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PRODUCT FACTORABLE MULTILINEAR OPERATORS
DEFINED ON SEQUENCE SPACES

Ezgi ERDOĞAN

Marmara University, Faculty of Arts and Sciences, Department of Mathematics, TR-34722,
Kadıköy, Istanbul, TURKEY

Abstract. We prove a factorization theorem for multilinear operators acting
in topological products of spaces of (scalar) p-summable sequences through a
product. It is shown that this class of multilinear operators called product fac-
torable maps coincides with the well-known class of the zero product preserving
operators. Due to the factorization, we obtain compactness and summability
properties by using classical functional analysis tools. Besides, we give some
isomorphisms between spaces of linear and multilinear operators, and repre-
sentations of some classes of multilinear maps as n-homogeneous orthogonally
additive polynomials.

1. Introduction

The objective of the paper is to present a factorization theorem for multilinear
operators defined on the topological product of spaces of p-summable sequences
through the product of (multiple) scalar sequences. Such a factorization has been
studied for multilinear operators defined on Banach algebras and vector lattices, and
in the last years it has been studied for Banach spaces (see [1,6,12] and references
therein).
Factorization through a product is closely related to a property that is called zero

product preservation, or orthosymmetry in the case of vector lattices, for which or-
thogonality is used to generalize the notion of having product equal to 0, that is
just given for the case of function lattices. This property states that a multilinear
map B : X1 × .... ×Xn → Y is 0-valued whenever xi ~ xj = 0 for some xi ∈ Xi,
xj ∈ Xj (i, j ∈ {1, 2, ..., n}), where ~ : X1 × .... × Xn → G is a specific map
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PRODUCT FACTORABILITY IN SEQUENCE SPACES 1147

called product. For multilinear operators acting in Banach algebras, this factoriza-
tion gives useful results for the weighted homomorphisms and derivations, where
algebraic multiplication is considered as the specific map (see [1, 2] and references
therein). For Riesz spaces, such a factorization is used to obtain interesting results
regarding powers of vector lattices, in which orthogonality is involved (see [4, 6, 7]
and references therein).
Recently, the author together with other mathematicians have investigated the

class of multilinear operators acting in the topological product of Banach function
spaces and integrable functions factoring through the pointwise product and the
convolution operation, respectively (see [12—14]). Motivated by these ideas, in this
paper we introduce the notion of product factorability for multilinear operators
defined on topological products of spaces of (scalar) p-summable sequences, and we
prove that this class coincides with the class of zero product preserving multilinear
maps.
This paper is organised as follows: after some preliminaries and notations, in

Section 2 we give the definitions of the specific map product and product factorabil-
ity for multilinear operators with a necessary and suffi cient requirement. Section
3 includes the main result of the paper, which as we said above, states that for
a particular product and multilinear operators defined on the topological product
of spaces of p-summable sequences, the class of product factorable maps is the
same as the class of zero product preserving maps. In the sequel, some isometries
between multilinear operators and linear operators are presented. Section 4 con-
cerns compactness and summability properties based on classical functional analysis
properties and theorems of product factorable maps. Section 5 is devoted to give
a generalization of the main factorization theorem by using isomorphism between
Banach spaces and `p spaces. In the last section, some isometries between product
factorable multilinear maps and orthogonally additive n-homogeneous polynomials
are given as an application, and the paper is finished with an example related to
diagonal forms.
Throughout the paper, the standard notations from the Banach space theory

are used. Nevertheless, before going any further let us describe some of them. The
capital letters X, Y, Z will denote the Banach spaces over the scalar field K = R or
C. We write BX for the unit ball of a Banach space X. X∗ denotes the topological
dual of the Banach space X. The notations E = Y and E ∼= Y mean E and Y are
isometric and isomorphic, respectively.
Operator (linear, multilinear or polynomial) indicates continuous operator.

Ln(X1 × ...×Xn, Y ) denotes the Banach space of n-linear maps endowed with the
norm

‖T‖ = sup{‖T (x1, ..., xn)‖ : xi ∈ BXi
, 1 ≤ i ≤ n}.

It will be denoted by Ln(X1×...×Xn), respectively, L(X,Y ) if Y = R, respectively,
n = 1.
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For a positive real number p ≥ 1, `p is the Banach space of all scalar valued
absolutely p-summable sequences with the norm ‖(xi)‖p = (

∑∞
i=1 |xi|p)1/p and `∞

shows the Banach space of all bounded sequences endowed with the norm ‖(xi)‖∞ =
supi∈N |xi|.
χ{1,2,...,m} will denote the sequence {1, m...1, 0, 0, 0....} and χ{j} shows the elements

of standard basis of the space `p whose coordinates are all zero, except jth that
equals 1.
For brevity we will write ×ni=1Xi for the Cartesian product space X1 × ....×Xn

and ×nX for the n-fold Cartesian product of the Banach space X.
A linear operator T : X → Y is called (p,q)-summing if there exists a constant

c > 0 such that for every choice of the elements x1, ..., xm ∈ X and for all positive
integers m, ( m∑

i=1

∥∥T (xi)
∥∥p
Y

)1/p
≤ k sup

x∗∈BX∗

( m∑
i=1

|〈xi, x∗〉|q
)1/q

.

The space of (p, q)-summing operators from X to Y is denoted by Πp,q(X,Y ) −
−Πp(X,Y ), if p = q.
Recall that a Banach space E is said to have the Schur property whenever weak

convergent and norm convergent sequences coincide in it. A Banach space E has
the Dunford-Pettis property if every linear operator from E into a Banach space F
maps weakly compact sets to norm compact ones.
Recall that an (linear, multilinear or polynomial) operator is called (weakly)

compact if it maps the unit ball to a relatively (weakly) compact set.

2. Norm Preserving Products and Product Factorability

Let X1, X2, ..., Xn and Z be Banach spaces. Consider a Banach space valued
n-linear map ~ : X1 ×X2 × ...×Xn → Z written by

(x1, x2, ..., xn) ~(x1, x2, ..., xn) = x1 ~ x2 ~ ...~ xn

for all xi ∈ Xi (i = 1, 2, ..., n).
This particular map is called norm preserving product (n.p. product for short)

if the inclusion BY ⊆ ~(BX1 × BX2 × ... × BXn) holds and for every xi ∈ Xi (i =
1, ..., n) and we have that

‖~ (x1, x2, ..., xn)‖Z = inf
{ n∏
i=1

‖x′i‖Xi
: x′i ∈ Xi, i = 1, ..., n

}
,

where the infimum is taken over all ~(x1, x2, ..., xn) = ~(x′1, x
′
2, ..., x

′
n) (see [12,

Definition 2.1]) .

Example 1. Some norm preserving products;
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• The usual convolution operation ∗ from the product L2(T)×L2(T) of Hilbert
space of integrable functions to the Wiener algebra W(T) is a norm pre-
serving product (see [11, Remark 2.1] and references there in for the calcu-
lations),

• Let (Ω,Σ, µ) be a σ-finite measure space and let
∑n
i=1

1
pi

= 1
r and pi, r ≥ 1.

Then the pointwise product � defined on Lp1(µ)× ...× Lpn(µ) to Lr(µ) is
a norm preserving product (see [12, Section 4]).

A multilinear operator B : X1 × ...×Xn → Y is called ~-factorable for the n.p.
product ~ if it can be factored through the product ~ : X1 × ... × Xn → Z and
a linear operator T : Z → Y such that B(x1, x2, ..., xn) = T ◦ ~(x1, x2, ..., xn) =
T (x1 ~ x2 ~ ...~ xn) for all xi ∈ Xi (i = 1, ..., n) (see [12, Def. 2.2]).
Thus, for a certain continuous linear operator T : Z → Y , the map B admits a

factorization as the form;

The author proved in [12, Lemma 2.3.] that a necessary and suffi cient condition
for the ~-factorability of a multilinear operator B : X1 × X2 × ... × Xn → Y is
given by the existence of a constant k > 0 satisfying the following inequality∥∥∥ m∑

i=1

B(x1i , x
2
i , ..., x

n
i )
∥∥∥
Y
≤ k

∥∥∥ m∑
i=1

x1i ~ x2i ~ ...~ xni
∥∥∥
Z

(1)

for every finite sets of vectors {xji}mi=1 ⊂ Xj (j = 1, 2, ..., n).
A multilinear map B : X1 ×X2 × ...×Xn → Y is called zero product preserving

(or zero ~-preserving) if

B(x1, x2, ..., xn) = 0 if xk ~ xl = 0 for some xk ∈ Xk, xl ∈ Xl

where k, l ∈ {1, 2, ..., n} and k 6= l.
The class of zero ~-preserving multilinear operators is a Banach space endowed

with the usual operator norm. The Banach space of n-linear zero ~-preserving
operators defined on the X1×X2× ...×Xn to Y will be denoted by Ln0 (X1×X2×
...×Xn, Y ).

3. Product Factorability of Multilinear Maps acting in Sequence
Spaces

Now, we will give the main theorem of the paper that states the class of zero
product preserving maps defined on ×ni=1`pi to the Banach space Y are equal to
the class of the product factorable operators.
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Remark 2. Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ (i = 1, ..., n). The product

� : ×ni=1`pi → `r defined by

x1 � ....� xn = {x1(k) · .... · xn(k)}∞k=1 = {x(k)}∞k=1 = x ∈ `r

for all xi ∈ `pi (i = 1, ..., n) is a norm preserving product. Indeed, consider a
{x(k)}∞k=1 ∈ B`r . We can write x(k) =

∏n
i=1 |x(k)|r/pisign(x(k)) for all k ∈ N,

where sign denotes the signum function. Since

‖(|x(k)|r/pisign(x(k)))‖pi =
(∑

||x(k)|r/pisign(x(k))|pi
)1/pi

=
(∑

|x(k)|r
)1/pi

= ‖(x(k))‖r/pir ≤ 1,

we get {|x(k)|r/pisign(x(k))}∞k=1 ∈ `pi and B`r ⊆ �(B`p1 ×B`p2 × ...×B`pn ). Now,
let us show the equality given in the definition of the n.p. product. Take into account
sequences xi = {xi(k)}∞k=1 ∈ `pi for i = 1, 2, ..., n such that x1 � x2 � ...� xn = x.
By the generalization of Hölder’s inequlity it is easily seen that

‖x1 � x2 � ...� xn‖r ≤ ‖x1‖p1‖x2‖p2 ...‖xn‖pn .
Now, let us show the inverse. Since for all k, we can write
x(k) =

∏n
i=1 |x(k)|r/pisign(x(k)), we get ‖(|x(k)|r/pisign(x(k)))‖pi = ‖(x(k))‖r/pir .

Therefore

‖x‖r = ‖(x(k))‖r =

n∏
i=1

‖(x(k))‖r/pir =

n∏
i=1

‖(|x(k)|r/pisign(x(k)))‖pi .

Thus, we get ‖x‖r = inf{‖x1‖p1‖x2‖p2 ...‖xn‖pn} and � is an n.p. product from
`p1 × `p2 × ....× `pn to `r.

Theorem 3. Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ (i = 1, ..., n). For a multilinear

operator B : ×ni=1`pi → Y the following statements imply each other.

(1) The operator B is zero �-preserving.
(2) The operator B is �-factorable.
(3) There is a constant k > 0 such that for every finite sets of sequences
{xi1, ...., xim} ⊂ `pi (i = 1, 2, ..., n), the following inequality holds;∥∥∥ m∑

j=1

B(x1j , x
2
j , ..., x

n
j )
∥∥∥
Y
≤ k

∥∥∥ m∑
j=1

x1j � x2j � ...� xnj
∥∥∥
r
. (2)

Thus, B admits the following factorization for a unique linear operator
T : `r → Y ;
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Proof. (1) ⇒ (2) Assume that B is zero �-preserving. Let us write the sequences
xi ∈ `pi (i = 1, 2, ..., n) in the form xi = {xi(k)}∞k=1 =

∑∞
k=1 x

i(k)χ{k}, then

x1 � ....� xn = {x1(k) · .... · xn(k)}∞k=1 =

∞∑
k=1

x1(k) · .... · xn(k) · χ{k}

Since χ{k} � χ{l} = 0 whenever k 6= l, the following equality is obtained

B(x1, ...., xn) = B
( ∞∑
k1=1

x1(k1)χ{k1}, ...,

∞∑
kn=1

xn(kn)χ{kn}

)
=

∞∑
k1=1

x1(k1) · ... ·
∞∑

kn=1

xn(k1)B(χ{k1}, ..., χ{kn})

=

∞∑
k=1

x1(k) · ... · xn(k)B(χ{k}, ..., χ{k})

= B
( ∞∑
k=1

x1(k) · ... · xn(k)χ{k}, χ{k}, ..., χ{k}

)
by the zero product preservartion property of B.
For every natural number m, let us define the map Bm(x1, ...., xn) = B(x1 �

χ{1,...,m}, ..., xn � χ{1,...,m}) for all xi ∈ `pi (i = 1, 2, ..., n). It is easily seen that
the sequence {Bm}∞m=1 consists of well-defined, multilinear continuous maps. Since
xi � χ{1,...,m} = xi �

∑m
k=1 χ{k} =

∑m
k=1 x

i(k)χ{k}, by the zero �-preservation
property of B

Bm(x1, ...., xn) = B(x1 � χ{1,...,m}, ..., xn � χ{1,...,m})

= B
( m∑
k1=1

x1(k1)χ{k1}, ...,

m∑
kn=1

xn(kn)χ{kn}

)
=

m∑
k1=1

x1(k1) · ... ·
m∑

kn=1

xn(kn)B(χ{k1}, ..., χ{kn})

=

m∑
k=1

x1(k) · ... · xn(k)B(χ{k}, ..., χ{k})

= B
( m∑
k=1

x1(k) · ... · xn(k)χ{k},

m∑
k=1

χ{k}, ...,

m∑
k=1

χ{k}

)
.

Thus, for all m, the map Bm is written as

Bm(x1, ..., xn) = B
( m∑
j=1

x1j · ... · xnj χ{j},
m∑
j=1

χ{j}, ...,

m∑
j=1

χ{j}

)
= B(x1 � ...� xn � χ{1,...,m}, χ{1,...,m}, ..., χ{1,...,m})
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for all xi ∈ `pi (i = 1, 2, ..., n).
Now, for all natural number m and every x = x1 � ... � xn, define the map

Tm : `r → Y by Tm(x) = Tm(x1 � ...� xn) = Bm(x1, ..., xn). Then, it is seen that
for all m, the map Tm is well-defined, linear and continuous operator. Indeed, the
linearity is seen by the linearity in the first variable of the map Bm. Let us show
the continuity of the map Tm;

‖Tm(x)‖Y = ‖Bm(x1, ...., xn)‖Y
= ‖B(x1 � χ{1,...,m}, ..., xn � χ{1,...,m})‖Y
≤ ‖B‖‖x1 � χ{1,...,m}‖...‖xn � χ{1,...,m}‖
≤ ‖B‖‖x1‖...‖xn‖,

since this holds for all representations of the sequence x, it is seen that ‖Tm(x)‖Y ≤
‖B‖‖x‖r by the definition of n.p. product. For all m, the operator Tm is indepen-
dent of the representation of the sequence x. Indeed, let us assume x = x1�...�xn =
x′1 � ...� x′n, then it is seen that

Tm(x1 � ...� xn) = B(x1 � ...� xn � χ{1,...,m}, χ{1,...,m}, ..., χ{1,...,m})
= B(x′1 � ...� x′n � χ{1,...,m}, χ{1,...,m}, ..., χ{1,...,m})
= Tm(x′1 � ...� x′n).

On the other hand, the set of operators {Tm}∞m=1 is pointwise convergent for each
x = x1 � ...� xn ∈ `r. By the separate continuity of the multilinear map B, this is
seen as follows;

lim
m→∞

Tm(x1 � ...� xn) = lim
m→∞

Bm(x1, ..., xn)

= lim
m→∞

B(x1 � χ{1,...,m}, ..., xn � χ{1,...,m})

= B( lim
m→∞

x1 � χ{1,...,m}, ..., lim
m→∞

xn � χ{1,...,m})

= B(x1, ..., xn).

Thus, {Tm(x)}∞m=1 converges to B(x1, ..., xn) for all x ∈ `r such that x = x1�...�xn
for the elements xi ∈ `pi (i = 1, ..., n). Let us define the pointwise limit T (x) =
limm→∞ Tm(x). It is clear that the limit map T is well-defined and linear. Besides
it is continuous by the uniform boundedness theorem.
Summing up, the linear bounded map T : `r → Y defined by T (x1 � ...� xn) =

B(x1, ..., xn) is the desired map.
(2)⇒ (3) is obtained by Lemma 2.3. given in [12].

Lastly, let us show (3) implies (1). Consider the sequences xi ∈ `pi (i = 1, ..., n) such
that xk � xl = 0 for some different k, l ∈ {1, ..., n}. This implies x1 � ...� xn = 0.
Therefore, zero �-preservation is seen by Inequality (2) given in the statement
(3). �
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The above theorem gives an isometry between the spaces Ln0 (×ni=1`pi , Y ) and
L(`r, Y ).

Theorem 4. The correspondence B ←→ T is an onto isometry between the Banach
spaces Ln0 (×ni=1`pi , Y ) and L(`r, Y ).
Particularly for Y = R, we get Ln0 (×ni=1`pi) = (`r)∗.

Proof. It is easily seen that the map Ln0 (×ni=1`pi , Y ) → L(`r, Y ) is linear. Now,
let us show the isometry.

‖B‖ = sup
(x1,...,xn)∈×ni=1B`pi

‖B(x1, ..., xn)‖Y

= sup
(x1,...,xn)∈×ni=1B`pi

‖T (x1 � ...� xn)‖Y

≥ sup
x=x1�...�xn∈B`r

‖Tx‖Y = ‖T‖.

For the converse inequality;

‖T‖ = sup
x∈B`r

‖Tx‖Y = sup
(x1,...,xn)∈×ni=1B`pi

‖B(x1, ..., xn)‖ ≤ ‖B‖,

where xi = {xi(k)}∞k=1 = {|x(k)|r/pisgn(x(k))}∞k=1 for all i = 1, ..., n.
It is easily seen that the map B → T is onto, since an n-linear map BT is obtained

for every linear map T by defining T (x) = B(x1, ..., xn) for all x = x1� ...�xn ∈ `r
for the n.p product � : ×ni=1`pi → `r. �

Corollary 5. As a result of the above isometry, the following isometries are given
for particular pi values.

? Ln0 (×n`p, Y ) = L(`p/n, Y ), where p > n.
? Ln0 (×n`n, Y ) = L(`1, Y )
? Ln0 (×n`p) = (`p/n)∗ = `p/(p−n)

? Ln0 (×n`n) = (`1)∗ = `∞.

4. Compactness and Summability Inquiries for �-Factorable Maps

In this section, we investigate compactness and summability for �-factorable
multilinear operator that are based on the classical analysis properties and theorems
like Dunford Pettis property, well-known Grothendieck’s theorem or cotype related
properties.

4.1. Compactness of �-Factorable operators. By the definition of norm pre-
serving product, it is seen that a �-factorable multilinear map B : ×ni=1`pi → Y
is (weakly) compact if and only if the linear operator T : `r → Y appearing in
the factorization is (weakly) compact. Now, we will give more specific compactness
implications for �-factorable maps.
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Corollary 6. Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ and i = 1, ..., n. For a �-

factorable multilinear operator B : ×ni=1`pi → Y , we have the following compactness
results;

(1) For r > 1, the map B is weakly compact.
(2) If r = 1 and Y is reflexive, then the map B is compact.
(3) For 1 ≤ s < r <∞ and Y = `s, the map B is compact.

Proof. (1) This is easily seen by the weakly compactness of the factorization oper-
ator T : `r → Y which is defined on the reflexive space `r.
(2) B factors through the linear map T : `r → Y that is weakly compact due to

reflexivity of the space Y . In addition, T —hence B—is compact by the Dunford-
Pettis property of the space `1.
(3) Since the linear operator T : `r → `s is compact whenever 1 ≤ s < r < ∞

by the Pitt’s theorem, the map B is so also (see [9, Chapter 12]). �

Corollary 7. Let
∑n
i=1

1
pi

= 1 for 1 ≤ pi <∞ (i = 1, ..., n) and let B : ×ni=1`pi →
Y be a �-factorable multilinear operator. For a set A ⊂ ×ni=1`pi , B(A) is norm
compact if {x1 � ....� xn : (x1, ..., xn) ∈ `p1 × ....× `pn} is weakly compact.

Proof. The �-factorable multilinear operator B factors throug a linear map T :
`1 → Y . Since �(A) is weakly compact, B(A) = T ◦ �(A) is weakly compact.
Hence it is compact by the Dunford-Pettis property of `1. �

4.2. Summability Properties of �-Factorable Operators. Now, let us look
at the summability properties of �-factorable maps.

Theorem 8. Let
∑n
i=1

1
pi

= 1 for 1 ≤ pi <∞ (i = 1, ..., n). The followings imply
each other for a Hilbert-space valued multilinear map B : ×ni=1`pi → H.

i) The map B is �-factorable,
ii) There is a constant k > 0 such that for every finite sets {xi1, ..., xim} ⊂

`pi (i = 1, ..., n)

m∑
j=1

∥∥∥B(x1j , ..., x
n
j )
∥∥∥
H
≤ k sup

z′∈B`∞

m∑
j=1

∣∣∣〈x1j � ...� xnj , z′〉∣∣∣,
iii) For all xi ∈ `pi (i = 1, ..., n) there is a regular Borel measure η over B`∞

such that

‖B(x1, ..., xn)‖H ≤ K
∫
B`∞

|〈x1 � ...� xn, z′〉| dη(z′).

Besides, B factors through a completely continuous linear operator due to the
Dunford-Pettis property of the space `1 whenever one of the aboves holds.

Proof. i)⇒ ii) Since the map B is �-factorable, it factors through the linear map
T : `1 → H. Since L(`1, H) = Π1(`

1, H) by a result of the Grothendieck’s Theorem,
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we obtain T is a 1-summing operator and thus, B satisfies the inequality given in
statement (ii).
ii)⇒ iii) The integral domination given in the third statement is clearly obtained

by Pietsch Domination Theorem (see [9, Theorem 2.12]).
iii)⇒ i) If the map B has the integral domination then it is seen that B(x1, ..., xn)

= 0 whenever xk � xl = 0 for some different k, l ∈ {1, ..., n}. Thus, B is zero �-
preserving and it is �-factorable by the main theorem of the paper. �

We obtain a weaker result by considering some cotype-related properties. It is
known that cotype 2 for a Banach space implies the Orlicz property (see [8, Section
8.9]). Assume that Y has Orlicz property and let

∑n
i=1

1
pi

= 1 for 1 ≤ pi < ∞ for
i = 1, ..., n. The following domination inequality holds for an n-linear �-factorable
map B : ×ni=1`pi → Y

( m∑
j=1

∥∥∥B(x1j , ..., x
n
j )
∥∥∥2
Y

)1/2
≤ sup
εj={−1,1}

∥∥∥ m∑
j=1

εjx
1
j � ...� xnj

∥∥∥
for all finite sets {xi1, ..., xim} ⊂ `pi (i = 1, ..., n).
Lastly, we will give some results for �-factorable maps that are `p-space valued.

We will use Littlewood inequality that states L(`1, `4/3) = Π4/3,1(`
1, `4/3) (see [8,

Section 34.12]): if B is defined on ×ni=1`pi to `4/3, then( m∑
j=1

∥∥∥B(x1j , ..., x
n
j )
∥∥∥4/3
4/3

)3/4
≤ k sup

z′∈B`∞

m∑
j=1

∣∣∣〈x1j � ...� xnj , z′〉∣∣∣
for all finite sets {xij}mj=1 ⊂ `pi (i = 1, ..., n).

5. A Generalization of the �-Factorable Operators

Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ (i = 1, ..., n). Consider n Banach spaces

Xi (i = 1, ..., n) that are isomorphic to `pi by the isomorphisms Pi : Xi → `pi . Let
us define the product �×ni=1Pi : ×ni=1Xi → `r by

�×ni=1Pi(f1, ..., fn) = P1(f1)� ....� Pn(fn), fi ∈ Xi.

This product can be illustrated by the following diagram;

We will call a multilinear map B : ×ni=1Xi → Y is zero �×ni=1Pi−preserving if
B(f1, ..., fn) = 0 whenever �Pk×Pl(fk, fl) = Pk(fk) � Pl(fl) = 0 for some k, l ∈
{1, ..., n} such that k 6= l.
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Theorem 9. Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ (i = 1, ..., n). Consider the

Banach spaces Xi (i = 1, ..., n) that are isomorphic to `pi by means of the iso-
morphisms Pi : Xi → `pi . For an n-linear map B : ×ni=1Xi → Y , the following
statements are equivalent.

(1) The operator B is zero �×ni=1Pi−preserving.
(2) The map B is �×ni=1Pi−factorable. That is, there is a linear operator T :

`r → Y such that B := T ◦ �×ni=1Pi .
(3) There exists a K > 0 such that the inequality below holds for every finite

sets {f i1, ..., f im} ⊂ Xi (i = 1, .., n);∥∥∥ m∑
j=1

B(f1j , ..., f
n
j )
∥∥∥
Y
≤ K

∥∥∥ m∑
j=1

P1(f
1
j )� ...� Pn(fnj )

∥∥∥
r
.

If one of the aboves is satisfied, then B admits the following factorization;

Proof. (1) ⇒ (2) Let us assume that B is zero �×ni=1Pi−preserving and define the
map B = B ◦ ×ni=1P−1i : ×ni=1`pi → Y . For the sequences xi ∈ `pi (i ∈ {1, ..., n}),
it is seen that B(x1, .., xn) = B ◦ ×ni=1P−1i (P1(f1), ..., Pn(fn)), where Pi(fi) = xi
for fi ∈ Xi. Since B is zero �×ni=1Pi−preserving, it is obtained that B(x1, .., xn) =
B(f1, ..., fn) = 0 whenever xk � xl = Pk(fk)� Pl(fl) = 0 for some k, l ∈ {1, ..., n}.
This shows zero �-preservation of the map B and therefore B is �-factorable by
Theorem 3. So we have that there is a linear operator T : `r → Y such that
B = T ◦�. By the definition of B, we obtain B = B◦(×ni=1Pi) = T ◦�◦(×ni=1Pi) =
T ◦ �×ni=1Pi , the desired factorization.

(2)⇒ (3) If the map B is �×ni=1Pi−factorable then the map B = B ◦×ni=1P−1i :
×ni=1`pi → Y is �-factorable. Indeed, for the �×ni=1Pi−factorable map B, there is
a linear operator T : `r → Y such that B := T ◦ �×ni=1Pi . Thus, B = T ◦ �×ni=1Pi ◦
×ni=1P−1i . For the elements fi ∈ Xi that are Pi(fi) = xi ∈ `pi , we get

B(x1, ..., xn) = T ◦ �×ni=1Pi ◦ ×
n
i=1P

−1
i (x1, ..., xn)

= T ◦ �×ni=1Pi(P
−1
1 (x1), ..., P

−1
n (xn))

= T (P1P
−1
1 (x1)� ...� PnP−1n (xn))

= T (x1 � ....� xn).

This shows, B is �-factorable. By Lemma 2.3 given in [12] and Theorem 3, the
inequality given in the statement (3) is obtained.
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(3)⇒ (1) It is clear that B is zero �×ni=1Pi−preserving under the assumption of
the statement (3). �

6. Application: Representation As n-homogeneous Polynomial

Recall that an n-linear map B : ×nX → Y is called symmetric if

B(x1, ..., xn) = B(xσ(1), ..., xσ(n)) (x1, ..., xn ∈ X)

for any permutation σ of the first n natural numbers. Lns (×nX,Y ) denotes the
space of symmetric multilinear operators defined on X to Y .

Remark 10. Let p ≥ n. It is easily seen that any �-factorable n-linear map
B : ×n`p → Y is symmetric. Indeed, the map B factors through the linear map
T : `p/n → Y and thus

B(x1, ..., xn) = T (x1 � ....� xn) = T (xσ(1) � ...� xσ(n)) = B(xσ(1), ..., xσ(n))

for all x1, ..., xn ∈ `p by the commutativity of the product �.
In addition to this, a symmetry is obtained for the general version. Let X be iso-

morphic to the space `p by the isomorphism P : X → `p. Then any �×nP−factorable
n-linear map B : ×nX → Y is symmetric.
Therefore, the following inclusions hold;
• Ln0 (×n`p, Y ) ⊆ Lns (×n`p, Y ),
• Ln0 (×nX,Y ) ⊆ Lns (×nX,Y ) if X ∼= `p.

We will give a counterexample to show that the symmetry does not imply zero
�-preservation. Consider a bilinear map B : `p × `p → R defined by B(x1, x2) =∑5
k=1 x

1(k) · x2(k). It is seen that B is symmetric. For the sequences x1 =
(1, 1, 0, 1, 0,−1,−1, 0, 0, ...) and x2 = (1, 1, 1, 0, 1, 1, 1, 0, 0, ...) in `p, it is obtained
that x1 � x2 = 0 but B(x1, x2) = 2, thus B is not zero �-preserving.
A map P : X → Y is called n-homogeneous polynomial if it is associated with

an n-linear symmetric map B : ×nX → Y such that P (x) = B(x, ..., x) for all
x ∈ X. The class of n-homogeneous polynomials is a Banach space under the norm
‖P‖ = sup‖x‖=1 ‖P (x)‖. It will be denoted by P(nX,Y ). We refer the book [10]
for more information about polynomials.
An n-homogeneous polynomial defined on the Banach algebra X is called or-

thogonally additive if P (x + y) = P (x) + P (y) whenever xy = 0 for x, y ∈ X.
Similarly we will call an n-homogeneous polynomial defined on the Banach space
X orthogonally additive if P (x+y) = P (x)+P (y) whenever x~y = 0 for x, y ∈ X
and an n.p. product ~. We denote by P0(nX,Y ) the space of n-homogeneous
orthogonally additive polynomials from X to Y . We will write P0(nX) for Y = R.
The Banach space of n-homogeneous orthogonally additive polynomials is closely

related to the zero product preserving n-linear operators and several papers can be
found in this direction in the literature (see [3,5,12,15,16] and references therein).
Now we will give a generalization of the isomorphisms between orthogonally additive
n-homogeneous polynomial forms and sequences given in the papers [15] and [16].
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Theorem 11. Let 1 ≤ n ≤ p < ∞. There is an onto isometry between the spaces
L(`p/n, Y ) and P0(n`p, Y ). Particularly, P0(n`p) = (`p/n)∗ for a scalar field range.

Proof. Consider a linear continuous operator T ∈ L(`p/n, Y ). It is seen that T gives
a �-factorable n-linear map BT : ×n`p → Y defined by T (x) = T (x1 � ...� xn) =
B(x1, ..., xn) for all xi ∈ `p (i = 1, ..., n) such that x1 � ... � xn = x ∈ `p/n.
Due to the symmetry of the �-factorable map BT , an n-homogeneous polynomial
PBT

: `p → Y is obtained such that it is orthogonally additive. Indeed, for all
x, y ∈ `p

PBT
(x+ y) = BT (x+ y, ..., x+ y)

=

n∑
k=0

(
n

k

)
BT (x, k..., x, y, n−k... , y)

= BT (x, n..., x) +BT (y, n..., y)

= PBT
(x) + PBT

(y).

whenever x� y = 0, thus PBT
is orthogonally additive. Thus the linear correspon-

dence T → PBT
defines an orthogonally additive n-homogeneous polynomial PBT

for every T by T (xn) = PBT
(x), where xn = x� n...� x . Let us show the isometry

now.

‖T‖ = sup
‖x‖p/n≤1

‖Tx‖ = sup
‖x1/n‖p≤1

‖P (x1/n)‖ = sup
‖y‖p≤1

‖P (y)‖ = ‖P‖.

For the surjectivity, let us consider an orthogonally additive n-homogeneous polyno-
mial P ∈ P0(n`p, Y ). This polynomial defines a 1-homogeneous map T by T (x) =
P (x1/n) for all x = {x(k)}∞k=1 ∈ `p/n where x1/n = {|x(k)|1/nsign(x(k))}∞k=1 such
that x = {|x(k)|1/nsign(x(k))· n...·|x(k)|1/nsign(x(k))}∞k=1 = x1/n� n...�x1/n ∈ `p/n.
The map T is linear. Indeed, to see this consider the sequences x′1 =

∑m
k=1 x

1(k) ·
χ{k} and x

′
2 =

∑m
k=1 x

2(k) · χ{k} defined by the sequences x1, x2 ∈ `p/n.
Since (x′1 + x′2)

1/n =
∑m
k=1(x

1(k) + x2(k))1/n · χ{k}, by using the n-homogenity
and orthogonally additivity of the polynomial P , we get that

T (x′1 + x′2) = P
(

(x′1 + x′2)
1/n
)

= P (

m∑
k=1

(x1(k) + x2(k))1/n · χ{k})

=

m∑
k=1

P ((x1(k) + x2(k))1/n · χ{k}) =

m∑
k=1

(x1(k) + x2(k))P (χ{k})

= P
( m∑
k=1

(x1(k))1/n · χ{k}
)

+ P
( m∑
k=1

(x2(k))1/n · χ{k}
)

= P ((x′1)
1/n) + P ((x′2)

1/n) = T (x′1) + T (x′2).
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Since x1 = limm→∞
∑m
k=1 x

1(k) · χ{k} and x2 = limm→∞
∑m
k=1 x

2(k) · χ{k}, it is
obtained that

T (x1 + x2) = T ( lim
m→∞

x′1 + lim
m→∞

x′2)

= lim
m→∞

T (x′1 + x′2) = lim
m→∞

(T (x′1) + T (x′2))

= T (x1 + x2).

Thus, every orthogonally additive n-homogeneous polynomial P defines a linear
map T ∈ L(`p/n, Y ). We can illustrate this isometry by the following diagram;

where ∆n is the canonical embedding called diagonal mapping from `p to ×n`p
used to define the n-homogeneous polynomials.
Particularly, every n-homogeneous polynomial form P in P0(n`p) is represented

by a sequence in the space `p/(p−n). �

Corollary 12. L(`1, Y ) = P0(n`n, Y ) and every orthogonally additive n-homogenous
polynomial P : `n → R is represented by a bounded scalar valued sequence.

From Corollary 5, Theorem 11 and Corollary 12, we get the following isometries;

? Ln0 (×n`p, Y ) = P0(n`p, Y ), where p ≥ n.
? Ln0 (×n`n, Y ) = P0(n`n, Y )
? Ln0 (×n`p) = P0(n`p)
? Ln0 (×n`n) = P0(n`n).

We can give some isomorphisms for the �×nP−factorable maps as follows;

Corollary 13. Let 1 ≤ n ≤ p <∞ and P : E → `p is an isomorphism. There is an
isomorphism between the spaces L(`p/n, Y ) and P0(nE, Y ). Particularly, P0(nE) =
(`p/n)∗ for a scalar field range.

Let us finish the paper with an example.

Example 14. Let
∑n
i=1

1
pi

= 1
r for 1 ≤ r, pi < ∞ for i = 1, ..., n. Recall that a

multilinear form B : ×ni=1`pi → C defined by B(x1, ..., xn) =
∑∞
k=1 αk ·x1k · .... ·xnk is

called diagonal operator, where {αk} is a bounded sequence. Clearly, it is seen by the
definition that B(x1, ..., xn) = 0 whenever xk � xl = 0 for some k, l ∈ {1, 2, ..., n}.
Therefore, it is zero product preserving and there is a linear form T : `r → C such
that B(x1, ..., xn) = T (x), where x1 � .... � xn = x. Besides, if we consider pi =
... = pn = p, then we obtain that the zero product preserving map B : ×n`p → C
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has a factorization through the linear form T : `p/n → C. Since this gives the
symmetry of the form B : ×n`p → C, we get the diagonal map B is associated with
an orthogonally additive n-homogeneous diagonal polynomial form P : `p → C.
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