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Abstract. In this study, at first a new polynomial rank transmutation is pro-
posed. Then, a new cubic rank transmutation is introduced by simplifying the
set of transmutation parameters in order to improve its usefulness in statistical
modeling. The purpose of this comment is to clarify some issues that exist in
the methodology of obtaining the distribution by the cubic transmutation and
the stage of proofing it. In this way, both the parameter space is expanded and
the process of establishing the cubic transformed distribution family is given.

1. Introduction

In this study, we inspire the quadratic rank transmutation map (QRTM) pro-
posed by [16]. The mapping is given as

u→ u+ λu (1− u) (1)

where u ∈ [0, 1] and λ ∈ [ −1, 1]. Using this transmutation many distributions have
been derived and still continue to be derived. Beside this, there are also some stud-
ies on the modifications of the QRTM. Some of the pioneering works on proposing
modified QRTM can be given as follows: [1] proposed a new Weibull distribution
by using exponentiated QRTM. [2] generated a new distribution family by con-
sidering exponentiated distribution as the baseline distribution. [11] studied a new
distribution by taking the baseline distribution as exponentiated exponential dis-
tribution. [5] introduced transmuted exponentiated modified Weibull distribution,
and [3] introduced transmuted exponentiated Lomax distribution. The last three
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studies can be seen as a special case of [2]. [9] introduced a new transmutation
map by adding extra two parameters to get more flexible distribution. Then, [10]
introduced a new Lindley distribution by using this new transmutation map ap-
proach. [4] introduced a kind of generalization of QRTM by considering sum of
k- dimensional vector of transmutation parameters. There are two similar studies
which are the generalized transmuted G family by [12] and generalized transmuted
Weibull distribution by [13]. Also, by taking into account recent works, [15] intro-
duced a new distribution named as transmuted generalized Gamma distribution.
They use QRTM to generate this distribution family.
In this study, a new polynomial rank transmutation is proposed additionally to
[17]. Since the parameter set is still complex, a new cubic rank transmutation is
introduced in the light of the idea behind QRTM. In our study, since an extra
transmutation parameter is added, the distribution has become more flexible.

2. Motivation

[17] proposed polynomial rank transmutation map to demonstrate Skew-kurtotic
transmutations. Figure 3 of [17] indicates that admissible parameter region. How-
ever this region is quite complex structure, the points on Figure 5 of them show
some special cases related to family of order statistics up to 3-sized sample. Under
the leadership of this idea, we propose a new polynomial rank transmutation to
get simpler structure of parameter region. Let G(u) stand for the polynomial rank
transmutation defined on [0, 1]. Then, we have

G(u) = u+ λ1u (1− u) + λ2u2 (1− u) (2)

with G(0) = 0 and G(1) = 1. Note that, λ1 and λ2 are the transmutation parame-
ters. Parameter region will be defined with following discussion. Since G should
be non-decreasing, non-negativity of the first derivative of G with respect to u is
examined. Thus, the shape of the parameter region is determined. By calling this
derivative with g, we have

g (u, λ1, λ2) = −3λ2u2 − 2u (λ1 − λ2) + (1 + λ1) . (3)

Non-negativity of g (u, λ1, λ2) at the end-points, namely the inequalities g (0, λ1, λ2) =
1 + λ1 ≥ 0 and g (1, λ1, λ2) = 1− λ1 − λ2 ≥ 0 both requires that

λ1 ≥ −1
λ1 + λ2 ≤ 1.

(4)

From these two inequalities, it is clear that λ2 ≤ 2. When the eq. (3) is taken
into account, g (u, λ1, λ2) is a concave function for λ2 ∈ (0, 2]. As long as the
inequality (4) is valid, g (u, λ1, λ2) will take non-negative values. For λ2 ≤ 0, we
will investigate the suffi cient conditions on non-negativity of g (u, λ1, λ2). In this
case, g (u, λ1, λ2) has a minimum point since it is a convex function. If this minimum
point is within (0, 1), the value at that point of the function g (u, λ1, λ2) must be
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positive. Accordingly, the minimum point is obtained by taking the derivative of
the eq. (3) and equating them to zero as follows:

g′ (u, λ1, λ2) = −6λ2u− 2 (λ1 − λ2) = 0⇒ u∗ =
− (λ1 − λ2)

3λ2
(5)

Then, the value of g (u, λ1, λ2) at u∗ must satisfy

g

(
− (λ1 − λ2)

3λ2
, λ1, λ2

)
=
λ21 + λ1λ2 + λ2 (3 + λ2)

3λ2
≥ 0 (6)

Hence, it is necessary to say that the value of the numerator in (6) is non-positive.
If this statement given by the numerator is considered as a second order polynomial
of λ1, the roots are given by

λ11,2 =
−λ2 ±

√
−3λ2 (λ2 + 4)
2

(7)

Here, we can say that the condition −4 ≤ λ2 must also occur in order for the roots
to be real valued. Thus, under the condition −4 ≤ λ2 < 0, we have bounds for λ1
as follows:

−λ2 −
√
−3λ2 (λ2 + 4)
2

≤ λ1 ≤
−λ2 +

√
−3λ2 (λ2 + 4)
2

(8)

For these bounds, the numerator in (6) has a negative sign. This leads to the
following conclusion: The range of λ1 is as in (8) for λ2 ∈ [−4, 0). However, the
minimum value of the lower bound in (8) can be −1, while the maximum value of
the upper bound can be 3. From this we can say that the range of λ1 is [−1, 3].
Thus, combining this results, the parameter region for (λ1, λ2) appears as shown in
the Figure 1.
By considering this parameter set of (λ1, λ2), many well defined distributions are
generated from the eq. (2) with the baseline distribution F . Now, let’s get a map
of the integer values of the pair (λ2, λ1) to see the known distributions tabulated
in Table 1.
The distributions specified by the star in Table 1 are described below how they
correspond to some known failure distributions.
Let Xr:n be the rth order statistic in a sample of size n. By noting that, for

λ1 = −1, λ2 = −1 generated distribution indicates the failure distribution of the
lifetime of three-component parallel system, namely, this distribution indicates the
distribution of the random variable X3:3 = max {X1, X2, X3} where X1, X2 and X3

are independent and identically distributed as F . Similarly, for λ1 = 2, λ2 = −1
generated distribution indicates the distribution of the random variable X1:3 =
min {X1, X2, X3}. For λ1 = −1, λ2 = 1 generated distribution indicates the dis-
tribution of max {X1,min {X2, X3}}. For λ1 = 0, λ2 = 1 generated distribution
indicates the distribution of min {X1,max {X2, X3}}. For λ1 = −1, λ2 = 2 gener-
ated distribution indicates the failure distribution of the lifetime of the three-out-
of- two system, namely, this distribution indicates the distribution of the random
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Figure 1. Valid parameter set (ellipsoid and triangle on the right-
side )

Table 1. Some generated distributions according to special cases
for the parameter values

λ2 λ1 Some Generated Distributions λ2 λ1 Some Generated Distributions
−4 2 4F 3 − 6F 2 + 3F −1 0 F 3 − F 2 + F
−3 0 3F 3 − 3F 2 + F −1 1 F 3 − 2F 2 + 2F
−3 1 3F 3 − 4F 2 + 2F −1 2 F 3 − 3F 2 + 3F*
−3 2 3F 3 − 5F 2 + 3F 0 −1 F 2*
−3 3 3F 3 − 6F 2 + 4F 0 0 F*
−2 0 2F 3 − 2F 2 + F 0 1 2F − F 2*
−2 1 2F 3 − 3F 2 + 2F 1 −1 2F 2 − F 3*
−2 2 2F 3 − 4F 2 + 3F 1 0 F 2 + F − F 3*
−1 −1 F 3* 2 −1 3F 2 − 2F 3*

variable X2:3 = max {min {X1, X2} ,min {X1, X3} ,min {X2, X3}}. On the other
hand, for λ1 = −1, λ2 = 0 generated distribution indicates the failure distribu-
tion of the lifetime of the two-component parallel system, namely distribution of
X2:2 = max {X1, X2}. For λ1 = 1, λ2 = 0 generated distribution indicates the
failure distribution of the lifetime of the two-component series system, namely dis-
tribution of X1:2 = min {X1, X2}.
In this case, in addition to the known distributions introduced by the quadratic
transmutation, more informative distribution functions occure. However, the set of
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the transformation parameters of the proposed cubic transmutation is still compli-
cated.
In order to eliminate of this complexity, by referring to the concept of reliability
evaluation of coherent system by using signature (see, [6, 7] ), we come up with an
idea inspired by both works of [16,18] as follows:

Pr (X2:2 ≤ t) = Pr (max {X1, X2} ≤ t) = F 2 (t)

and
Pr (X1:2 ≤ t) = Pr (min {X1, X2} ≤ t) = 2F (t)− F 2 (t)

where F (t) indicates the failure distribution of the component lifetime, namely,
Pr (X1 ≤ t) = F (t). Hence there exists a stochastic ordering relation such as
X1:2 ≺stX ≺stX2:2. In this case, these three failure distributions can be ordered
as F 2 (t) ≤ F (t) ≤ 2F (t) − F 2 (t). From the latter inequality, we can say that
F (t) is represented by a convex combination of 2F (t) − F 2 (t) and F 2 (t) where
the value of the combination parameter is 1

2 . On the other hand, it is possible to
obtain many distributions besides F . Let G stand for the distribution obtained by
this convex combination. Then, for δ ∈ [0, 1], we have

G (t) = δ
(
2F (t)− F 2 (t)

)
+ (1− δ)

(
F 2 (t)

)
= 2δF (t) + (1− 2δ)F 2 (t) (9)

Here, the combination parameter is reparametrized by taking δ = 1+λ
2 to attain

quadratic rank transmutation. Now, the new parameter λ takes the values in
[ −1, 1]. As can be seen immediately, λ = 0 corresponds to δ = 1

2 . In eq. (9),
substituting δ by λ, we have

G (t) = (1 + λ)F (t)− λF 2 (t) . (10)

The above expression is the quadratic rank trasmutation proposed by [16]. Now, we
concentrate on 3-component systems with similar thinking. Let X1, X2 and X3 be
independent random variables distributed as F . Let Xr:3 denote rth order statistic
of (X1, X2, X3) with corresponding distribution Fr:3. Then we have

F3:3 (t) = Pr (X3:3 ≤ t) = Pr (max {X1, X2, X3} ≤ t) = F 3 (t) (11)
F2:3 (t) = Pr (X2:3 ≤ t)

= Pr (max {min {X1, X2} ,min {X1, X3} ,min {X2, X3}} ≤ t)
= 3F 2 (t)− 2F 3 (t)

(12)

F1:3 (t) = Pr (X1:3 ≤ t) = Pr (min {X1, X2, X3} ≤ t)
= 3F (t)− 3F 2 (t) + F 3 (t) .

(13)

According to [18], the properties F3:3 ≤ F2:3 ≤ F1:3 and F = 1
3F3:3 +

1
3F2:3 +

1
3F1:3. are hold. In other words, F can be represented by a convex combination
of F1:3, F2:3 and F3:3. On the other hand, there is also an ordering for F such
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that F3:3 ≤ F ≤ F1:3. If F2:3 is also included in this ordering, we have for F ≥ 1
2 ,

F3:3 ≤ F ≤ F2:3 ≤ F1:3 and for F < 1
2 , F3:3 ≤ F2:3 ≤ F ≤ F1:3. Hence, we

can suggest a convex combination to cover both ordering situations. Our aim is
to determine exactly where F is. In this case, we can write the following convex
combination obtained by F1:3 and F2:3, called as G∗.

G∗ = δ1F1:3 + (1− δ1)F2:3 (14)

where δ1 ∈ [0, 1] . Now, let’s write a convex combination between G∗ and F3:3.
Denoting this convex combination by G, we have

G = δ2G
∗ + (1− δ2)F3:3 (15)

where δ2 ∈ [0, 1]. Combining with the equations (14) and (15), we obtain G as

G = δ2δ1F1:3 + δ2 (1− δ1)F2:3 + (1− δ2)F3:3. (16)

If the notation F is used for the representation of Fr:3, and rearranging with respect
to polynomial degree of F , the following expression is obtained:

G = δ2δ1
(
3F − 3F 2 + F 3

)
+ δ2 (1− δ1)

(
3F 2 − 2F 3

)
+ (1− δ2)F 3

= 3δ1δ2F + 3δ2 (1− 2δ1)F 2 + (1− 3δ2 + 3δ1δ2)F 3
(17)

Undoubtedly, G is a distribution function. However, reparameterization is made
on the model in order to achieve the similar structure of the quadratic rank trans-
mutation. Now, by taking w1 = δ1δ2 and w2 = δ2− δ1δ2, eq. (17) can be rewritten
as follows:

G = 3w1F + 3 (w2 − w1)F 2 + (1− 3w2)F 3 (18)

where w1, w2 ∈ [0, 1]. In eq. (18), by the reparametrizating as w1 = 1+λ1
3 and

w2 =
1+λ2
3 , we have

G = (1 + λ1)F + (λ2 − λ1)F 2 − λ2F 3 (19)

where λ1, λ2 ∈ [ −1, 2]. Since δ2 = w1 + w2, the parameter set is also constrained
by the condition λ1 + λ2 ≤ 1. Consequently, the parameter set of λ1 and λ2 is
presented in a simpler form than the parameter region given in Figure 1. This
transmutation defined in eq. (19) is called as cubic rank transmutation and trans-
formed distribution G is named as CRT-F.
As can be seen immediately, CRT-F defines a quadratic rank transmuted distribu-
tion at λ2 = 0, and λ1 = λ2 = 0 gives the baseline distribution F . For this reason,
CRT-F can be seen as a generalized form of QRT. The parameter set of λ1 and
λ2, which is defined as {(λ1, λ2) : λ1, λ2 ∈ [−1, 2] , λ1 + λ2 ≤ 1} can be figure out in
Figure 2.Now, referring to the integer values of λ1 and λ2, we can determine the
generated distribution functions by the Table 2.
Identifications given in Table 2 show that Table 1 of [17] is included by CRT-F
according to special choices of transmutation parameters.
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Figure 2. Region of the parameter set of CRT-F

Table 2. Identifications of CRT-F distribution for special values
of transmutation parameters

λ1 λ2 CRT-F Identification
-1 -1 F 3 Distribution of T3:3
-1 0 F 2 Distribution of T2:2
-1 1 2F 2 − F 3 Distribution of max {X1,min {X2, X3}}
-1 2 3F 2 − 2F 3 Distribution of T2:3
0 -1 F 3 − F 2 + F 1

3F1:3 +
2
3F3:3

0 0 F Baseline Distribution
0 1 F 2 + F − F 3 Distribution of min {X1,max {X2, X3}}
1 -1 F 3 − 2F 2 + 2F 2

3F1:3 +
1
3F3:3

1 0 2F − F 2 Distribution of T1:2
2 -1 F 3 − 3F 2 + 3F Distribution of T1:3

Note that, by taking into account the parameter set of (19), the distribution family
CRT-F is different as compared with the families proposed by [8, 14].

[8] proposed a cubic rank transmuted distribution family motivated by a study
of [17]. The paper contained one theorem (referred to as Theorem 2.1), deriving
cubic transmuted distribution. Here, We would like to point out that the result of
Theorem 2.1 can be reduced to an explicit and understandable form.
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Parameter space of eq. (3) of Theorem 2.1 given by [8] needs to be revised according
to mixture probabilities πi (i = 1, 2, 3). Otherwise, eq. (3) does not provide
the distribution function in some cases of λ1 and λ2. For instance, suppose that
λ1 = 0 and λ2 = −1 in eq. (3), then we have

F (x) = −G2 (x) + 2G3 (x) = G2 (x) (2G (x)− 1) .
Thus, the function F (x) is positively signed when x is greater than G−1 (1/2) which
is the median of G (x) . Otherwise, F (x) is negatively signed. More generally,
according to eq. (3), we have the second-order convex polynomial as ϕ (u) =
λ1 + (λ2 − λ1)u + (1− λ2)u2. After some algebraic manipulation, we say that
having positively sign of ϕ (u) depends on λ1 ≥ (λ1+λ2)

2

4 . Furthermore, in proof
of Theorem 2.1, one condition is missing which comes with 0 ≤ π1 + π2 ≤ 1. To
clarify the above claims, recall the distribution of order statistics associated with
sample size of 3:

Pr (X1:3 ≤ x) = 1−Pr (X1:3 > x) = 1− (1− F (x))3 = 3F (x)−3F 2 (x)+F 3 (x) ,

Pr (X2:3 ≤ x) = 3F (x)2 − 2F 3 (x) ,
Pr (X3:3 ≤ x) = F 3 (x) .

Now, a new random variable T is defined by mixing the above order statistics as
follows:

T =

 X1:3, with probability π1
X2:3, with probability π2
X3:3, with probability π3,

where π1 + π2 + π3 = 1. Then the distribution of T is as follows:

Pr (T ≤ t) = π1
(
3F (t)− 3F 2 (t) + F 3 (t)

)
+ π2

(
3F 2 (t)− 2F 3 (t)

)
+ π3

(
F 3 (t)

)
= (3π1)F (t) + 3 (π2 − π1)F 2 (t) + (π1 − 2π2 + π3)F 3 (t) .

By letting π3 = 1− π1 − π2 then we have
Pr (T ≤ t) = 3π1F (t) + 3 (π2 − π1)F 2 (t) + (1− 3π2)F 3 (t) .

Since πi ∈ [0, 1], (i = 1, 2, 3), appropriate parameterization for π1 and π2, can be
taken into account as 3π1 = 1 + λ1, and 3π2 = 1 + λ2. New parameters are both
in the interval [−1, 2]. Recalling the condition 0 ≤ π1 + π2 ≤ 1, hence we have
−2 ≤ λ1 + λ2 ≤ 1. Accordingly, latter probability is as follows:

Pr (T ≤ t) = (1 + λ1)F (t) + (λ2 − λ1)F 2 (t)− λ2 F 3 (t) ,
with λ1, λ2 ∈ [−1, 2] and −2 ≤ λ1 + λ2 ≤ 1. It should be noted that this is also
obtained by (19).
Therefore, based on the assumptions in proof of Theorem 2.1., eq. (3) cannot
be obtained. Also, comparing with the family introduced by [14], they give the
similar cubic transmuted distribution family with a narrower parameter space as
λ1, λ2 ∈ [−1, 1] and −2 ≤ λ1 + λ2 ≤ 1.
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3. Conclusion

In this article, we propose a new version of polynomial rank transmutation. Since
the parameter set is still complex, a new cubic rank transmutation is introduced
in the light of the idea behind QRTM technique. Compared to the two techniques
in the literature, it is seen that the proposed technique covers them in terms of
parameter space.
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