1)𝐼 = 1 + 𝐼. 1 + 𝐼 is an identity concerning multiplication, that is because 

(𝑎 + 𝑎𝐼). (1 + 𝐼) = 𝑎 + (𝑎 + 𝑎 + 𝑎)𝐼 = 𝑎 + 𝑎𝐼. 
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We define 𝑓: 𝑆(𝐼) → 𝐾; 𝑓(𝑎 + 𝑎𝐼) = 𝑎, 𝑓 is a well-defined bijective map. 

Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 𝑆(𝐼), 𝑓(𝑥 + 𝑦) = (𝑎 + 𝑏) = 𝑓(𝑥) + 𝑓(𝑦), 𝑓(𝑥. 𝑦) =

𝑓(𝑎. 𝑏 + 𝑎. 𝑏𝐼) = 𝑎. 𝑏 = 𝑓(𝑥). 𝑓(𝑦). Hence 𝑓 is an isomorphism. 

Example 4.6. Let 𝐾 = 𝑍2 be a field with 𝐶ℎ𝑎𝑟(𝐾)  =  2, 𝐾(𝐼) = {0,1, 𝐼, 1 + 𝐼}, 𝑆(𝐼) = {0,1 + 𝐼}. 

We can see that 𝑆(𝐼) is a field, the identity concerning multiplication is 1 + 𝐼, and 𝑆(𝐼) ≅ 𝑍2 = 𝐾. 

Theorem 4.7. Let 𝐾(𝐼1, 𝐼2) be a refined neutrosophic field, 𝑆(𝐼1, 𝐼2) be the set of all symmetric elements. 

If 𝐶ℎ𝑎𝑟(𝐾)  =  2, then 𝑆(𝐼1, 𝐼2) is a field and S(𝐼1, 𝐼2) ≅ 𝐾. 

PROOF. We must prove that (𝑆(𝐼1, 𝐼2)/{0}, . ) is a group. Let 𝑥 = (𝑎, 𝑎𝐼1, 𝑎𝐼2), 𝑦 = (𝑏, 𝑏𝐼1, 𝑏𝐼2) be two arbitrary 

elements in 𝑆(𝐼1, 𝐼2)/{0}, we have 𝑥. 𝑦 = (𝑎. 𝑏, [5𝑎. 𝑏]𝐼1, [3𝑎. 𝑏]𝐼2) = (𝑎. 𝑏, 𝑎. 𝑏𝐼1, 𝑎. 𝑏𝐼2) ∈ S(𝐼1, 𝐼2), since 

5𝑎. 𝑏 = 3𝑎. 𝑏 = 𝑎. 𝑏 (under the assumption 𝐶ℎ𝑎𝑟(𝐾)  =  2).  

The inverse of 𝑥 is 𝑥−1 = (𝑎−1, 𝑎−1𝐼1, 𝑎−1𝐼2) because 𝑥. 𝑥−1 = (𝑎. 𝑎−1, [5𝑎. 𝑎−1]𝐼1, [3𝑎. 𝑎−1]𝐼2) =

(1,1. 𝐼1, 1. 𝐼2). (5𝑎𝑎−1 = 5 = 1 + 4 = 0, 3𝑎𝑎−1 = 3 = 1 + 2 = 1, under the assumption 𝐶ℎ𝑎𝑟(𝐾) = 2). 

(1,1. 𝐼1, 1. 𝐼2) is an identity concerning multiplication, that is because (𝑎, 𝑎𝐼1, 𝑎𝐼2). (1,1. 𝐼1, 1. 𝐼2) =

(𝑎, 𝑎𝐼1, 𝑎𝐼2). 

We define 𝑓: 𝑆(𝐼1, 𝐼2) → 𝐾; 𝑓(𝑎, 𝑎𝐼1, 𝑎𝐼2) = 𝑎, 𝑓 is an isomorphism (It can be proved by a similar way to the 

previous theorem.). 

Example 4.8. Let 𝐾 = 𝑍2 be a field with 𝐶ℎ𝑎𝑟(𝐾)  =  2, 

𝐾(𝐼1, 𝐼2) = {(0,0,0), (1,0,0), (0,1. 𝐼1, 0), (0,0,1. 𝐼2), (1,1. 𝐼1, 1𝐼2), (1,1𝐼1, 0), (0,1. 𝐼1, 1. 𝐼2), (1,0,1. 𝐼2} 

𝑆(𝐼1, 𝐼2) = {(0,0,0), (1,1. 𝐼1, 1𝐼2)}, which is a field isomorphic to 𝐾 = 𝑍2. 

The following theorem determines which elements in a neutrosophic field 𝐾(𝐼) are invertible. 

Theorem 4.9. Let 𝐾 be a field, 𝐾(𝐼) be the corresponding neutrosophic field. An arbitrary element 𝑧 = 𝑎 +

𝑏𝐼 ∈ 𝐾(𝐼) is invertible if and only if 𝑎 ≠ 0 and 𝑎 ≠ −𝑏. 

PROOF. Let 𝑧 = 𝑎 + 𝑏𝐼 ∈ 𝐾(𝐼) be an invertible element in 𝐾(𝐼). There is 𝑚 = 𝑥 + 𝑦𝐼 ∈ 𝐾(𝐼); 𝑧. 𝑚 = 1. Thus, 

(𝑎. 𝑥) + (𝑎. 𝑦 + 𝑏. 𝑥 + 𝑏. 𝑦)𝐼 = 1, this means 𝑥 = 𝑎−1, 𝑎. 𝑦 + 𝑏(𝑎−1) + 𝑏𝑦 = 0. Hence, 

𝑦 =
−𝑏.𝑎−1

𝑎+𝑏
, this implies 𝑎 ≠ 0 and 𝑎 ≠ −𝑏 

Conversely, suppose that 𝑎 ≠ 0 and 𝑎 ≠ −𝑏, then there is  𝑚 = 𝑥 + 𝑦𝐼 ∈ 𝐾(𝐼), where  𝑥 = 𝑎−1, 𝑦 =
−𝑏.𝑎−1

𝑎+𝑏
  

with 𝑧. 𝑚 = 1. 

Result 4.10. If 𝐾(𝐼) is a neutrosophic field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2, then all symmetric elements different from 

zero are invertible. 

PROOF. Let 𝐾 be a field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2, 𝑥 = 𝑎 + 𝑎𝐼 be a symmetric element different from zero. It is clear 

that 𝑎 ≠ −𝑎, thus 𝑥 is invertible according to Theorem 4.10. 

Example 4.11. Let 𝐾 = 𝑍5 be the field of integers modulo 5. We have 𝑥 = 3 + 3𝐼 a symmetric element. The 

inverse of 𝑥 is 𝑥−1 = 2 + 4𝐼. 

The inverse of a symmetric element is not supposed to be symmetric in general. 

The following theorem determines which elements are invertible in a refined neutrosophic field 𝐾(𝐼1, 𝐼2). 

Theorem 4.12. Let 𝐾(𝐼1, 𝐼2) be a refined neutrosophic field. An arbitrary element 𝑡 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is invertible 

if and only if 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0. 

PROOF. Suppose that 𝑡 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is invertible. Then, there is 𝑚 = (𝑥, 𝑦𝐼1, 𝑧𝐼2); 𝑚. 𝑡 = 1𝐾(𝐼1,𝐼2). 
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𝑚. 𝑡 = (𝑎. 𝑥, [𝑎. 𝑦 + 𝑏. 𝑥 + 𝑏. 𝑧 + 𝑏. 𝑦 + 𝑐. 𝑦]𝐼1, [𝑎. 𝑧 + 𝑐. 𝑥 + 𝑐. 𝑧]𝐼2) = (1,0,0), this means 𝑥 = 𝑎−1, 𝑧 =
−𝑐𝑎−1

𝑎+𝑐
, 𝑦 = (𝑎 + 𝑏 + 𝑐)−1. (−𝑏. 𝑎−1 +

𝑏𝑐

𝑎(𝑎+𝑐)
), which implies that 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0. 

Conversely, if 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0, then there is 𝑚 = (𝑥, 𝑦𝐼1, 𝑧𝐼2); 𝑚. 𝑡 = 1𝐾(𝐼1,𝐼2), where 𝑥 =

𝑎−1, 𝑧 =
−𝑐𝑎−1

𝑎+𝑐
, 𝑦 = (𝑎 + 𝑏 + 𝑐)−1. (−𝑏. 𝑎−1 +

𝑏𝑐

𝑎(𝑎+𝑐)
). 

Result 4.13. Let 𝐾 be a field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2 and 𝐶ℎ𝑎𝑟(𝐾) ≠ 3, then all symmetric elements different 

from zero in the corresponding refined neutrosophic field 𝐾(𝐼1, 𝐼2) are invertible since the conditions of 

Theorem 4.12 are true in this case. 

Example 4.14. Let 𝐾 = 𝑍5 be the field of integers modulo 5 and 𝐶ℎ𝑎𝑟(𝐾)  =  5, let 𝑥 = (3, 3𝐼1, 3𝐼2) is an 

element in the refined neutrosophic field 𝐾(𝐼1, 𝐼2). According to Theorem 12.3, the inverse of 𝑥 is 𝑥−1 =

(2,3𝐼1, 4𝐼2). 

The inverse of a symmetric element in a refined neutrosophic field is not supposed to be a symmetric 

element in general. 

5. Super Symmetric Elements 

The following section is discussing a generalized kind of symmetric elements. 

Definition 5.1. Let 𝑅 be a ring, 𝑅(𝐼) be the corresponding neutrosophic ring. An arbitrary element 𝑥 = 𝑎 +

𝑏𝐼 ∈ 𝑅(𝐼) is called supersymmetric if and only if 𝑎 = 𝑚. 𝑐, 𝑏 = 𝑛. 𝑐 ; 𝑐 ∈ 𝑅 and 𝑚, 𝑛 ∈ 𝑍. The set of all 

supersymmetric elements in a neutrosophic ring is denoted by 𝑆𝑆(𝐼). 

Definition 5.2. Let 𝑅 be a ring, 𝑅(𝐼1, 𝐼2) be the corresponding refined neutrosophic ring. An arbitrary element 

𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) ∈ 𝑅(𝐼1, 𝐼2) is called supersymmetric if and only if 𝑎 = 𝑚. 𝑑, 𝑏 = 𝑛. 𝑑, 𝑐 = 𝑠. 𝑑; 𝑑 ∈ 𝑅 and 

𝑚, 𝑛, 𝑠 ∈ 𝑍. The set of all supersymmetric elements in a refined neutrosophic ring is denoted by 𝑆𝑆(𝐼1, 𝐼2). 

Theorem 5.3. Let 𝑅(𝐼) be a neutrosophic ring, 𝑆𝑆(𝐼) be the set of all supersymmetric elements. Then, 𝑆𝑆(𝐼) 

is closed under the multiplication of 𝑅(𝐼). 

PROOF. Let 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼, 𝑦 = 𝑠. 𝑏 + 𝑡. 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅 and 𝑚, 𝑛, 𝑠, 𝑡 ∈ 𝑍, we have 𝑥. 𝑦 = (𝑚𝑛)(𝑎. 𝑏) +

[(𝑚𝑡 + 𝑛𝑠 + 𝑛𝑡)(𝑎. 𝑏)]𝐼 ∈ 𝑆𝑆(𝐼). Since 𝑚𝑛, 𝑚𝑡 + 𝑛𝑠 + 𝑛𝑡 ∈ 𝑍. 

Remark 5.4. 𝑆𝑆(𝐼) is not an additive subgroup of (𝑅(𝐼), +) in general. We clarify it by the following example: 

Let 𝑅 be the ring of real numbers, 𝑥 = √2 + 3√2𝐼, 𝑦 = √3 − 4√3𝐼 be two elements in 𝑆𝑆(𝐼), 𝑥 + 𝑦 =

(√2 + √3) + (3√2 − 4√3)𝐼, we can see that 𝑥 + 𝑦 is not in 𝑆𝑆(𝐼), since 3√2 − 4√3 cannot be written as 

𝑚. (√2 + √3), where m is an integer. 

Theorem 5.5. Let 𝑅(𝐼1, 𝐼2) be a refined neutrosophic ring, 𝑆𝑆(𝐼1, 𝐼2) be the set of all supersymmetric elements. 

Then, 𝑆𝑆(𝐼1, 𝐼2) is closed under the multiplication of 𝑅(𝐼1, 𝐼2). 

PROOF. The proof is similar to that of Theorem 5.3. 

Remark 5.6. 𝑆𝑆(𝐼1, 𝐼2) is not an additive subgroup of (𝑅(𝐼1, 𝐼2), +) in general. We illustrate an example. 

Let 𝑅 be the ring of real numbers, 𝑥 = (√2, √2 𝐼1, 3√2 𝐼2), 𝑦 = (√3, 2√3𝐼1, 5√3𝐼2) be two elements in 

𝑆𝑆(𝐼1, 𝐼2), 𝑥 + 𝑦 = (√2 + √3, [√2 + 2√3]𝐼1, [3√2 + 5√3]𝐼2), we can see that √2 + 2√3 can not be written 

as 𝑚. (√2 + √3) where m is an integer.  

The following theorem introduces a special case, which 𝑆𝑆(𝐼) and 𝑆𝑆(𝐼1, 𝐼2), will be two additive subgroups 

of (𝑅(𝐼), +) and (𝑅(𝐼1, 𝐼2), +), respectively. 
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Theorem 5.7. Let 𝑅 = 𝑍 be the ring of integers. Then, 

(a) (𝑆𝑆(𝐼), +) is a subgroup of (𝑅(𝐼), +). 

(b) (𝑆𝑆(𝐼), +. ) is a subring of (𝑅(𝐼), +, . ). 

(c) (𝑆𝑆(𝐼1, 𝐼2), +) is a subgroup of (𝑅(𝐼1, 𝐼2), +). 

(d) (𝑆𝑆(𝐼1, 𝐼2), +, . ) is a subring of (𝑅(𝐼1, 𝐼2), +, . ). 

PROOF.  

(a) Let 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼, 𝑦 = 𝑠. 𝑏 + 𝑡. 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍 and 𝑚, 𝑛, 𝑠, 𝑡 ∈ 𝑍, we have 𝑥 − 𝑦 = (𝑚. 𝑎 − 𝑠. 𝑏)(1) +

[(𝑛. 𝑎 − 𝑡. 𝑏)(1)]𝐼 ∈ 𝑆𝑆(𝐼), thus (𝑆𝑆(𝐼), +) is an additive subgroup of (𝑅(𝐼), +). 

(b) It holds directly from (a) and Theorem 5.3. 

(c) It can be proved by a similar argument of (a). 

(d) It holds directly from (c) and Theorem 5.5. 

We discuss the invertibility properties of supersymmetric elements in a neutrosophic field and a refined 

neutrosophic field by the following theorem. 

Theorem 5.8. Let 𝐾 be a field, 𝐾(𝐼) be the corresponding neutrosophic field, 𝐾(𝐼1, 𝐼2) be the corresponding 

refined neutrosophic field. Then, 

(a) An arbitrary supersymmetric element 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼 ∈ 𝐾(𝐼); 𝑚, 𝑛 ∈ 𝑍 and 𝑎 ∈ 𝐾 is invertible if and 

only if 𝑎 ≠ 0 and (𝑚 + 𝑛). 𝑎 ≠ 0. 

(b) An arbitrary supersymmetric element 𝑥 = (𝑚. 𝑎, 𝑛. 𝑎𝐼1, 𝑠. 𝑎𝐼2) ∈ 𝐾(𝐼1, 𝐼2); 𝑚, 𝑛, 𝑠 ∈ 𝑍 and 𝑎 ∈ 𝐾 is 

invertible if and only if 𝑎 ≠ 0, (𝑚 + 𝑠). 𝑎 ≠ 0, (𝑚 + 𝑛 + 𝑠). 𝑎 ≠ 0. 

PROOF.  

(a) According to Theorem 4.9, 𝑥 = 𝑎 + 𝑏𝐼 is invertible if and only if 𝑎 ≠ 0 and 𝑎 + 𝑏 ≠ 0, thus 𝑥 = 𝑚. 𝑎 +

𝑛. 𝑎𝐼 is invertible if and only if 𝑎 ≠ 0 and 𝑚. 𝑎 + 𝑛. 𝑎 = (𝑚 + 𝑛). 𝑎 ≠ 0. 

(b) It can be proved by a similar argument of section (a), and by using Theorem 4.12. 

6. Conclusion 

In this article, we have determined the criterion of idempotency in a refined neutrosophic ring. Also, we have 

introduced two new kinds of special elements in neutrosophic rings and refined neutrosophic rings. We have 

studied the invertibility conditions of these elements and their algebraic structure. This work should be 

extended to the case of n-refined neutrosophic rings defined in [12], where the necessary and sufficient 

condition for nilpotency is still unknown. 
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