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ABSTRACT
One of the problems that require a solution in Massive Open Online Courses (MOOC) is the lack of 
identification and authentication of the students. Different investigations have been carried out through 
several navigation, physiological and behavioral methods, achieving different recognition scales. Biometric 
authentication by keystroke patterns (Ups&Downs) has been implemented in several MOOCs for the ease 
of the digital platforms of the offeror to solve the identification problem. The objective of this research is 
to analyze the independence of the keystroke tool of the other demographic, sociographic and behavioral 
variables within a MOOC, establishing an initial pattern, and two authentication measurements throughout 
the course. The results show that the keystroke is independent of the analyzed variables, and it is reliable to 
identify the students in qualitative tests with extension answers.
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INTRODUCTION
Digital technology applied in education has changed teaching and learning methods. Its growth has been 
accelerated in the last decade and has managed to optimize variables such as time, location, content, interaction, 
and communication. The accessibility of digital platforms allows the integration of students of different age 
ranges, educational levels, motivations towards achievement and socio-cultural characteristics. Within this 
context, the Massive Online Open Course (MOOC) trend has become a learning model of the future allowing 
asynchronously relating two learning factors such as the teacher and the student. The MOOCs optimize 
variables such as: tuition costs, time availability, previous requirements, student coverage and flexibility (Gutl, 
Rizzardini, Chang & Morales, 2014; Zambrano, Cano & Presiga, 2017). Through MOOCs, universities 
and global institutions are responsible for offering and promoting courses so that people can access without 
restriction, creating opportunities to democratize education (Fernandez-Ferrer, 2017). 
Vilar et al. (2013) affirm that the information and communication technology (ICT) has triggered innovation 
processes in online education and dizzying changes driven by the demands of the Information Society and 
increasingly globalized work contexts, which focus on the modernization of processes training of future 
professionals. Franco-Casamitjana (2005); Franco-Casamitjana, et al., 2013 also confirm that the strategies 
that educational institutions use to bring knowledge closer to citizens will determine the limits of future 
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learning networks. This education and continuous training have always been tools for the creation of wealth, 
and nowadays, in societies based on the information and technology economy, these factors acquire greater 
importance. Some experts predict that MOOCs will mutate into new forms that have a greater emphasis on 
the accompaniment of learning, so that progressively there will be a decrease in the number of participants 
and better accompaniment. Assessment systems will be implemented that guarantee the acquisition of 
competences and not only knowledge, and quality criteria will be established that do not limit themselves 
to issuing an assessment based on the “reputation” of the educational institution that offers the course, its 
terminal efficiency and / or dropout rate (Menendez, 2013).
The quality of a MOOC is a fundamental aspect that must be taken into account in the design and delivery; 
it is a key question if it is intended to offer through MOOCs, valuable learning experiences that can be 
sustainable in the long term. Therefore, the institutional quality audit has to contribute to the promotion 
of a high quality improvement in teaching and learning (EFQUEL, 2013). MOOCs must apply the same 
quality requirements that training courses offered online and at distance apply. The application of these 
quality criteria would provide an educational guarantee, provided that these indicators do not operate in 
isolation and are articulated in an appropriate way to have a comprehensive image of the reference educational 
system (Bernal et al., 2013). AlemAn de la Garza, Sancho and Gomez Zermeno (2015) corroborate that the 
fact that MOOCs are massive, online and open courses, requires greater rigor in the control of their quality, 
since these courses are aimed at different profiles, without much control of its results and achievement of its 
objectives. For this reason, the construction of identity verification tools should also strengthen quality in 
the key processes of a MOOC: planning, design, development and implementation. 
However, the disadvantages of the MOOC question the recognition of the identity of the student, to certify 
that the person receiving the learning and performing the evaluations is who claims to be (Sanna & Marciales, 
2017). In this regard, the use of digital technology has allowed automate and improve these processes of 
biometric recognition, so that they have many applications and purposes, especially those related to security. 
Biometrics is a method of recognizing people based on their physiological or behavioral characteristics. It 
is a process similar to that usually performed by human beings recognizing and identifying their congeners 
by their physical appearance, their voice, their way of walking, among others. Biometric technologies are 
defined as automatic methods used to recognize people based on the analysis of their physical or behavioral 
characteristics. Depending on the biometric technique used, the parameters considered are different: grooves 
of the fingerprint, the geometry of the hand, voice, and facial image. From these parameters, a unique personal 
pattern is extracted, which will be the one used for later comparisons (Tapiador, 2005; INCIBE, 2016). 

Types of Biometric Technologies
Learning management systems offer tools based on biometric technologies, which are usually applied in 
two phases: registration and authentication. Similarly, there are three modes used for the authentication of 
a person: physical element, knowledge of secret information, and biometrics. The physical element refers 
to the position of a key, smart card or digital passport. The knowledge of secret information is composed 
of an alphabetic, numeric or mixed password. Biometrics measures unique human characteristics or traits 
(Ali, Monaco, Tappert & Qiu, 2015). In the case of MOOCs, it is not only necessary to identify the student 
at the time of registration, but also in the development of the course, especially when making qualitative 
answers. There are different technologies for the administration and identification of students of a MOOC.
Currently, biometric technologies are applied in three different areas: (a) Learning management system 
(LMS), (b) Mobile applications and (c) proprietary software. LMS (Learning Management System) focuses 
on the management of students, experiences during learning, and optimizes the time to create and distribute 
the courses with participants. Mobile applications allow students to manage and profile through different 
mobile systems such as tablets and smartphones. The proprietary software is developed by the course providers 
to create their learning platform and allows the inclusion of private biometric identification tools. The three 
student management technologies require to know with certainty that the students really did the academic 
tasks with qualitative answers assigned and that the selected tool achieves the objective of identification 
independently of the demographic characteristics of the students, technological tools of interrelation and 
that has sufficient reliability within the operating environment (Fenu, Marras & Boratto, 2017). 
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The biometric characteristics consider three features: physiological (retina, iris, facial or hand geometry), 
navigation (touch and mouse movements) and behavioral (signature, voice and dynamics in the keystrokes 
when writing) (Fenu, Marras & Boratto, 2017). These characteristics are difficult to reproduce and cannot 
be lost or forgotten. Monaco, Stewart, Cha and Tapper (2013) have studied identification through facial 
recognition; the results indicate that they were able to identify the students in real time, at low process costs 
and with a high degree of confidence. The characteristic of the voice was used to identify the presence of other 
subjects with the student while doing the learning or evaluative activity (Roth, Liu, Ross & Metaxas, 2013). 
Based on the dynamics of the keystroke, Monaco et al., (2013) incorporated the concept of stylometry, as 
linguistic characteristics that depend only on the syntax and hermeneutics of each subject.

Biometric Verification by Pulsations
Based on Monrose and Rubin (2000), the identification through the keystrokes, focuses on the student’s 
writing style, contrasting a habitual typographic rhythm pattern, through one or more subsequent 
monitoring. Within the pulsations, two identification techniques are evident: static and continuous. The 
static technique makes the study within a certain time interval, and the continuous technique is carried out 
during the interaction. The continuous technique allows involving variables such as fatigue and attention, 
which normally appear within the process of student interaction. According to Deutshmann and Lindholm 
(2013) the continuous authentication systems consist of four parts: (1) Compilation of behavioral data 
gathered from the use of the mouse to the keyboard data (2) Classification of writing features, in different 
categories such as Ups and Downs, as their rate of change (3) Storage of the user profile and (4) Verification 
evaluation between the master profile and the digital behavior. In general, tactile capture algorithms include 
different gross gestures (time, manipulation, vibration, rotation, pressure, touch size and position) (Fenu, 
Marras & Boratto, 2017; Hernandez-Ortega et al., 2020).

Figure 1. Biometric recognition technology based on the typing dynamics exposed by Morales, 
Fierrez,Vera-Rodriguez and Ortega-Garcia (2015)

The main objective of this work is to know if the biometric measure, pressure, rise, and change between 
letters is independent of the variables presented in a digital course or is influenced by characteristics of the 
students and the experiences that a selected MOOC presents. To achieve the objectives of this research, was 
used the biometric recognition technology based on the typing dynamics exposed by Morales, Fierrez,Vera-
Rodriguez and Ortega-Garcia (2015) (Figure 1). This keystroke dynamics technology analyzes and models 
the waiting time or time of pressing and releasing a key and the time of elevation or difference between 
the type of key pressed and the time of elevation of the previous key, through a sequence according to the 
number of characters the words have. Finally, a unique vector is determined for each individual that is related 
to the identity of the subject, this vector is stored as a template to be compared later between the moment of 
registration and the moment of evaluative cuts.

METHOD
In a world that generates large amounts of data, the mathematics applied in its analysis can replace some 
traditional research instruments. For Siemens (2011), education brings together a surprising variety 
of quantitative data in teaching-learning processes, which have been little used. For this reason, online 
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education institutions have recently begun to study how to apply data analytics to understand and design 
new metrics to assess learning (Aleman de la Garza, 2019; Aleman de la Garza y Gomez Zermeno, 2019).
Cross (2013) reports that MOOC research generates new methodological and interpretive challenges. It 
warns of the difficulty of adequately coding and analyzing a large amount of information from disparate 
sources to determine how and on what terms the success of a course is valued. This type of analysis can be 
complicated, because the public is massive and heterogeneous, the particular uses, and the articulations 
of technologies with pedagogy in a MOOC context, still need to be tested with appropriate instruments 
(AlemAn, 2019, VelAzquez Sortino, et al., 2017).
This research presents a transactional and longitudinal quantitative analysis based on students of a MOOC 
during the first semester of 2018. Two stages were conducted: Stage 1, Descriptivo, Stage 2, Relational and 
Stage 3, Predictive. Confirmation of the identification of the subject was chosen as a dependent variable 
during two moments. The analyzes were performed with the IBM SPSS Statistics program version 25. To 
examine the results and find the independence of the Software regarding the way students are identified 
based on their writing profile, the independent variables used were: gender, age, educational level, amount 
of data lost at the time of registration, interest for the certificate, participation in the forum, participation in 
peer evaluation, enrollment status and identification of the subject at the time of registration.

Participants
The population analyzed corresponds to the participants of a MOOC focused on Electrical Engineering 
(N=4.232). Those students under the age of 18 who preferred to perform the MOOC at their own pace 
were excluded from the study (outside of the stipulated dates for the planned activities), resulting 4.060 
participants. The lost data of the participants at the time of registering presents an M=2.55 and SD= .67, 
failing to report their complete information. 85.5% of the participants were Mexican and the rest from 
different parts of the world in small proportions (Table 1).

Table 1. Demographic information of those registered in all MOOCs

Gender Female (23.6%), Male (76.2%)

Level of schooling 
(years) 8(0.1%),10 (41.1%),  12 (22.4%), 14 (5.5%),16 (19 %), 18 (1%), 22 (8.5%), Lost (0.3%), others (2.1%).

Rangos de edad 18 a 28 (54.9%), 28 a 38 (23.2%), 38 a 48 (11.3%), 49 a 58 (5.1%), 58 a 68 (1.3%), >68 (0.2%), sin 
reportar (4.1%).

Instruments
The students were recruited through digital advertising for a period of two months. The cost of the certificate 
was 50 USD and the duration of the course was five weeks. The students knew a unique start date, after which 
no other student could be linked. The MOOC used the Keytrack biometric identification software, which 
measured the agreement between the initial pattern (form b) and the measurements in percentages (form 
d). The analysis protocol followed three phases: (1) Registration, each student at the time of registration 
answered the question: What are the expectations you have about the course? This question served as a 
biometric pattern and did not the present time or character limits. (2) First-grade assessment, once week 
three arrived, students were presented with a qualitative question about the course material of block three. 
(3) Second-level assessment, at the end of the last week of the course, the students answered in an extensive 
way, a question about block five of the course. Both in the evaluation, a and b, the returns of the questions 
were recorded and contrasted against the pattern of phase one, to determine the concordance between the 
Ups and Downs on the keyboard, and the speeds between letters.
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Data Collection and Analysis
The data collection was done through four forms: (a) Registration form with the demographic characteristics 
of the students (gender, age, country, and educational level); (b) Initial Comment Form, which presented 
the different interests of the participants in carrying out the course qualitatively; (c) Interest to obtain the 
Certificate form, which contained the question about whether they wanted to buy the course approval 
diploma digitally; (d) Evaluation form for qualitative questions for biometric authentication. This form was 
applied in two different weeks of the MOOC. The use of the keyboard was mechanical, and in the case of 
laptops, their one was used.

FINDINGS
The analyses were carried out according to the stages and estimated phases and sought to provide an answer: 
(a) the percentages of identification in the first and second measurements, (b) the independence of biometrics 
recognition of independent variables and (c) the relationship between the two recognitions. For Stage 1, 
descriptive, recognition (a), had a participation of 225 students (M=91.84, DS=23.83) and the software 
identified the pattern with the answers in 89.8% with a coincidence between 80-100%. For recognition (b), 
231 responses were received (M=89.24, DS=24.95) and the software results were consistent with the initial 
pattern at 87%, with a coincidence between the range 80-100% (Figure 2).
Within the development of Stage  2, Relational, the possible association between the independent variables 
(gender, educational level, age range, amount of data lost at the time of registration, participation in the 
forum, participation in peer evaluation and certificate eligibility) was analyzed with the recognition (a) 
and (b); to identify if any variable had an impact on the identification, or on the opposite, to know if the 
recognition of the student identity only depended on the comparison with the initial patterns. The results 
indicate that the recognitions (a) and (b) are independent of the selected variables (Table 2). Likewise, the 
week of student abandonment is not associated with biometric recognition, for the first identification F (20, 
N = 224)=1.54, p=0.1 and for the second F(20,N = 230)=0.76, p=0.5. 
Finally, the relationship between the two established biometric recognition was analyzed; were found 
associations between the identification percentage (80-100%) of the instant one with the identification 
percentage (80-100%) of the instant two; F (5, N = 178) = 1.40, p = 0.16. The above values indicate 
that the same subjects were identified within a high range of identification in the two measurements, that 
their identification was not random and that the passage of time or experiences within the space of the 
measurements are not related; on the contrary, they are independent.

Figure 2. Percentage of recognition by sampling
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Table 2. Independence of recognition of student identity

Independent variable
Value of the test

Recognition 1 Recognition 2

Gender χ2 (4, N = 224) = 3.25, p=0.6 χ2 (4, N = 230) = 2.94, p=0.7

Educational level χ2 (30, N = 225) = 28.97, p=0.7 χ2 (30, N = 231) = 27.79, p=0.8

Lost data F(5,N = 225)=0.50, p=0.7 F(5,N = 225)=0.25, p=0.9

Participacion foro χ2 (5, N = 224) = 2.88, p=0.7 χ2 (5, N = 231) = 4.58, p=0.4

Rango de edad χ2 (20, N = 224) = 18.66, p=0.5 χ2 (20, N = 231) =0.82, p=0.7

Elegible para certificado χ2 (4, N = 224) = 3.25, p=0.6 χ2 (4, N = 224) = 3.25, p=0.6

Source: Author’s compilation. % Recognition (1) week three and (2) week five.

Within the development of Stage 3, Predictive, the results of the binary logistic regression in block zero 
indicate that the probability of successful recognition of the subjects in a second measurement with a 
percentage greater than 60% is 97.3. For block 1 of the model, the ROA statistical efficiency score indicates 
that there is a significant improvement in the occurrence of the categories of the dependent variable (χ2 (1, 
N = 224) = 33.49, p <.001) if a predictor variable. The Naglekerke coefficient of R squared; shows that the 
proposed model explains 75.4% of the variance of the dependent variable when the subject identification 
variable is added at the time of enrollment. For the final analysis of the regression, block 1 indicates that 
there is a 99.5% probability of correctness in the result of the identification of the subject in the final stage, 
when the software has identified the subjects in the first measurement; indicating that the software has an 
identification improvement capacity. The Wald score for the tested model shows that the independent variable 
(first measure) contributes significantly to the prediction of the dependent variable (second measure) Wald 
(1, N = 224) = .0, p <.001) and the results obtained from this model can be generalized to the population.

DISCUSSIONS AND CONCLUSION
This document explored the efficiency of the pulse identification tool in a MOOC. The results indicate 
that the Keytrack tool identified the participants in two different measurements between 80-100%. The 
identifications were made in authentication scenarios independent of the text and in a multiple session 
environment such as that carried out by Morales, Fierrez, Vera-Rodriguez and Ortega-Garcia (2015). The 
identification in weeks three and four were autonomous in relation to the variables: gender, educational level, 
lost data, interest in the certificate, week of student desertion and age range; confirming the independent 
capacity of the algorithm in terms of measuring Ups and Downs and providing a human trait which is 
typing on the computer. This human trait is consistent with the line of research by. The work also showed 
that the two recognitions were related to each other with an average association, and the same subjects 
identified in the first measurement were identified in the last one. It is interesting to describe that regardless 
of the number of characters per words, the percentage of identification remains with low variation. These 
results allow establishing that the method and the biometric verification by pulsations (Keytrack), provides 
enough evidence to confirm the identification of students who take online programs.
The results obtained in this research are consistent with the results of Monrose & Rubin (2000). The 
Keytrack tool was able to identify each student using the writing style and find a unique pattern according to 
the typographic rhythm. The tool used to classify the students’ writings into different categories of Ups and 
Downs (Deutshmann & Lindholm, 2013; Morales, Fierrez, Vera-Rodriguez & Ortega-Garcia, 2015). On 
the other hand, a special contribution of this work is to show the learning capacity of the tool, after having 
been able to register and identify a student in a preliminary measure.  In conclusion, the first identification 
of the subjects, allows predicting the final identification of the subject and explains it in 75.4%; There is a 
99.5% probability of correct identification of a subject, if a first identification is made and there are very 
few additional variables to improve the final prediction. The high probability of identification found in 
this study exceeded the biometric recognition rate per click estimated by Morales et al., (2015) which was 
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9.05%. Likewise, the Keytrack tool was more efficient in identifying participants with 23 words on average 
per response, in contrast to the 500 words used in the Morales et al. (2015). If individuals are identified the 
first time, they are more likely to identify them with a higher probability of success in a second measurement; 
however, when the subjects do not participate in the second measurement, the probability of identification 
remains high at 97.3%.
In future works, it would be interesting to expand the study of the identification tools, in different topics 
of MOOCs with different degrees of difficulty and to estimate whether the emotions that the students 
present when answering the evaluation questionnaires affect the writing rhythm. Furthermore, it may be 
pertinent to evaluate the effect of the identification tool on other types of devices such as tablets and cell 
phones; to generate a comparison with the keyboards of the computers. These analyzes can help the student 
identification process, increasing confidence, the use of open-ended questions and reducing review times by 
teachers. Finally, the identification tool could also be used from the moment the student enters the platform 
with their password and thus have a mandatory initial registration as the first measure to complete the 
identification pattern. This information may be useful for application in other MOOC activities, such as 
participating in discussion forums.
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