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1Non-Markovian Corrections to Quantum Regression Theorem for the Strong 
Coupling Spin-Boson Model 
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Abstract 

We report the results of an investigation of the effects of non-Markovian corrections to the 
dynamics of two-time correlation functions of the strong interaction spin-boson model. Beyond 
quantum regression theorem corrections are taken into account at the low environmental 
temperatures for a two-level system (TLS) which is in contact with a structured bath. The results 
indicate that the corrections lead to appreciable (small) quantitative (qualitative) differences for 
both biased and non-biased TLS settings. 
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1. INTRODUCTION 

Two-time correlation functions (TCFs) for an 
open quantum system are important tools that 
provide essential information which might not be 
available within the single-time averages of the 
physical system quantities. For instance, TCFs of 
an atom interacting with electromagnetic field 
allows to evaluate the fluorescence spectrum [1, 
2]. Also, in case of current flowing through 
nanostructure instruments, TCFs of the current 
play an important role in explaining the transition 
properties of current deviations and noise 
spectrum. Quantum regression theorem (QRT) 
serves as a bridge between the dynamics of the 
single-time expectation values and that of their 
corresponding TCFs and is a useful method to 
evaluate these two-time (multi-time) correlation 
functions for open quantum systems when the 
system-environment interaction is Markovian. 
With the help of QRT, the knowledge of time rate 
of change of the reduced density matrix of the 
system lets one to obtain not only the single-time 
average values, but also two-time correlation 
functions in the Markovian case. However, the 
QRT does not work generally for non-Markovian 
open quantum systems. To handle this problem, 
there have been many studies that are concerned 
with finding dynamical equations for the multi-
time correlation functions for non-Markovian 
quantum systems [3–12], such that two-time 
functions for non-Markovian systems can be 
computed using a method similar to the QRT. 
Alonso and de Vega [7–10] have developed a 
theory for non-Markovian multi-time correlation 
functions based on stochastic Schrodinger 
equation and used it to study a weakly interacting 
dissipative system with non-diagonal interaction 
and have shown that validity of quantum 
regression theorem depends strongly on the form 
of the system environment correlations. The 
developed approach was applied to compute the 
emission spectrum of a two-level system in 
contact with a structured non- Markovian 
environment, for example the radiation fields in a 
a photonic crystal [10]. Goan et. al. [4, 11] have 
derived an useful two-time correlation functions 
for non-Markovian dissipative quantum systems 
in finite temperature environments for any 
separable system-environment initial states (pure 

or mixed) by using perturbative quantum master 
equation, and found that calculating the two-time 
correlation functions of system quantities of non-
Markovian dissipative open systems such as a 
pure-dephasing spin-boson model is not sufficient 
to use its single-time average, even in the second 
order approximation. Also, this exact model 
allows making the non-Markovian environment 
temperature arbitrary or finite, which is another 
important result of these studies. 

Some groups have tried to develop a non- 
Markovianity measure based on the violation of 
QRT [3, 12]. Manirul Ali and coworkers [12] 
have investigated non-Markovianity measures 
based on two-time correlation functions for open 
quantum system by using an exact master 
equation based on the non-equilibrium Green’s 
functions. They have found that the non-
Markovian dynamics for the Fano-Anderson 
Hamiltonian significantly depends on the strength 
of the system-bath coupling and various physical 
parameters, and tend to show two different 
behaviors depending on time for different spectral 
densities. Besides, it is observed that non- 
Markovian memory effect on the system is always 
reduced by the thermal bath disturbances. 

McCutcheon [5] derived a non-Markovian 
extension to the quantum regression theorem that 
gives us the facility about the calculation of two-
time correlation functions and emission spectrum 
of weakly driven dissipative two-level system by 
using projection method. He has found that 
sideband are related to information flow from the 
phonon environment to the quantum dot system, 
which justifies true non-Markovianity and 
indivisibility of the dynamical map [13]. Cosacchi 
et. al. [6] present a practical method to calculate 
the multi-time correlation functions by using path 
integral method in the presence of the memory of 
the environment. Cosacchi et. al. [6] observes that 
the approach of McCutcheon [5] may lead to 
unphysical results, which presents phonon side-
band appears on the wrong side of the Mollow 
triplet. They study it on the pure-dephasing type 
coupling to bosonic harmonic environments. 
They have shown that the resulting method that is 
used to characterize the emission spectrum of a 
quantum dot interacting with longitudinal 

Arzu KURT

Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model

Sakarya University Journal of Science 24(4), 596-604, 2020 597



 

acoustic phonons allows to the phonon sideband 
appears on the correct side of the zero phonon 
line, which is not an agreement with the result 
obtained from the naive application of the 
quantum regression theorem. 

In the literature, the studies relating to the time 
evolution of TCFs in the non-Markovian 
Dynamics considered only the weak system-bath 
coupling regime. One can naturally ask whether 
findings of those studies would hold also in the 
strong coupling regime? Towards an aim to 
answer that question, in the current work, we will 
analyze the contribution of non-Markovian 
corrections to quantum regression theorem of the 
two-time correlation function of the 𝜎z operator 
for the strong coupling spin-boson model with an 
environment that is described by a structured 
spectral density. 

The article is organized as follows. In Sec. II, we 
present the strongly driven spin-boson mode in 
the polaron frame and give basic information 
about the expressions of time evolution of one and 
twotime correlation functions for any system 
operators. The important results of study are the 
presented in Sec. III. The paper concludes with a 
brief summary of the findings in Sec. IV. 

 

2. MODEL 

We consider a two-level system (TLS) that is 
interacting with an harmonic environment, of 
which the energy splitting is  𝜔஺  and the tunneling 
matrix element is V. The Hamiltonian of the 
closed system composed of the TLS and its 
environment can be expressed as: 

𝐻 = 𝐻ௌ + 𝐻஻ + 𝐻ூ,                 (1) 

where HS is the Hamiltonian of the TLS, 𝐻஻ is the 
Hamiltonian of the reservoir which is a collection 
of independent harmonic oscillators with mode 
frequencies 𝜔௞, and 𝐻𝐼 is the interaction between 
the TLS and its environment (with ħ = 1): 

           𝐻 =
ఠಲ

ଶ
𝜎௭ +

௏

ଶ
𝜎௫ + ∑

௞
𝜔௞𝑎௞

ற𝑎௞  

          +𝜎௭∑
௞

𝑔௞൫𝑎௞
ற + 𝑎௞൯.                   (2) 

Here 𝑎ற (𝑎) is a creation (annihilation) operators 
of the bath oscillator and 𝑔𝑘 is the magnitude of 
the interaction between the TLS and the 𝑘௧௛ bath 
oscillator. Here, we assume that the interaction 
strength is in the strong coupling regime, so 
transforming Hamiltonian in Eq. (2) into polaron 
frame is very natural, which can be obtained by 

                  𝐻′ = 𝐻0
′ + 𝐻𝐼

′ , 

                     =
ఠಲ

ଶ
𝜎௭ + 𝑉௥𝜎௫ + ∑

௞
𝜔௞𝑎௞

ற𝑎௞ 

                          +𝜎ା𝐵ି + 𝜎ି𝐵ା.                   (3) 

Here the superscript " ′ " implies that O′ is in the 
polaron frame. In the following we will drop the 
superscript for simplicity.  𝜎± are, then, the spin 
flip operators of the TLS, Vr is the reduced 
tunneling matrix element and 𝐵± refer the bath 
correlation operators, and given as a function of 
system-bath coupling strength 𝑔௞ with the 𝑘௧௛  
oscillator mode: 

𝐵± = ⟨𝑒
∓∑𝑘

2𝑔𝑘
𝜔𝑘

ቀ𝑎𝑘
†−𝑎𝑘ቁ

⟩𝑅 ,            (4) 

where ⟨. . . ⟩ோ denotes averaging over the 
environmental degrees of freedom. It is important 
to note that the reduced tunneling rate 𝑉௥ is equal 
to zero for bath spectral densities whose 
frequency exponent is less than 2 which is the 
case in the present study. 

The evolution equation of the reduced density 
matrix of the TLS in the interaction picture can be 
written as 

ௗ

ௗ௧
𝜌ௌ(𝑡) = −∫

଴

௧
𝑑𝑡ଵ𝑇𝑟ோൣ𝐻ூ(𝑡), [𝐻ூ(𝑡ଵ), 𝜌ௌ ⊗ 𝜌ோ]൧,(5) 

where Trோ indicates partial trace over the 
environmental modes. Second-order evolution 
equations of any system operator 𝐴 in the 
Schrödinger Picture can be evaluated by using
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𝑑

𝑑𝑡ଵ

⟨𝐴(𝑡ଵ)⟩ = 𝑖𝑇𝑟ௌ⊗ோ({[𝐻ௌ, 𝐴]}(𝑡ଵ)𝜌்(0)) 

                                            + ∫0

𝑡1
𝑑𝜏𝑇𝑟𝑆⊗𝑅({𝐻

~
𝐼(𝜏 − 𝑡1)[𝐴, 𝐻𝐼]}(𝑡1)𝜌𝑇(0) 

+{[𝐻ூ, 𝐴]𝐻
~

ூ(𝜏 − 𝑡ଵ)}(𝑡ଵ)𝜌்(0)).                                      (6)
 

Here, 𝐻
~

ூ (𝑡) is the time-dependent interaction 
Hamiltonian: 

𝐻
~

𝐼(𝑡) = 𝑉 (𝜎
−

(𝑡)𝐵+(𝑡) + 𝜎+(𝑡)𝐵−(𝑡)),  (7) 

which describes the time evolution in the 
interaction picture in the polaron frame. Curly 

brackets in Eqs. (6) and (8) indicate that the 
expression should be evaluated in the Heisenberg 
picture and its time should be taken as given in the 
post bracket. In order to establish the two time 
correlation functions for the non-Markovian 
evolution which has the optical results of some 
physical systems [1, 2], one can use the result of 
Refs. [4, 5], and its formulation is given as:

𝑑

𝑑𝑡ଵ

⟨𝐴(𝑡ଵ)𝐵(𝑡ଶ)⟩ = 𝑖𝑇𝑟ௌ⊗ோ({[𝐻ௌ, 𝐴]}(𝑡ଵ)𝐵(𝑡ଶ)𝜌்(0)) 

       +∫
଴

௧భ
𝑑𝜏𝑇𝑟ௌ⊗ோ({𝐻

~
ூ(𝜏 − 𝑡ଵ)[𝐴, 𝐻ூ]}(𝑡ଵ)𝐵(𝑡ଶ)𝜌்(0) 

                                     +{[𝐻ூ, 𝐴]𝐻
~

ூ(𝜏 − 𝑡ଵ)}(𝑡ଵ)𝐵(𝑡ଶ)𝜌்(0))   

+∫
଴

௧మ
𝑑𝜏𝑇𝑟ௌ⊗ோ ቀ{[𝐻ூ, 𝐴]}(𝑡ଵ){[𝐵, 𝐻

~
ூ(𝜏 − 𝑡ଶ)]}(𝑡ଶ)𝜌்(0)ቁ.                   (8) 

 

 

Here, the first two terms on the right hand side of 
Eq. (8) are the QRT terms while the last term 
accounts for the corrections for the non-
Markovian effects. The last integral term in Eq. 
(8) is the source of violation of the quantum 
regression theorem. 

 

3. RESULTS 

In the present study, we will investigate the 
dynamics of the quantity ⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ for the 
spinboson model in strong coupling regime 
within polaron frame for an arbitrary bath spectral 
density. Choosing 𝐴 = 𝜎௭ and 𝐵 = 𝜎௭ in Eq. (8), 
we obtain a set of six coupled differential 
equations for various combinations of TLS 
system operator as:

𝑑

𝑑𝑡ଵ

⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ = −4𝛤ଵ(𝑡ଵ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ − 4𝛤ଶ(𝑡ଵ)⟨𝜎௭(𝑡ଶ)⟩ + 2(𝛤ହ(𝑡ଵ, 𝑡ଶ)⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ 

                                     −𝛤଺(𝑡ଵ, 𝑡ଶ)⟨𝜎ା(𝑡ଵ)𝜎ି𝑡ଶ)⟩ − 𝛤଻(𝑡ଵ, 𝑡ଶ)⟨𝜎ା(𝑡ଵ)𝜎ା(𝑡ଶ)⟩             
                                +𝛤8(𝑡1, 𝑡2)⟨𝜎−(𝑡1)𝜎−(𝑡2)⟩),                                                                             (9) 

𝑑

𝑑𝑡ଵ

⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ = [𝑖𝜔஺ − 2(𝛤ଵ(𝑡ଵ) + 𝑖𝛤ଷ(𝑡ଵ))]⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ 

                    +2𝛤ସ(𝑡ଵ)∗⟨𝜎ି(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ + 𝛤ହ(𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                (10) 
𝑑

𝑑𝑡ଵ

⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ = −[𝑖𝜔஺ + 2(𝛤ଵ(𝑡ଵ) − 𝑖𝛤ଷ(𝑡))]⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ 

                      +2𝛤ସ(𝑡ଵ)⟨𝜎ା(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ + 𝛤଺(𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                 (11) 
𝑑

𝑑𝑡ଵ

⟨𝜎ା(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ = [𝑖𝜔஺ − 2(𝛤ଵ(𝑡ଵ) + 𝑖𝛤ଷ(𝑡ଵ))]⟨𝜎ା(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ 

                                   +2𝛤ସ(𝑡ଵ)∗⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ − 𝛤 (𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                (12) 
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𝑑

𝑑𝑡ଵ

⟨𝜎ି(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ = −[𝑖𝜔஺ + 2(𝛤ଵ(𝑡ଵ) − 𝑖𝛤ଷ(𝑡ଵ))]⟨𝜎ି(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ 

                                   +2𝛤ସ(𝑡ଵ)⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ − 𝛤଻(𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                 (13) 

        
ௗ

ௗ௧భ
⟨𝜎௭(𝑡ଵ)⟩ = −4𝛤ଵ(𝑡ଵ)⟨𝜎௭(𝑡ଵ)⟩ − 4𝛤ଶ(𝑡ଵ).                                                                         (14)

Here, the first two terms in Eq.(9) (originating 
from the first two terms of Eq.(8)) account for the 
quantum regression theorem with non-Markovian 
effects while the rest of Eq.(9) describe the 
corrections to QRT for the non-Markovian 

dynamics. These correction terms for QRT allow, 
then, us to get the last terms in Eq.(10)-Eq.(13), 
while the other terms in these equations come 
from the QRT only. Also, the time-dependent 
coefficients of the differential equations are:

 

𝛤ଵ(𝑡ଵ) = 𝑉ଶ∫଴

௧భ
𝑑𝜏𝑒ିொమ(ఛି௧భ)𝑐𝑜𝑠(𝑄ଵ(𝜏 − 𝑡ଵ))𝑐𝑜𝑠൫𝜔஺(𝜏 − 𝑡ଵ)൯, 

                                 𝛤2(𝑡1) = 𝑉2∫0

𝑡1
𝑑𝜏𝑒−𝑄2(𝜏−𝑡1)𝑠𝑖𝑛൫𝑄1(𝜏 − 𝑡1)൯𝑠𝑖𝑛൫𝜔𝐴(𝜏 − 𝑡1)൯,      

                               𝛤3(𝑡1) = 𝑉2∫0

𝑡1
𝑑𝜏𝑒−𝑄2(𝜏−𝑡1)𝑐𝑜𝑠൫𝑄1(𝜏 − 𝑡1)൯𝑠𝑖𝑛൫𝜔𝐴(𝜏 − 𝑡1)൯,                            (15) 

                                 𝛤4(𝑡1) = 𝑉2∫0

𝑡1
𝑑𝜏𝑒−𝑄3(𝜏−𝑡1)𝑐𝑜𝑠൫𝑄1(𝜏 − 𝑡1)൯𝑒𝑖𝜔𝐴(𝜏−𝑡1), 

                              𝛤5(𝑡1, 𝑡2) = 𝑉2∫0

𝑡2
𝑑𝜏𝑒−𝑄2(𝜏−𝑡2−𝑡1)+𝑖𝑄1(𝜏−𝑡2−𝑡1)𝑒𝑖𝜔𝐴(𝜏−𝑡2),  

                              𝛤6(𝑡1, 𝑡2) = 𝑉2∫0

𝑡2
𝑑𝜏𝑒−𝑄2(𝜏−𝑡2−𝑡1)+𝑖𝑄1(𝜏−𝑡2−𝑡1)𝑒−𝑖𝜔𝐴(𝜏−𝑡2), 

                               𝛤7(𝑡1, 𝑡2) = 𝑉2∫0

𝑡2
𝑑𝜏𝑒−𝑄3(𝜏−𝑡2−𝑡1)−𝑖𝑄1(𝜏−𝑡2−𝑡1)𝑒𝑖𝜔𝐴(𝜏−𝑡2), 

                                𝛤8(𝑡1, 𝑡2) = 𝑉2∫0

𝑡2
𝑑𝜏𝑒−𝑄3(𝜏−𝑡2−𝑡1)−𝑖𝑄1(𝜏−𝑡2−𝑡1)𝑒−𝑖𝜔𝐴(𝜏−𝑡2), 

 

where 

𝑄1(𝑡) =
1

2𝜋
∫0

∞
𝑑𝜔

𝐽(𝜔)

𝜔2
𝑠𝑖𝑛(𝜔𝑡), 

𝑄2(𝑡) =
1

2𝜋
∫0

∞
𝑑𝜔

𝐽(𝜔)

𝜔2
𝑐𝑜𝑡ℎ ቆ

𝛽𝜔
2

ቇ (1 − 𝑐𝑜𝑠(𝜔𝑡)), 

𝑄3(𝑡) =
1

2𝜋
∫0

∞
𝑑𝜔

𝐽(𝜔)

𝜔2
𝑐𝑜𝑡ℎ ቆ

𝛽𝜔
2

ቇ (1 + 𝑐𝑜𝑠(𝜔𝑡)), 

where 𝑄ଵ,ଶ,ଷ(𝑡) are the real and the imaginary 
parts of the bath correlation functions as a 
function of time, inverse temperature 𝛽 = 1/𝑘஻𝑇. 
𝐽(𝜔) is the bath spectral function which quantifies 
the frequency distribution of the bath oscillators 
as well as the interaction between the two level 
system and the bath. The reorganization energy 

which is defined as 𝐸௥ = ∫
଴

ஶ
𝑑𝜔 𝐽(𝜔)/𝜔   is a 

rough measure of interaction strength between the 
TLS and its environment. In the current study, we 

choose 𝐽(𝜔) as a structured spectral density 
function that defines the environment as a single 
harmonic oscillator whose levels are broadened 
by its interaction with an Ohmic environment of 
non-interacting harmonic oscillators [14]: 

𝐽(𝜔) = 8𝜅ଶ ఊఠబఠ

(ఠమିఠబ
మ)మାସఊమఠమ

  ,     (16) 

where 𝜔଴ is the frequency of the central harmonic 
oscillator, 𝜅 is the strength of TLS-bosonic bath 
coupling, 𝛾 is the broadening term of the 
oscillator levels due to its interaction with the 
Ohmic bath. It should be noted that the 
reorganization energy for the chosen 𝐽(𝜔) is 
equal to 𝜅ଶ/𝜔଴. For the structured spectral 
density, the bath correlation function 
exp(−𝑄ଷ(𝑡)) is zero which leads to vanishing of 
the kernels 𝛤ସ, 𝛤଻, and 𝛤  in Eqs. (9)-(14). Those 
equations in simplified form become:

 
𝑑

𝑑𝑡ଵ

⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ = −4𝛤ଵ(𝑡ଵ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ − 4𝛤ଶ(𝑡ଵ)⟨𝜎௭(𝑡ଶ)⟩ 

                                   +2(𝛤ହ(𝑡ଵ, 𝑡ଶ)⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ − 𝛤଺(𝑡ଵ, 𝑡ଶ)⟨𝜎ା(𝑡ଵ)𝜎ି𝑡ଶ)⟩),        (17) 
𝑑

𝑑𝑡ଵ

⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ = [𝑖𝜔஺ − 2(𝛤ଵ(𝑡ଵ) + 𝑖𝛤ଷ(𝑡ଵ))]⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ 
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                                   +4𝛤ହ(𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                                         (18) 
𝑑

𝑑𝑡ଵ

⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ = −[𝑖𝜔஺ + 2(𝛤ଵ(𝑡ଵ) − 𝑖𝛤ଷ(𝑡))]⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ 

                                   +4𝛤଺(𝑡ଵ, 𝑡ଶ)⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩,                                                        (19) 

           
ௗ

ௗ௧భ
⟨𝜎௭(𝑡ଵ)⟩ = −4𝛤ଵ(𝑡ଵ)⟨𝜎௭(𝑡ଵ)⟩ − 4𝛤ଶ(𝑡ଵ).                                                       (20)

It is significant to note that the time rate of change 
of ⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩ does not depend on 
⟨𝜎ା(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ and ⟨𝜎ି(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ for the 
environment with the structured spectral density. 
As a result, six coupled differential equations of 
Eqs. (9)-(14) are reduced to four differential 
equations (Eqs. 17-20). In these equations, the 
terms that contain the kernel function (𝛤ଵ,ଶ,ଷ) with 
a single time argument are due to non-Markovian 
quantum regression theorem while (𝛤ହ,଺) with two 
time arguments account for the corrections to 
QRT for the non-Markovian dynamics which will 
be referred to as QRT+ for the rest of the paper. 
Non-Markovian QRT predictions reported below 
are obtained by neglecting 𝛤ହ,଺ terms in Eqs. (17)-
(20). 

As the numerical solutions of the dynamical 
equations of the two time correlation functions of 
the spin boson model in the current study, we will 
consider a low temperature environment with 
relatively strong system-bath coupling and 
investigate the difference between the non-
Markovian QRT and QRT+ dynamics for two 
different values of level splitting of the two-level 
system. Initial state of the TLS+ bath closed 
system is taken as 𝜌଴ =  𝜌ௌ(0) ⊗ 𝜌ா(0) where 
𝜌ா(0) is the thermal equilibrium of the 
environment while 𝜌ௌ(0) is the density matrix of 

the pure TLS state |𝜓⟩ =
√ଷ

ଶ
|𝑒⟩ +

ଵ

ଶ
|𝑔⟩ . 

First, we consider the zero-bias case for the TLS 
and display the kernel functions, magnetization 
and the two-time correlation functions obtained 
by numerically solving Eq. (17)-(20) in Fig. 1, 
respectively. The other system and the 
environment parameters which indicate a 
relatively strong system-bath interaction (𝐸௥ =
1) and low environmental temperature (𝛽 =
 100) are provided in the caption of the figure. As 
can be seen from Fig. 1(a), for the non-biased 
TLS, only 𝛤ଵ and 𝛤଺ kernels are nonzero. In the 

𝑡 → ∞ limit, both real and imaginary parts of 𝛤଺ 
vanishes. Behaviour of both ⟨𝜎௭(𝑡)⟩  and the two 
time correlation functions can be understood 
easily based on the time dependence of these 
correlation functions: All the considered 
quantities should exponentially decay to zero at 
long time limit with a decay rate which is a 
function of the kernel 𝛤ଵ. The dynamics of two-
time correlation functions obtained with non-
Markovian QRT and QRT+ approaches (dashed 
and straight lines in Fig. 1(c) indicate that the 
qualitative difference between the results 
obtained by employing those two approaches is 
very small while the quantitative difference for 
⟨𝜎ି(𝑡ଵ)𝜎ା(𝑡ଶ)⟩ and ⟨𝜎ା(𝑡ଵ)𝜎ି(𝑡ଶ)⟩ is larger than 
that for ⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩. 

 
      (a) 

 
(b) 
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(c) 

Figure 1. (a) Time-dependence of the kernels 𝛤ଵ,ଶ,ଷ(𝑡), 
and the real and the imaginary parts of 𝛤5,6(𝑡1, 𝑡

2
) for 

the set of Eqs.(17)-(20), (b) dynamics of ⟨𝜎௭(𝑡)⟩, and 
(c) time evolutions of the real parts of system operators 
for two cases: QRT (solid line) and non-Markovian 
QRT (dashed line). Other parameters used are 𝑡2 = 1, 
𝑉 = 0.5, 𝜔0 = 1, 𝛾 = 0.1, 𝜅 = 1, 𝛽 =  100, 𝐸௥ = 𝜅ଶ/𝜔 = 1 

and the TLS is considered to be non-biased (𝜔଴ = 0). 

We display, also, the same set of graphs in 
Figs.2(a)-(c) for the resonance case for which the 
splitting frequency of the TLS is equal to the 
central frequency of the environmental oscillator. 
Contrary to the non-biased case (Fig.1(a)), one 
can see that all kernels are non-zero at the short 
time while only the single time argument ones 
remain non-zero at the long time limit. This result 
causes that the average of 𝜎௭(𝑡) to exponentially 
decay to a terminal value determined by the ratio 
𝛤ଶ(∞)/𝛤ଵ(∞), as can be seen from Fig.2(b). It is 
also interesting to note that the dynamics of 
⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩  for the biased and non-biased 
TLS are very similar with somewhat different 
steady-state values as displayed Fig.1(c). The 
dynamics of ⟨𝜎±(𝑡ଵ)𝜎∓(𝑡ଶ)⟩ for biased TLS differ 
from the those for the non-biased case in Fig.2(c). 
This result can readily be explained by the fact 
that both 𝛤ଷ and 𝜔஺ are non-zero, which drives 
these system operators to coherent decay with 
decay rate related to the integrals of 𝛤ଵ, 𝛤ଶ, 𝛤ହ, 
𝛤଺ and oscillation frequency which is related to 
𝜔஺ and 𝛤ଷ. The oscillations of two-time 
correlation functions are more pronounced in the 
resonance case. The difference between the 
results obtained by using QRT+ and non-
Markovian QRT approaches is found to be 
smaller for the ⟨𝜎±(𝑡ଵ)𝜎∓(𝑡ଶ)⟩ than that for 

⟨𝜎௭(𝑡ଵ)𝜎௭(𝑡ଶ)⟩  quantitatively, contrary to the 
findings in the non-biased case discussed above. 
In general, the results presented above show that 
the Dynamics for both QRT+ and the non-
Markovian QRT have noticeably similar behavior 
for all time intervals for the strongly driven spin-
boson model. This result is not valid for the weak 
system-bath coupling for the certain system 
parameters [4, 11]. Finally, we can conclude that 
the non-Markovian two-time correlation 
functions obtained in the polaron frame has 
somewhat different behavior depending on the 
TLS splitting term 𝜔஺. 

 

           (a) 

 

          (b) 
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      (c) 

Figure 2. Same as Fig.(1) for the resonance between 
the TLS and the environmental oscillator (𝜔஺ = 𝜔଴ =

1). 

 

4. CONCLUSIONS 

In this work, we have investigated that 
timedependence of non-Markovian two-time 
correlation functions for a TLS that is in contact 
with a harmonic oscillator which in turn is 
interacting with a thermal bath of harmonic 
oscillators by transforming the system 
Hamiltonian into polaron frame when the strength 
of system-bath interaction is strong. We have 
investigated the effect of including non-
Markovian corrections to the dynamics of the 
twocorrelation functions beyond the quantum 
regression theorem. In the low temperature, 
relatively strong system-bath interaction regime 
we have found that although the QRT corrections 
lead to small qualitative changes in the dynamics, 
overall qualitative time-dependence of the two 
time-correlation functions does not change 
appreciably by inclusion of the QRT corrections. 
This result was found to be true for both biased 
and non-biased system settings. If QRT violations 
can be considered as an indication of non-
Markovianity of the dynamics, one can claim that 
the dynamics of the model is near Markovian for 
the parameter regime studied in the current work. 
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