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On Strongly 𝝅-regular Modules 

 

Suat KOÇ*1 

 

 

Abstract 

In this article, we introduce the notion of strongly 𝜋-regular module which is a generalization 
of von Neumann regular module in the sense [13]. Let 𝐴 be a commutative ring with 1 ≠ 0 and 
𝑋 a multiplication 𝐴-module. 𝑋 is called a strongly 𝜋-regular module if for each 𝑥 ∈ 𝑋, 
(𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋 for some 𝑐 ∈ 𝐴 and 𝑚 ∈ ℕ. In addition to give many properties and 
examples of strongly 𝜋-regular modules, we also characterize certain class of modules such as 
von Neumann regular modules and second modules in terms of this new class of modules. Also, 
we determine when the localization of any family of submodules at a prime ideal commutes 
with the intersection of this family. 

Keywords: von Neumann regular module, (𝑚, 𝑛)-closed ideal, strongly 𝜋-regular module, 
Krull dimension, (∗)-property, localization. 

 

1. INTRODUCTION 

In this article, all rings under consideration will be 
assumed to be commutative with 1 ≠ 0 and all 
modules will be nonzero unital. Let 𝐴 will always 
denote such a ring and 𝑋 will denote such an 𝐴-
module. The set of all prime ideals and maximal 
ideals will be denoted by 𝑆𝑝𝑒𝑐(𝐴) and 𝑀𝑎𝑥(𝐴), 
respectively. A ring 𝐴 is said to be a von Neumann 
regular (briefly, vn-regular) ring if for each 𝑐 ∈
𝐴, there exists 𝑑 ∈ 𝐴 such that 𝑐 = 𝑐ଶ𝑑. In that 
case the principal ideal (𝑐) = (𝑎) for some 
idempotent element 𝑎 ∈ 𝐴 [22]. It is clear that 𝐴 
is a vn-regular ring iff (𝑐) = (𝑐)ଶ for each 𝑐 ∈ 𝐴. 
The concept of vn-regular ring and its 
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generalizations have been widely studied in many 
papers. See, for instance, [2], [8], [9], [10], [12], 
[24]. One of the important generalizations of vn-
regular ring is that strongly 𝜋-regular ring. A ring 
𝐴 is called a strongly 𝜋-regular ring if for each 
𝑐 ∈ 𝐴, 𝑐௠ = 𝑐௠ାଵ𝑑 for some 𝑑 ∈ 𝐴 and 𝑚 ∈ ℕ, 
or equivalently, the descending chain (𝑐) ⊇
(𝑐)ଶ ⊇ ⋯ ⊇ (𝑐)௠ ⊇ ⋯  of principal powers 
terminates at some step [14]. It is clear that a ring 
𝐴 is a strongly 𝜋-regular iff for each 𝑐 ∈ 𝐴, there 
exist 𝑚 ∈ ℕ and 𝑑 ∈ 𝐴 such that (𝑐)௠ = (𝑑) =
(𝑑)ଶ. In that case (𝑐)௠ is generated by an 
idempotent element 𝑎 ∈ 𝐴. It was shown, in [8], 
that a ring 𝐴 is strongly 𝜋-regular iff its Krull 
dimension dim(𝐴) = 0 iff the radical commutes 
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with intersection of any family of ideals (See, [8, 
Theorem 3] and [8, Theorem 4]).  

Recently, Jayaram and Tekir, in their paper [13], 
extended the notion of vn-regular rings to 
modules by defining 𝑋-vn-regular elements and 
weak idempotent elements. An element 𝑐 ∈ 𝐴 is 
said to be an 𝑋-vn-regular element if 𝑐𝑋 = 𝑐ଶ𝑋 
and 𝑑 ∈ 𝐴 is said to be a weak idempotent if 𝑑𝑥 =
𝑑ଶ𝑥 for each 𝑥 ∈ 𝑋, namely, 𝑑 − 𝑑ଶ ∈ 𝑎𝑛𝑛(𝑋), 
where 𝑎𝑛𝑛(𝑋) = {𝑐 ∈ 𝐴: 𝑐𝑋 = 0} is the 
annihilator of an 𝐴-module 𝑋. They defined an 𝐴-
module 𝑋 as a vn-regular module if for each 𝑥 ∈
𝑋, the cyclic submodule 𝐴𝑥 = 𝑐𝑋 for some 𝑋-vn-
regular element 𝑐 ∈ 𝐴. An 𝐴-module 𝑋 is said to 
be a multiplication module if its each submodule 
𝑌 of 𝑋 is of the form 𝑌 = 𝐽𝑋 for some ideal 𝐽 of 
𝐴 [5], [11]. Note that 𝑋 is a multiplication module 
iff 𝑌 = (𝑌: 𝑋)𝑋 for each submodule 𝑌 of 𝑋, 
where (𝑌: 𝑋) = 𝑎𝑛𝑛(𝑋/𝑌). Also it is clear that 
each vn-regular module is multiplication. 

This article aims to study strongly 𝜋-regular 
modules and use them to characterize certain class 
of modules such as vn-regular modules, second 
modules, zero dimensional modules and modules 
satisfying (∗)-condition. For the sake of 
completeness, we shall  give some notions which 
will be frequently used throughout the paper. Let 
𝑋 be an 𝐴-module. A proper submodule 𝑌 of 𝑋 is 
said to be prime if for each 𝑐 ∈ 𝐴 and 𝑥 ∈ 𝑋, 𝑐𝑥 ∈
𝑌 implies either 𝑐 ∈ (𝑌: 𝑋) or 𝑥 ∈ 𝑌 [16]. In this 
case, 𝑞 = (𝑌: 𝑋) ∈ 𝑆𝑝𝑒𝑐(𝐴) and 𝑌 is said to be 𝑞-
prime. Let 𝑌 be a submodule of 𝑋. The radical of 
𝑌, denoted by 𝑟𝑎𝑑(𝑌), is the intersection of all 
prime submodules 𝑄 of 𝑋 containing 𝑌. If there is 
no such a prime submodule, we say 𝑟𝑎𝑑(𝑌) = 𝑋. 
Note that in a finitely generated (briefly, f.g.) or 
multiplication modules, there always exists a 
prime submodule 𝑄 of 𝑋 containing a given 
proper submodule 𝑌 of 𝑋. In a multiplication 
module 𝑋, Ameri in his paper [1], defined the 
product of two submodules and determined the 
radical of any given proper submodule 𝑌 of 𝑋. Let 
𝑌 = 𝐼𝑋 and 𝑊 = 𝐽𝑋 be two submodules of a 
multiplication module 𝑋. Then the product of 𝑌 
and 𝑊 is defined by 𝑌𝑊 = (𝐼𝐽)𝑋. He proved in 
[1], that the product is well defined and the radical 
of a proper submodule 𝑌 of 𝑋 is characterized as 
follows: 𝑟𝑎𝑑(𝑌) = {𝑥 ∈ 𝑋: ∃𝑚 ∈ ℕ such that 

(𝐴𝑥)௠ ⊆ 𝑌}. If 𝑋 is a multiplication module, it is 
clear that the radical commutes with finite 
intersection of submodules, that is, 
𝑟𝑎𝑑(⋂ 𝑌௜) = ⋂ 𝑟𝑎𝑑(𝑌௜)

௡
௜ୀଵ

௡
௜ୀଵ . So it is a natural 

question to ask whether the radical operation 
commutes (or not) with the infinite intersection. 
This question was first studied in [6] and 
continued in [7]. In [6], the authors introduced the 
(∗)-property as follows: a multiplication module 
𝑋 is said to satisfy (∗)-condition if for each family 
of submodules {𝑌௜}௜∈୼, 𝑥 ∈ 𝑟𝑎𝑑(𝑌௜) for each 𝑖 ∈
Δ implies (𝐴𝑥)௠ ⊆ ⋂ 𝑌௜௜∈୼  for some 𝑚 ∈ ℕ. 
They also showed that 𝑋 satisfies (∗)-condition iff 
the radical operation commutes with the infinite 
intersection of a given family of submodules. 
Also, recall from [7] that a multiplication module 
𝑋 is said to satisfy descending chain condition on 
principal powers if the descending chain 𝐴𝑥 ⊇
(𝐴𝑥)ଶ ⊇ ⋯ ⊇ (𝐴𝑥)௠ ⊇ ⋯ stops. The authors in 
[7] showed that a f.g. multiplication module 𝑋 
satisfies (∗)-property iff it satisfies descending 
chain condition on principal powers iff its Krull 
dimension dim(𝑋) = 0 (See [7, Lemma 3], [7, 
Corollary 3] and [7, Lemma 5]).  

We say that an 𝐴-module 𝑋 as a strongly 𝜋-
regular module if for each 𝑥 ∈ 𝑋, there exist 𝑚 ∈
ℕ and 𝑐 ∈ 𝐴 such that (𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋. Also, 
we define an 𝐴-module 𝑋 as a weak 𝜋-regular 
module if for each 𝑐 ∈ 𝐴, the descending chain 
𝑐𝑋 ⊇ 𝑐ଶ𝑋 ⊇ ⋯ ⊇ 𝑐௠𝑋 ⊇ ⋯ stops.  

Among other things in this paper, in section 2, we 
study the relations between strongly 𝜋-regular 
modules (weak 𝜋-regular modules) and other 
certain classes of modules such as vn-regular 
modules, second modules and divisible modules. 
In particular, we investigate the behavior of 
strongly 𝜋-regular modules under 
homomorphism, in factor modules, in 
localization, in cartesian product of modules (See 
Proposition 2.16, Corollary 2.17, Proposition 
2.20, Proposition 2.21 and Theorem 2.23). Also, 
we give a characterization of strongly 𝜋-regular 
modules (weak 𝜋-regular modules) in terms of 
strongly 𝜋-regular rings (See Proposition 2.5, 
Proposition 2.10, Proposition 2.14 and 
Proposition 2.15). Finally, we characterize second 
modules and vn-regular modules in terms of 
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strongly 𝜋-regular modules (See, Corollary 2.19 
and Theorem 2.24).  

In section 3, we deal with commutativity of 
localization at a prime ideal and arbitrary 
intersection of any family of submodules. Let 𝑌 
be a 𝑞-prime submodule of 𝑋. Then we know that 
localization at 𝑞 commutes with the finite 
intersection of a given family of submodules. 
Thus it is a natural problem to ask whether this 
property of localization is true when we replace 
finite intersection by infinite one. This question 
has a negative answer (See Example 3.1). We 
show that 𝑞-prime submodule 𝑌 of a f.g. 
multiplication module 𝑋 is a strongly prime 
submodule iff the localization commutes with the 
infinite intersection of a given family of 
submodules (See, Theorem 3.2). Finally, we give 
the relations between strongly 𝜋-regular modules 
and other certain class of modules such as weak 
𝜋-regular modules, zero dimensional modules, 
modules satisfying (∗)-condition (See, Theorem 
3.6). 

2. CHARACTERIZATION OF STRONGLY 
𝝅-REGULAR MODULES 

Definition 2.1. A multiplication 𝐴-module 𝑋 is 
called a strongly 𝜋-regular module if for all 𝑥 ∈
𝑋, (𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋 for some 𝑐 ∈ 𝐴 and 𝑚 ∈
ℕ. 

Example 2.2. A ring 𝐴 is a strongly 𝜋-regular ring 
iff it is a strongly 𝜋-regular 𝐴-module. 

Recall from [20] that an 𝐴-module 𝑋 is said to be 
simple if zero and 𝑋 are the only submodules of 
𝑋. 

Example 2.3. All simple modules are strongly 𝜋-
regular. To see this take a simple 𝐴-module 𝑋 and 
𝑥 ∈ 𝑋. Then either 𝐴𝑥 = 0 = 0𝑋 or 𝐴𝑥 = 𝑋 =
1𝑋. Hence, 𝑋 is a strongly 𝜋-regular module.  

Example 2.4. All vn-regular modules are clearly 
strongly 𝜋-regular module. But the converse need 
not be true. For instance, consider the ℤ-module 
ℤ௤ೖ, where 𝑞 is a prime number and 𝑘 ≥ 1 is an 
integer. Let 𝑥̅ ∈ ℤ௤ೖ. If gcd(𝑥, 𝑞) = 1, then we 
conclude ℤ𝑥̅ = ℤ௤೘ = 1ℤ௤೘ . If gcd(𝑥, 𝑞) ≠ 1, 

then we get (ℤ𝑥̅)௠ = (0ത) = 0ℤ௤೘. But ℤ-module 
ℤ௤೘  is not a vn-regular module.  

Proposition 2.5. Suppose that 𝑋 is a f.g. strongly 
𝜋-regular module. Then 𝐴/𝑎𝑛𝑛(𝑋) is a strongly 
𝜋-regular ring. 

Proof. Take 𝑞 ∈ 𝑆𝑝𝑒𝑐(𝐴) with 𝑎𝑛𝑛(𝑋) ⊆ 𝑞. 
Then there exist 𝓂 ∈ 𝑀𝑎𝑥(𝐴) with 𝑎𝑛𝑛(𝑋) ⊆
𝑞 ⊆ 𝓂. Suppose that 𝑞 ⊊ 𝓂. Then 𝑞𝑋 ⊊ 𝓂𝑋 
and so there exists 𝑥 ∈ 𝓂𝑋 − 𝑞𝑋. Since 𝑋 is 
strongly 𝜋-regular module, (𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋 
for some 𝑐 ∈ 𝐴 and 𝑚 ∈ ℕ. Since 𝑋 is f.g. 
module, 𝑐𝑋 is f.g. so by [4, Corollary 2.5], we 
have (1 + 𝑑𝑐)𝑐𝑋 = 0 for some 𝑑 ∈ 𝐴. This gives 
that (1 + 𝑑𝑐)𝑐 ∈ 𝑎𝑛𝑛(𝑋). Also by [11, Corollary 
2.11], 𝑞𝑋 is prime and it is clear that (𝐴𝑥)௠ ⊈ 𝑞𝑋 
so we get 𝑐 ∉ (𝑞𝑋: 𝑋) = 𝑞. As 𝑞 is a prime ideal 
and 𝑐(1 + 𝑑𝑐) ∈ 𝑎𝑛𝑛(𝑋) ⊆ 𝑞, we conclude that 
1 + 𝑑𝑐 ∈ 𝑞 ⊆ 𝓂. Also note that 𝑐𝑋 ⊆ 𝓂𝑋. This 
yields that 𝑐 ∈ 𝓂 and so 1 ∈ 𝓂, a contradiction. 
Thus 𝑞 = 𝓂 ∈ 𝑀𝑎𝑥(𝐴). Therefore 𝐴/𝑎𝑛𝑛(𝑋) is 
a strongly 𝜋-regular ring by [8, Theorem 3]. 

Definition 2.6. 𝐴-module 𝑋 is called a weak 𝜋-
regular module if for each 𝑐 ∈ 𝐴, 𝑐௠𝑋 = 𝑐௠ାଵ𝑋 
for some 𝑚 ∈ ℕ. 

Example 2.7. A ring 𝐴 is a strongly 𝜋-regular ring 
iff it is a weak 𝜋-regular as an 𝐴-module.  

Example 2.8. Let 𝑋 be a f.g. vn-regular module. 
Then by [13, Theorem 1], every 𝑐 ∈ 𝐴 is an 𝑋-vn-
regular, namely, 𝑐𝑋 = 𝑐ଶ𝑋. Therefore, every f.g. 
vn-regular module is weak 𝜋-regular. 

A module 𝑋 over an integral domain 𝐴 is called a 
divisible module if 𝑐𝑋 = 𝑋 for each 0≠ 𝑐 ∈ 𝐴 
[17]. Also a module 𝑋 over a commutative ring 𝐴 
(not necessarily a domain) is said to be a second 
module if for each 𝑐 ∈ 𝑋, either 𝑐𝑋 = 0 or 𝑐𝑋 =
𝑋 [23].  

Example 2.9. 

(i) Every divisible module over an integral 
domain is a weak 𝜋-regular module. 

(ii) Every second module is a weak 𝜋-regular 
module. 
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Proposition 2.10. If 𝑋 is a f.g. strongly 𝜋-regular 
module, then 𝑋 is a weak 𝜋-regular module.  

Proof. Take 𝑐 ∈ 𝐴. Then by Proposition 2.5, 
𝐴/𝑎𝑛𝑛(𝑋) is a strongly 𝜋-regular ring and so 
𝑐̅௠ = 𝑐̅௠ାଵ𝑑̅ for some 𝑑 ∈ 𝐴 and 𝑚 ∈ ℕ, where 
𝑐̅ = 𝑐 + 𝑎𝑛𝑛(𝑋). This implies that 𝑐௠ −
𝑐௠ାଵ𝑑 ∈ 𝑎𝑛𝑛(𝑋) and so 𝑐௠𝑋 = 𝑐௠ାଵ𝑑𝑋 ⊆
𝑐௠ାଵ𝑋. Since the other inclusion always holds, 
we have 𝑐௠𝑋 = 𝑐௠ାଵ𝑋. Therefore, 𝑋 is a weak 
𝜋-regular module.  

The converse of Proposition 2.10 need not be true. 

Example 2.11. Consider the ℤ-module 𝑋 = ℤଶ ×
ℤଶ and take any integer 𝑐. If 𝑐 is even, then 𝑐𝑋 =
0 = 𝑐ଶ𝑋. Also if 𝑐 is odd, we have 𝑐𝑋 = 𝑋 =
𝑐ଶ𝑋. Thus 𝑋 is a weak 𝜋-regular module. Since 𝑋 
is not a multiplication module, 𝑋 can not be a 
strongly 𝜋-regular module.  

The following Lemma is well known in [13] and 
for the sake of completeness, we remind it here. 

Lemma 2.12. Let 𝑋 be an 𝐴-module.  

(i) If 𝑐, 𝑑 ∈ 𝐴 are weak idempotents, then 𝑐 +
𝑑(1 − 𝑐) is a weak idempotent.  

(ii) 𝑐𝑋 + 𝑑𝑋 = ൫𝑐 + 𝑑(1 − 𝑐)൯𝑋. 

(iii) Suppose that 𝑋 is a f.g. 𝐴-module. Then 𝑐 ∈
𝐴 is 𝑋-vn-regular iff 𝑐𝑋 = 𝑑𝑋 for some weak 
idempotent 𝑑 ∈ 𝐴.  

Remark 2.13. Let 𝑋 be a f.g. 𝐴-module and 
𝑐௠𝑋 = 𝑐௠ାଵ𝑋 for some 𝑐 ∈ 𝐴 and 𝑚 ∈ ℕ. Then 
clearly we have 𝑐௠𝑋 = (𝑐௠)ଶ𝑋 and so 𝑐௠ is an 
𝑋-vn-regular element. By Lemma 2.12 (iii), 
𝑐௠𝑋 = 𝑑𝑋 for some weak idempotent element 
𝑑 ∈ 𝐴.  

Proposition 2.14. Suppose that 𝑋 is a f.g. 
multiplication 𝐴-module. If 𝐴/𝑎𝑛𝑛(𝑋) is a 
strongly 𝜋-regular ring, then 𝑋 is a strongly 𝜋-
regular module.  

Proof. Take 𝑐 ∈ 𝐴. Since 𝐴/𝑎𝑛𝑛(𝑋) is a strongly 
𝜋-regular ring, 𝑐௠𝑋 = 𝑐௠ାଵ𝑋 for some 𝑚 ∈ ℕ as 
in the Proof of Proposition 2.10. By Remark 2.13, 
we have 𝑐௠𝑋 = 𝑑𝑋 for some weak idempotent 

element 𝑑 ∈ 𝐴. Let 𝑥 ∈ 𝑋. Since 𝑋 is f.g. 
multiplication, 𝐴𝑥 = 𝐽𝑋 for some f.g. ideal 𝐽 of 𝐴, 
where 𝐽 = (𝑐ଵ, 𝑐ଶ, … , 𝑐௡) for some 𝑐ଵ, 𝑐ଶ, … , 𝑐௡ ∈
𝐴. Then we have 𝐴𝑥 = 𝑐ଵ𝑋 + 𝑐ଶ𝑋 + ⋯ + 𝑐௡𝑋. 
Also note that for each 𝑐௜ ∈ 𝐴, there exist 𝑡௜ ≥ 1 
and weak idempotent element 𝑑௜ ∈ 𝐴 such that 
𝑐௜

௧೔𝑋 = 𝑑௜𝑋. Now, put 𝑡 = 𝑡ଵ + 𝑡ଶ + ⋯ + 𝑡௡. 
Then we get (𝐴𝑥)௧ = {(𝑐ଵ) + (𝑐ଶ) + ⋯ +
(𝑐௡)}௧𝑋 = 𝑐ଵ

௧భ𝑋 + 𝑐ଶ
௧మ𝑋 + ⋯ + 𝑐௡

௧೙𝑋 =
𝑑ଵ𝑋 + 𝑑ଶ𝑋 + ⋯ + 𝑑௡𝑋 = 𝑑𝑋 = 𝑑ଶ𝑋 for some 
weak idempotent element 𝑑 ∈ 𝐴 by Lemma 2.12 
(iii). Therefore, 𝑋 is a strongly 𝜋-regular module. 

Proposition 2.15. Suppose that 𝑋 is a f.g. weak 
𝜋-regular module. Then 𝐴/𝑎𝑛𝑛(𝑋) is a strongly 
𝜋-regular ring.  

Proof. Let 𝑐̅ = 𝑐 + 𝑎𝑛𝑛(𝑋) ∈ 𝐴/𝑎𝑛𝑛(𝑋) for 
some 𝑐 ∈ 𝐴. Now, we will show that (𝑐̅)௠ =
(𝑐̅)௠ାଵ for some 𝑚 ∈ ℕ. As 𝑋 is a weak 𝜋-regular 
module, 𝑐௠𝑋 = 𝑐௠ାଵ𝑋  for some 𝑚 ∈ ℕ. Since 
𝑋 is f.g., by [4, Corollary 2.5], we conclude that 
(1 − 𝑑𝑐)𝑐௠𝑋 = 0 for some 𝑑 ∈ 𝐴. This implies 
that 𝑐௠ − 𝑑𝑐௠ାଵ ∈ 𝑎𝑛𝑛(𝑋) and so (𝑐௠) +
𝑎𝑛𝑛(𝑋) = (𝑐௠ାଵ) + 𝑎𝑛𝑛(𝑋). Then we deduce 
(𝑐̅)௠ = (𝑐̅)௠ାଵ and hence 𝐴/𝑎𝑛𝑛(𝑋) is a 
strongly 𝜋-regular ring. 

Proposition 2.16. Let 𝑔: 𝑋 → 𝑋′ be an 
epimorphism of 𝐴-modules and 𝑋 be a strongly 𝜋-
regular module. Then 𝑋′ is a strongly 𝜋-regular 
module. 

Proof. Let 𝑥′ ∈ 𝑋′. Since 𝑔 is surjective, 𝑔(𝑥) =
𝑥′ for some 𝑥 ∈ 𝑋. Since 𝑋 is a multiplication 
module, 𝐴𝑥 = 𝐽𝑋 for some ideal 𝐽 of 𝐴. As 𝑋 is a 
strongly 𝜋-regular module, (𝐴𝑥)௠ = 𝐽௠𝑋 =
𝑐𝑋 = 𝑐ଶ𝑋 for some 𝑐 ∈ 𝐴, 𝑚 ∈ ℕ. This implies 
that 𝑔(𝐴𝑥) = 𝐴𝑔(𝑥) = 𝐴𝑥ᇱ = 𝐽𝑋′ and also note 
that (𝐴𝑥ᇱ)௠ = (𝐽𝑋ᇱ)௠ = 𝐽௠𝑋ᇱ = 𝐽௠𝑔(𝑋) =
𝑔(𝐽௠𝑋) = 𝑔(𝑐𝑋) = 𝑔(𝑐ଶ𝑋). This gives 
(𝐴𝑥ᇱ)௠ = 𝑐𝑋ᇱ = 𝑐ଶ𝑋ᇱ which completes the 
proof. 

Corollary 2.17. Let 𝑋 be a strongly 𝜋-regular 
module and 𝑌 a submodule of 𝑋. Then 𝑋/𝑌 is a 
strongly 𝜋-regular module. 
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An element 𝑐 ∈ 𝐴 is said to be a zero divisor on 𝑋 
if 𝑐𝑥 = 0 for some 0 ≠ 𝑥 ∈ 𝑋. Also the set of all 
zero divisor elements on 𝑋 is denoted by 𝑧(𝑋). 

Lemma 2.18. Let 𝑋 be a f.g. strongly 𝜋-regular 
module. Then 𝑐𝑋 = 𝑋 for each 𝑐 ∈ 𝐴 − 𝑧(𝑋). 

Proof. Let 𝑐 ∈ 𝐴 − 𝑧(𝑋). Note that for each 𝑚 ∈
ℕ, 𝑐௠ ∉ 𝑧(𝑋). Since 𝑋 is a f.g. strongly 𝜋-regular 
module, by Proposition 2.10, 𝑐௞𝑋 = 𝑐௞ାଵ𝑋 for 
some 𝑘 ∈ ℕ. Let 𝑥ᇱ ∈ 𝑋. As 𝑐௞𝑋 = 𝑐௞ାଵ𝑋, 
𝑐௞𝑥ᇱ = 𝑐௞ାଵ𝑥′′ for some 𝑥ᇱᇱ ∈ 𝑋. This yields that 
𝑐௞(𝑥ᇱ − 𝑐𝑥ᇱᇱ) = 0 and so 𝑥ᇱ = 𝑐𝑥′′. Therefore, 
we have 𝑐𝑋 = 𝑋. 

Corollary 2.19. 

(i) Suppose that 𝑋 is a f.g. strongly 𝜋-regular 
module in which 𝑧(𝑋) = 𝑎𝑛𝑛(𝑋). Then 𝑋 is a 
second module. 

(ii) Suppose that 𝑋 is a f.g. multiplication module 
in which 𝑧(𝑋) = 𝑎𝑛𝑛(𝑋). Then 𝑋 is a second 
module iff 𝑋 is a strongly 𝜋-regular module.  

(iii) Suppose that 𝑋 is a f.g. faithful strongly 𝜋-
regular module over an integral domain 𝐴. Then 
𝑋 is a divisible module. 

(iv) Suppose that 𝑋 is a torsion-free module, 
namely, 𝑧(𝑋) = 0. If 𝑋 is a f.g. strongly 𝜋-regular 
module, then 𝑋 is a divisible module.  

Proof. (i) Assume that 𝑋 is a f.g. strongly 𝜋-
regular module in which 𝑧(𝑋) = 𝑎𝑛𝑛(𝑋). Let 𝑐 ∈
𝐴. If 𝑐 ∈ 𝑧(𝑋) = 𝑎𝑛𝑛(𝑋), then 𝑐𝑋 = 0. So 
assume that 𝑐 ∉ 𝑧(𝑋). Thus by Lemma 2.18, 
𝑐𝑋 = 𝑋 and so 𝑋 is a second module. 

(ii): Directly from (i), Example 2.9, Proposition 
2.14 and Proposition 2.15. 

(iii): It is similar to (i). 

(iv): It can be obtained from (iii). 

Proposition 2.20. Suppose that 𝑋 is an 𝐴-module 
and 𝑇 ⊆ 𝐴 is a multiplicatively closed subset of 
𝐴. If 𝑋 is a strongly 𝜋-regular module, then 𝑇ିଵ𝑋 
is a strongly 𝜋-regular 𝑇ିଵ𝐴-module. 

Proof. Let 
௫

௧
∈ 𝑇ିଵ𝑋 for some 𝑡 ∈ 𝑇, 𝑥 ∈ 𝑋. Since 

𝑋 is a strongly 𝜋-regular module, (𝐴𝑥)௠ = 𝑐𝑋 =
𝑐ଶ𝑋 for some 𝑐 ∈ 𝐴, 𝑚 ∈ ℕ. As 𝑋 is a 
multiplication module, we can write 𝐴𝑥 = 𝐽𝑋. 

Note that 𝑇ିଵ𝐴 ቀ
௫

௧
ቁ = 𝑇ିଵ(𝐴𝑥) = 𝑇ିଵ(𝐽𝑋) =

𝑇ିଵ(𝐽)𝑇ିଵ(𝑋). This implies that ቂ𝑇ିଵ𝐴 ቀ
௫

௧
ቁቃ

௠

=

൫𝑇ିଵ(𝐽)൯
௠

𝑇ିଵ𝑋 = 𝑇ିଵ(𝐽௠)𝑇ିଵ𝑋 =

𝑇ିଵ(𝐽௠𝑋) = 𝑇ିଵ(𝑐𝑋) = 𝑇ିଵ(𝑐ଶ𝑋). Then we 

have ቂ𝑇ିଵ𝐴 ቀ
௫

௧
ቁቃ

௠

=
௖

ଵ
𝑇ିଵ𝑋 = (

௖

ଵ
)ଶ𝑇ିଵ𝑋 which 

completes the proof.  

Recall that a commutative ring 𝐴 is said to be a 
quasi-semi-local if the number of its maximal 
ideals is finite. 

Proposition 2.21. Let 𝑋 be a f.g. module over a 
quasi-semi-local ring. The followings are 
equivalent. 

(i) 𝑋 is a strongly 𝜋-regular module.  

(ii) 𝑋௤ is a strongly 𝜋-regular module for each 𝑞 ∈

𝑆𝑝𝑒𝑐(𝐴). 

(iii) 𝑋௤ is a strongly 𝜋-regular module for each 
𝑞 ∈ 𝑀𝑎𝑥(𝐴). 

Proof. (𝑖) ⇒ (𝑖𝑖): It can be obtained from 
Proposition 2.20.  

(𝑖𝑖) ⇒ (𝑖𝑖𝑖): Directly from 𝑀𝑎𝑥(𝐴) ⊆ 𝑆𝑝𝑒𝑐(𝐴). 

(𝑖𝑖𝑖) ⇒ (𝑖): First note that, by [5, Lemma 2], 𝑋 is 
a multiplication module. As 𝑋 is a f.g. 
multiplication module, it is sufficient to show that 
𝑋 is a weak 𝜋-regular module. Let 𝑐 ∈ 𝐴. Now, 
we will show that 𝑐௠𝑋 = 𝑐௠ାଵ𝑋 for some 𝑚 ∈
ℕ. Since 𝐴 is quasi semi-local, 𝐴 has finitely 
many maximal ideals 𝑞ଵ, 𝑞ଶ, … , 𝑞௧. As 𝑋௤೔

 is a 

strongly 𝜋-regular module, ቀ
௖

ଵ
ቁ

௠೔

𝑋௤೔
=

ቀ
௖

ଵ
ቁ

௠೔ାଵ

𝑋௤೔
 for some 𝑚௜ ∈ ℕ. Now, put 𝑚 =

max {𝑚ଵ, 𝑚ଶ, … , 𝑚௧}. Then we have ቀ
௖

ଵ
ቁ

௠

𝑋௤೔
=

ቀ
௖

ଵ
ቁ

௠ାଵ

𝑋௤೔
 and so (𝑐௠𝑋)௤೔

= (𝑐௠ାଵ𝑋)௤೔
. This 

implies that 𝑐௠𝑋 = 𝑐௠ାଵ𝑋 which completes the 
proof. 
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Recall from [19] that a proper submodule 𝑌 of 𝑋 
is said to be a pure submodule if 𝑐𝑋 ∩ 𝑌 = 𝑐𝑌 for 
each 𝑐 ∈ 𝐴. 

Lemma 2.22. Let 𝑋 be a strongly 𝜋-regular 
module and 𝑌 a pure submodule of 𝑋. Then 𝑌 is a 
strongly 𝜋-regular module.  

Proof. First, we will show that 𝑌 is a 
multiplication module. Take a submodule 𝑉 of 𝑌. 
Since 𝑋 is multiplication, 𝑉 = (𝑉: 𝑋)𝑋. Let 𝑥 ∈
𝑉. Then we can write 𝑥 = 𝑐ଵ𝑥ଵ + 𝑐ଶ𝑥ଶ + ⋯ +
𝑐௡𝑥௡ for some 𝑐௜ ∈ (𝑉: 𝑋) and 𝑥௜ ∈ 𝑋. As 𝑌 is 
pure and 𝑐௜𝑥௜ ∈ 𝑐௜𝑋 ∩ 𝑌 = 𝑐௜𝑌, we have 𝑐௜𝑥௜ =
𝑐௜𝑥௜′ for some 𝑥௜′ ∈ 𝑌. This implies that 𝑥 =
𝑐ଵ𝑥ଵ′ + 𝑐ଶ𝑥ଶ′ + ⋯ + 𝑐௡𝑥௡′ ∈ (𝑉: 𝑋)𝑌 ⊆
(𝑉: 𝑌)𝑌. Then we have 𝑉 = (𝑉: 𝑋)𝑋 ⊆
(𝑉: 𝑋)𝑌 ⊆ (𝑉: 𝑌)𝑌 ⊆ 𝑉. Thus 𝑉 = (𝑉: 𝑌)𝑌. 
Now, we will show that 𝑌 is a strongly 𝜋-regular 
module. Let 𝑥 ∈ 𝑌. As 𝑋 is a strongly 𝜋-regular 
module, we conclude that (𝐴𝑥)௠ = 𝑑𝑋 = 𝑑ଶ𝑋 
for some 𝑑 ∈ 𝐴 and 𝑚 ∈ ℕ. Since 𝑌 is a pure 
submodule of 𝑋, we have 𝑑𝑌 = 𝑑𝑋 ∩ 𝑌 = 𝑑ଶ𝑋 ∩
𝑌 = 𝑑ଶ𝑌. Thus we conclude that (𝐴𝑥)௠ =
(𝐴𝑥)௠ ∩ 𝑌 = 𝑑𝑋 ∩ 𝑌 = 𝑑𝑌 = 𝑑ଶ𝑌. Therefore, 𝑌 
is a strongly 𝜋-regular module.  

Theorem 2.23. Let 𝑋௜ be a multiplication 𝐴௜-
module for all 𝑖 = 1,2, … , 𝑛. Then 𝐴 = ∏ 𝐴௜

௡
௜ୀଵ -

module 𝑋 = ∏ 𝑋௜
௡
௜ୀଵ  is a strongly 𝜋-regular 

module iff 𝑋௜ is a strongly 𝜋-regular module for 
all 𝑖 = 1,2, … , 𝑛. 

Proof. ⇒: Suppose 𝑋 is a strongly 𝜋-regular 𝐴-
module and choose 𝑡 ∈ {1,2, … , 𝑛}. Now, we shall 
show that 𝑋௧ is a strongly 𝜋-regular module. To 
see this, take 𝑥௧ ∈ 𝑋௧. Put 𝑥 =
(0,0, … , 𝑥௧, 0,0, … ,0) ∈ 𝑋. Since 𝑋 is a strongly 
𝜋-regular module, we get (𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋, 
where 𝑐 = (𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … , 𝑐௡) ∈ 𝐴. As 𝑋௧ is 
multiplication module, we have 𝐴௧𝑥௧ = 𝐽௧𝑋௧ for 
some ideal 𝐽௧ of 𝐴௧. This implies that 𝐴𝑥 = 𝐽𝑋, 
where 𝐽 = {0} × {0} × … × 𝐽௧ × {0} × … × {0}. 
Then we conclude that (𝐴𝑥)௠ = ({0} × {0} ×
… × 𝐽௧

௠ × {0} × … × {0})𝑋 = 𝑐𝑋 = 𝑐ଶ𝑋. Then 
we get (𝐴௧𝑥௧)௠ = 𝐽௧

௠𝑋௧ = 𝑐௧𝑋௧ = 𝑐௧
ଶ𝑋௧. 

Therefore, 𝑋௧ is a strongly 𝜋-regular module. 

⇐: Suppose 𝑋௜ is a strongly 𝜋-regular module for 
every 𝑖 = 1,2, … , 𝑛. Let 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ∈ 𝑋. 

Note that 𝐴𝑥 = ∏ (𝐴௜𝑥௜).௡
௜ୀଵ  Since 𝑋௜ is a 

multiplication 𝐴௜-module, for all 𝑖 =
1,2, … , 𝑛, 𝐴௜𝑥௜ = 𝐽௜𝑋௜. Note that 𝐴𝑥 =
∏ (𝐽௜𝑋௜) = (∏ 𝐽௜

௡
௜ୀଵ )𝑋௡

௜ୀଵ  and also (𝐴𝑥)௧ =

(∏ 𝐽௜
௡
௜ୀଵ )௧𝑋 = ∏ ൫𝐽௜

௧𝑋௜൯
௡
௜ୀଵ  for all 𝑡 ∈ ℕ. Since 𝑋௜ 

is a strongly 𝜋-regular module, (𝐴௜𝑥௜)௧೔ =
𝐽௜

௧೔𝑋௜ = 𝑐௜𝑋௜ = 𝑐௜
ଶ𝑋௜ for some 𝑡௜ ≥ 1. Let 𝑚 =

max {𝑡ଵ, 𝑡ଶ, … , 𝑡௡}. Then it is easy to see that 
(𝐴௜𝑥௜)௠ = 𝐽௜

௠𝑋௜ = 𝑐௜𝑋௜ = 𝑐௜
ଶ𝑋௜. Thus we 

conclude that (𝐴𝑥)௠ = ∏ (𝐽௜
௠𝑋௜)

௡
௜ୀଵ =

∏ (𝑐௜𝑋௜) =௡
௜ୀଵ ∏ (𝑐௜

ଶ𝑋௜).௡
௜ୀଵ  This yields that 

(𝐴𝑥)௠ = 𝑐𝑋 = 𝑐ଶ𝑋, where 𝑐 = (𝑐ଵ, 𝑐ଶ, … , 𝑐௡) ∈
𝐴. 

Recall that an 𝐴-module 𝑋 is said to be a reduced 
module if for each 𝑐 ∈ 𝐴, 𝑥 ∈ 𝑋, 𝑐ଶ𝑥 = 0 implies 
𝑐𝑥 = 0 [15]. It was shown, in [13, Lemma 10], 
that a f.g. vn-regular module is reduced. Also, it 
is well known that a ring 𝐴 is a vn-regular ring iff 
𝐴 is reduced strongly 𝜋-regular ring. Now, we 
prove this fact for vn-regular modules. 

Theorem 2.24. The followings are equivalent for 
any f.g 𝐴-module 𝑋. 

(i) 𝑋 is a vn-regular module. 

(ii) 𝑋 is a reduced strongly 𝜋-regular module.  

Proof. (𝑖𝑖) ⇒ (𝑖): We will show that 𝑐𝑋 = 𝑐ଶ𝑋 
for each 𝑐 ∈ 𝐴. Since 𝑋 is a f.g. strongly 𝜋-regular 
module, by Proposition 2.5, 𝐴/𝑎𝑛𝑛(𝑋) is a 
strongly 𝜋-regular ring. Let 𝑐 ∈ 𝐴. Then we have 
𝑐௠ − 𝑑𝑐௠ାଵ ∈ 𝑎𝑛𝑛(𝑋) for some 𝑑 ∈ 𝐴 and 𝑚 ∈
ℕ. This implies that 𝑐௠(1 − 𝑑𝑐) ∈ 𝑎𝑛𝑛(𝑋) and 
so (𝑐(1 − 𝑑𝑐))௠𝑋 = 0. Since 𝑋 is a reduced 
module, we conclude that 𝑐(1 − 𝑑𝑐)𝑋 = 0 and so 
𝑐𝑋 = 𝑐ଶ𝑋. Therefore, by [13, Theorem 1], 𝑋 is a 
vn-regular module.  

(𝑖) ⇒ (𝑖𝑖): Directly from [13, Lemma 10] and 
Example 2.4. 

Recall from [3] that a proper ideal 𝐽 of 𝐴 is said to 
be an (𝑚, 𝑛)-closed ideal if 𝑐௠ ∈ 𝐽, then 𝑐௡ ∈ 𝐽. 
Now, we will characterize vn-regular modules in 
terms of (𝑚, 𝑛)-closed ideals. 
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Theorem 2.25. Let 𝑋 be a f.g. reduced 
multiplication module. Then 𝑋 is a vn-regular 
module iff every proper ideal of 𝐴/𝑎𝑛𝑛(𝑋) is a 
(3,2)-closed ideal. 

Proof. ⇒: Let 𝐽′ be a proper ideal of 𝐴/𝑎𝑛𝑛(𝑋). 
Then there exists a proper ideal 𝐽 of 𝐴 containing 
𝑎𝑛𝑛(𝑋) such that 𝐽′ = 𝐽/𝑎𝑛𝑛(𝑋). Now, we will 
show that 𝐽 is a (3,2)-closed ideal of 𝐴. To see this 
take 𝑐ଷ ∈ 𝐽. Then we have 𝑐ଷ𝑋 ⊆ 𝐽𝑋. Since 𝑋 is 
a vn-regular module, we conclude that 𝑐ଶ𝑋 =
𝑐ଷ𝑋 ⊆ 𝐽𝑋. By [21, Corollary to Theorem 9], we 
have 𝑐ଶ ∈ 𝐽 + 𝑎𝑛𝑛(𝑋) = 𝐽. Thus 𝐽 is a (3,2)-
closed ideal of 𝐴. By [3, Corollary 2.11], 𝐽′ is a 
(3,2)-closed ideal of 𝐴/𝑎𝑛𝑛(𝑋). 

⇐: Let 𝑐 ∈ 𝐴. Now, we will show that 𝑐ଶ𝑋 = 𝑐𝑋. 
If 𝑐ଷ𝑋 = 𝑋, then it is easily seen that 𝑐𝑋 = 𝑋 =
𝑐ଶ𝑋. So suppose that 𝑐ଷ𝑋 is a proper submodule 
of 𝑋. Then by assumption (𝑐ଷ𝑋: 𝑋)/𝑎𝑛𝑛(𝑋) is a 
(3,2)-closed ideal of 𝐴/𝑎𝑛𝑛(𝑋). Then by [3, 
Corollary 2.11], (𝑐ଷ𝑋: 𝑋) is a (3,2)-closed ideal of 
𝐴. Since 𝑐ଷ ∈ (𝑐ଷ𝑋: 𝑋), we get 𝑐ଶ ∈ (𝑐ଷ𝑋: 𝑋) and 
so 𝑐ଶ𝑋 = 𝑐ଷ𝑋. Since 𝑋 is f.g., by [4, Corollary 
2.5], we have (1 − 𝑑𝑐)𝑐ଶ𝑋 = 0 for some 𝑑 ∈ 𝐴 
and so [(1 − 𝑑𝑐)𝑐]ଶ𝑋 = 0. As 𝑋 is reduced 
module, we obtain that (1 − 𝑑𝑐)𝑐𝑋 = 0 and this 
yields that 𝑐𝑋 = 𝑐ଶ𝑋. By [13, Theorem 1], 𝑋 is a 
vn-regular module. 

3. WHEN DOES LOCALIZATION AT A 
PRIME IDEAL COMMUTE WITH 

INFINITE INTERSECTION? 

Let 𝑞 ∈ 𝑆𝑝𝑒𝑐(𝐴) and 𝑋 an 𝐴-module. Then we 
know that (⋂ 𝑌௜

௡
௜ୀଵ )௤ = ⋂ (𝑌௜)௤

௡
௜ୀଵ . One can 

naturally ask whether this property is true when 
we replace the finite intersection by infinite one. 
This question has a negative answer.  

Example 3.1. Consider the ℤ-module ℤ and 𝑞 =
2ℤ. Let 𝑌௜ = 3௜ℤ for each 𝑖 ∈ ℕ. Then it is clear 
that (⋂ 𝑌௜

ஶ
௜ୀଵ )௤ = 0௤ ≠ ℤ(ଶ) = ⋂ (𝑌௜)௤

ஶ
௜ୀଵ .  

Recall from [18] that a prime submodule 𝑄 of 𝑋 
is said to be a strongly prime submodule 
if ⋂ 𝑌௜ ⊆ 𝑄௜∈∆ , then for some 𝑗 ∈ ∆, 𝑌௝ ⊆ 𝑄. In 
particular, a multiplication module 𝑀 is said to be 
a strongly zero dimensional module if its each 

prime submodule is strongly prime. In [7], the 
authors showed that a f.g. multiplication module 
𝑋 is a strongly zero dimensional module iff its 
Krull dimension dim(𝑋) = 0 and 𝑋 is quasi-
semi-local. Now, we determine when the 
localization commutes with infinite intersection 
in terms of strongly prime submodules. 

Theorem 3.2. Let 𝑋 be a f.g. multiplication 
module and 𝑄 a 𝑞-prime submodule of 𝑋. Then 𝑄 
is a strongly prime submodule iff the localization 
at 𝑞 commutes with the intersection of any family 
of submodules of 𝑋. 

Proof. ⇒: Let 𝑄 be a strongly prime submodule 
and 𝑞 = (𝑄: 𝑋). Now we will show that 
(⋂ 𝑌௜௜∈∆ )௤ = ⋂ (𝑌௜)௤௜∈∆  for every family of 
submodules {𝑌௜}௜∈∆ of 𝑋. We know that the 
inclusion (⋂ 𝑌௜௜∈∆ )௤ ⊆ ⋂ (𝑌௜)௤௜∈∆  always holds. 

Let 
௫

௧
∈ ⋂ (𝑌௜)௤௜∈∆ . Then for each 𝑖 ∈ ∆, 𝑡௜𝑥 ∈ 𝑌௜ 

for some 𝑡௜ ∉ 𝑞. This implies that (𝑌௜: 𝐴𝑥) ⊈ 𝑞. 
As 𝑋 is a f.g. multiplication module, we have 
(𝑌௜: 𝐴𝑥)𝑋 ⊈ 𝑄. As 𝑄 is a strongly prime 
submodule, we conclude that (⋂ (𝑌௜: 𝐴𝑥)𝑋௜∈∆ ) =
(⋂ (𝑌௜: 𝐴𝑥)௜∈∆ )𝑋 ⊈ 𝑄. Thus we have 
⋂ (𝑌௜: 𝐴𝑥)௜∈∆ ⊈ 𝑞 and so there exists 𝑐 ∈

⋂ (𝑌௜: 𝐴𝑥)௜∈∆ − 𝑞. This implies that 
௫

௧
∈

(⋂ 𝑌௜௜∈∆ )௤. 

⇐: Assume that the localization at 𝑞 commutes 
with the infinite intersection of any family of 
submodules. Now, we will show that 𝑄 is a 
strongly prime submodules. As 𝑋 is a f.g. 
multiplication module, 𝑋௤ is a quasi-local module 
over a quasi-local ring 𝐴௤. Let ⋂ 𝑌௜௜∈∆ ⊆ 𝑄. Then 
we get (⋂ 𝑌௜௜∈∆ )௤ = ⋂ (𝑌௜)௤௜∈∆ ⊆ 𝑄௤. Since 𝑄௤ is 
the unique maximal submodule of 𝑋௤, we have 
(𝑌௜)௤ ⊆ 𝑄௤ for some 𝑖 ∈ ∆. As 𝑄 is a 𝑞-prime 
submodule, we deduce 𝑌௜ ⊆ 𝑄 for some 𝑖 ∈ ∆. 
Therefore, 𝑄 is a strongly prime submodule of 𝑋. 

Now, we will end this section by studying (∗)-
condition on modules and improving some results 
in [6]. The following proposition gives the 
relations between (∗)-condition and strongly 𝜋-
regular module. 
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Proposition 3.3. 

(i) Let 𝑋 be a f.g. strongly 𝜋-regular module. Then 
𝑋 satisfies (∗)-condition.  

(ii) Let 𝑋 be a f.g. multiplication module 
satisfying (∗)-condition. Then 𝑋 is a strongly 𝜋-
regular module. 

Proof. (i): Suppose that 𝑋 is a f.g. strongly 𝜋-
regular module. Then it is clear that 𝑋 satisfies 
descending chain condition on principal powers. 
The rest follows from [7, Lemma 3]. 

(ii): Let 𝑋 be a f.g. multiplication module 
satisfying (∗)-condition. Then by [7, Lemma 3] 
and [7, Corollary 3], dim(𝑋) = 0. Then by [7, 
Lemma 4], it can be seen that dim(𝐴/𝑎𝑛𝑛(𝑋)) =
0. Again by [8, Theorem 3], 𝐴/𝑎𝑛𝑛(𝑋) is a 
strongly 𝜋-regular ring. The rest follows from 
Proposition 2.14. 

Now, we will characterize strongly zero 
dimensional modules in terms of localization at a 
prime ideal.  

Theorem 3.4. The followings are equivalent for 
every f.g. multiplication module 𝑋. 

(i) 𝑋 is a strongly zero dimensional module. 

(ii) 𝑋 is a zero dimensional quasi-semi-local 
module.  

(iii) 𝑋 satisfies (∗)-property and no maximal 
submodule contains the intersection of other 
maximal submodules.  

(iv) 𝑋 satisfies descending chain condition on 
principal powers and no maximal submodule 
contains the intersection of the other maximal 
submodules.  

(v) For every 𝑞-prime submodule 𝑄 of 𝑋, the 
localization at 𝑞 commutes with the infinite 
intersection of any family of submodules of 𝑋. 

Proof. (𝑖) ⇔ (𝑖𝑖): It can be obtained from [7, 
Corollary 4]. 

(𝑖) ⇔ (𝑖𝑖𝑖) ⇔ (𝑖𝑣): It can be obtained from [7, 
Theorem 4] and [7, Lemma 3]. 

(𝑖) ⇔ (𝑣): It can be obtained from Theorem 3.2. 

Lemma 3.5. Let 𝑋 be a f.g. multiplication 𝐴-
module and 𝑥 ∈ 𝑋 such that 𝐴𝑥 = 𝐽𝑋 for some 
ideal 𝐽 of 𝐴. The followings are equivalent. 

(i) The descending chain 𝐴𝑥 ⊇ (𝐴𝑥)ଶ ⊇ ⋯ ⊇
(𝐴𝑥)௠ ⊇ ⋯ stops.  

(ii) 𝐽𝑋 + ⋃ (0:௑ 𝐽௠) = 𝑋.ஶ
௠ୀଵ  

Proof. (𝑖𝑖) ⇒ (𝑖): Suppose that 𝐽𝑋 +
⋃ (0:௑ 𝐽௠) = 𝑋.ஶ

௠ୀଵ  Since 𝑋 is a multiplication 
module, (0:௑ 𝐽௠) = ൫(0:௑ 𝐽௠): 𝑋൯𝑋 =
(0: 𝐽௠𝑋)𝑋. This gives (𝐽 + ⋃ (0: 𝐽௠𝑋))𝑋ஶ

௠ୀଵ =
𝑋. Since 𝑋 is f.g. module, we obtain that 𝐽 +
⋃ (0: 𝐽௠𝑋) = 𝐴ஶ

௠ୀଵ . Then we have 𝑐 + 𝑑 = 1 for 
some 𝑐 ∈ 𝐽, 𝑑 ∈ (0: 𝐽௠𝑋) and 𝑚 ∈ ℕ. This 
implies that 𝐽௠𝑋 = 𝑐𝐽௠𝑋 ⊆ 𝐽௠ାଵ𝑋 ⊆ 𝐽௠𝑋. Thus 
the descending chain 𝐴𝑥 ⊇ (𝐴𝑥)ଶ ⊇ ⋯ ⊇
(𝐴𝑥)௠ ⊇ ⋯ stops at the 𝑚௧௛ step. 

(𝑖) ⇒ (𝑖𝑖): Suppose that (𝑖) holds. Then 
(𝐴𝑥)௠ = (𝐴𝑥)௠ାଵ for some 𝑚 ∈ ℕ. As 𝑋 is a f.g. 
multiplication module, 𝐴𝑥 = 𝐽𝑋 for some f.g. 
ideal 𝐽 of 𝐴. Then we have 𝐽௠𝑋 = 𝐽௠ାଵ𝑋. Since 
𝐽 and 𝑋 are f.g., so is 𝐽௠𝑋. Then by [4, Corollary 
2.5], (1 − 𝑐)𝐽௠𝑋 = 0 for some 𝑐 ∈ 𝐽. This 
implies that (1 − 𝑐)𝑋 ⊆ (0:௑ 𝐽௠). Since 𝑐𝑋 ⊆
𝐽𝑋, we obtain that 𝑋 = 𝑐𝑋 + (1 − 𝑐)𝑋 ⊆ 𝐽𝑋 +
⋃ (0:௑ 𝐽௠) ⊆ 𝑋ஶ

௠ୀଵ  which completes the proof. 

Theorem 3.6. The followings are equivalent for 
every f.g. multiplication module 𝑋. 

(i) 𝑋 is a strongly 𝜋-regular module. 

(ii) 𝑋 is a weak 𝜋-regular module. 

(iii) 𝐴/𝑎𝑛𝑛(𝑋) is a strongly 𝜋-regular module. 

(iv) 𝑋 satisfies (∗)-condition. 

(v) 𝑋 satisfies descending chain condition on 
principal powers. 

(vi) dim(𝑋) = 0. 
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Proof. (𝑖) ⇒ (𝑖𝑖): Directly from Proposition 2.10. 

(𝑖𝑖) ⇒ (𝑖𝑖𝑖): It can be obtained from Proposition 
2.15. 

(𝑖𝑖𝑖) ⇒ (𝑖): It can be obtained from Proposition 
2.14. 

(𝑖) ⇔ (𝑖𝑣): It can be obtained from Proposition 
3.3. 

(𝑖𝑣) ⇔ (𝑣) ⇔ (𝑣𝑖): It can be obtained from [7, 
Lemma 3], [7, Corollary 3] and [7, Lemma 5]. 
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