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Abstract. The wavelet transform is an useful mathematical tool. It is a
mapping of a time signal to the time-scale joint representation. The wavelet
transform is generated from a wavelet function by dilation and translation.
This wavelet function satisfies an admissible condition so that the original
signal can be reconstructed by the inverse wavelet transform. In this study, we
firstly give some basic properties of the weighted variable exponent amalgam
spaces. Then we investigate the convergence of the θ−means of f in these
spaces under some conditions. Finally, using these results the convergence of
the inverse continuous wavelet transform is considered in these spaces.

1. Introduction

Recently, the variable exponent Lebesgue Lp(.)(Rd) spaces and a class of nonlin-
ear problems with variable exponential growth have been new and interesting topics.
The space has several applications, such as electrorheological fluids (see [31]), elastic
mechanics (see [43]) and image processing model. Moreover, the spaces Lp(.)(Rd)
and Lp(Rd) have many common properties, such as Banach space, reflexivity, sep-
arability, uniform convexity, Hölder inequalities and embeddings. One of the most
important differences between these spaces is that the space Lp(.)(Rd) is not trans-
lation invariant [27]. It is also well known that the maximal operator is bounded
in Lp(.)(Rd). For more comprehensive information (see [10], [12], [13] and [14]).
The amalgam of Lp and lq on the real line is the space (Lp, lq), which is also

larger than the space Lp, consisting of functions which are locally in Lp and have lq
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behavior at infinity. Many different forms of amalgam spaces have been studied by
some authors (see [25], [33], [24], [15] and [18]). Moreover, this space play important
roles in recent developments in time frequency analysis and sampling theory, which
are modern branches of harmonic analysis. Signal analysis and wireless communi-
cation issues are quite popular in amalgam spaces (see [20]).
Variable exponent amalgam spaces

(
Lp(.), lq

)
and some basic properties, such as

Banach function space, Hölder type inequalities, interpolation, bilinear multipliers
and the boundedness of maximal operator, have been investigated recently. Some
interesting articles have been published on this subject, but not many. So there are
many open problems in this function spaces [5], [21], [26], [30], [22], [28], [3], [7], [2],
[6].
The so called θ-summation method is investigated by some authors, such as [36],

[32], [38], [39], [40], [34], [8]. The θ-summation is defined by

σθT f (x) =

∫
Rd

f (x− t)Tnθ (Tt) dt

for an integrable function θ on R. This summability is a generalized form of the well-
known summability methods, like Fejér, Riesz, Weierstrass, Abel, etc. by a suitable
chosen of θ. Feichtinger and Weisz ( [16], [17], [42]) showed that the θ-means σθT f
converges to f almost everywhere and in norm as T →∞ for f ∈ Lp(Rd), (Lp, lq).
Also we characterize the points of the set of a.e. convergence as the Lebesgue
points. Moreover, Uribe and Fiorenza [10], Szarvas and Weisz [34] obtained similar
results for the space Lp(.)

(
Rd
)
.

In this study we will discuss the convergence of the inverse continuous wavelet
transform in weighted variable exponent amalgam spaces. Also, we investigate the
convergence of the θ-means of f almost everywhere and in norm in these spaces
under which conditions. Hence we obtain more general results with respect to [34].

2. Weighted Variable Exponent Lebesgue and Amalgam spaces

In this section we give some required definitions and information about wavelet
transform and weighted variable exponent amalgam spaces.

Definition 1. Let x ∈ Rd, s ∈ R and s 6= 0. The continuous wavelet transform is
defined by

Wgf (x, s) = |s|−
d
2

∫
Rd

f (t) g (s−1 (t− x))dt = 〈f, TxDsg〉

for f and g, where Ds is the dilation operator, and Tx is the translation operator,
i.e.,

Dsf (t) = |s|−
d
2 f

(
t

s

)
and Txf(t) = f (t− x)

(
x, t ∈ Rd, 0 6= s ∈ R

)
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[11], [19]. If η is radial, non-increasing as a function on (0,∞), non-negative,
bounded, |f | ≤ η and η ∈ L1

(
Rd
)
, then η is a radial majorant of f. If in addition

η (.) ln (|.|+ 2) ∈ L1
(
Rd
)
, then η is a radial log-majorant of f.

Definition 2. A point x ∈ Rd is called a Lebesgue point f ∈ L1loc
(
Rd
)
if

lim
h→0+

 1

|B (0, h)|

∫
B(0,h)

|f (x+ u)− f (x)| du

 = 0,

where

B (a, δ) =
{
x ∈ Rd : ‖x− a‖ < δ

}
.

Definition 3. Let g∗ (x) = g (−x) be involution operator. Then the operators ρSf
and ρS,T f are defined by

ρSf =

∞∫
S

∫
Rd

Wgf (x, s)TxDsγ
dxds

sd+1

and

ρS,T f =

T∫
S

∫
Rd

Wgf (x, s)TxDsγ
dxds

sd+1
,

where 0 < S < T <∞. Let define the operator C ′g,γ with

C ′g,γ = −
∫
Rd

(g∗ ∗ γ) (x) ln (|x|) dx.

Then C ′g,γ is finite [29], where g and γ both have radial log-majorants.

Let g and γ be radial, i.e.,
∫
Rd (g

∗ ∗ γ) (x) dx = 0. Assume that g and γ have a
radial log-majorant. Then we get

lim
S→0+,T→∞

ρS,T f (x) = lim
S→0+

ρSf (x) = C ′g,γf (x)

at every Lebesgue point for any f ∈ Lp
(
Rd
)
(1 ≤ p <∞). The convergence is

proved with respect to Lp-norm for T = ∞, [29]. Under some similar conditions,
Weisz has proved similar results [41].

Definition 4. Let p (.) be a measurable function from Rd into [1,∞) (called a
variable exponent on Rd) satisfying the condition 1 ≤ p− ≤ p (.) ≤ p+ <∞, where

p− = ess inf
x∈Rd

p (x) , p+ = ess sup
x∈Rd

p (x) .
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The set P (Rd) denotes variable exponents on Rd. Let p (.) ∈ P (Rd). The variable
exponent Lebesgue spaces Lp(.)(Rd) consist of all measurable functions f such that
%p(.)(λf) <∞ for some λ > 0, equipped with the Luxemburg norm

‖f‖p(.) = inf
{
λ > 0 : %p(.)(

f

λ
) ≤ 1

}
,

where

%p(.)(f) =

∫
Rd

|f(x)|p(x) dx.

If p+ <∞, then f ∈ Lp(.)(Rd) iff %p(.)(f) <∞. The space
(
Lp(.)(Rd), ‖.‖p(.)

)
is a

Banach space. If p(.) = p is a constant function, then the norm ‖.‖p(.) coincides with
the usual Lebesgue norm ‖.‖p , [27]. A measurable and locally integrable function
ω : Rd −→ (0,∞) is called a weight function. The weighted modular is defined by

%p(.),ω(f) =

∫
Rd

|f(x)|p(x) ω(x)dx.

The space Lp(.)ω (Rd) is of all measurable functions such that ‖f‖
L
p(.)
ω (Rd) =

∥∥∥fω 1
p(.)

∥∥∥
p(.)

<

∞. The dual space of Lp(.)ω (Rd) is Lq(.)ω∗ (Rd), where 1
p(.) +

1
q(.) = 1 and ω∗ =

ω1−q(.) = ω−
1

p(.)−1 .Also, Lp(.)ω (Rd) is a uniformly convex Banach space, thus reflex-
ive for 1 < p− ≤ p (.) ≤ p+ <∞, [3], [4].

Definition 5. The maximal operator M is defined by

M (f) (x) = sup
r>0

1

|B (x, r)|

∫
B(x,r)

|f (y)| dy,

for f ∈ L1loc (R).

Hästö and Diening [23] defined the class Ap(.) consists of those weights ω such
that

‖ω‖Ap(.)
= sup
B∈ß
|B|−pB ‖ω‖L1(B)

∥∥∥∥ 1ω
∥∥∥∥
L
p′(.)
p(.) (B)

<∞,

where ßdenotes the set of all balls in Rd, pB =
(

1
|B|
∫
B

1
p(x)dx

)−1
and 1

p(.) +
1

p′(.) =

1. If p(.) is a constant function, then Ap(.) = Ap, where Ap is ordinary Muckenhoupt
class.
If p (.) satisfies the following inequality

|p (x)− p (y)| ≤ C

log
(
e+ 1

|x−y|

)
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for all x, y ∈ Rd, then p (.) provides the local log-Hölder continuity condition.
Moreover, if the inequality

|p (x)− p∞| ≤
C

log (e+ |x|)
holds for some p∞ > 1, C > 0 and all x ∈ Rd, then we say that p (.) satisfies
the local log-Hölder decay condition. We denote by P log(Rd) the class of variable
exponents which are log-Hölder continuous, i.e. which satisfy the local log-Hölder
continuity condition and local log-Hölder decay condition [4], [37].
Let p ∈ P log(Rd) and 1 < p− ≤ p (.) ≤ p+ < ∞. Then M : L

p(.)
ω (Rd) ↪→

L
p(.)
ω (Rd) if and only if ω ∈ Ap(.) by Theorem 1.1 in [23].

The space Lp(.)loc,ω

(
Rd
)
is to be space of functions on Rd such that f restricted to

any compact subset K of Rd belongs to Lp(.)w (Rd).
In this study we take d = 1, and define the weighted variable exponent amalgam

spaces on R.

Definition 6. Let 1 ≤ p (.) , q < ∞ and Jk = [k, k + 1), k ∈ Z. The weighted
variable exponent amalgam spaces

(
L
p(.)
ω , lq

)
are defined by(

Lp(.)ω , lq
)
=

{
f ∈ Lp(.)loc,ω (R) : ‖f‖(Lp(.)ω ,lq

) <∞
}
,

where ‖f‖(
L
p(.)
ω ,lq

) = (∑k∈Z
∥∥fχJk∥∥qLp(.)ω (R)

) 1
q

. If the weight ω is a constant func-

tion, then the space
(
L
p(.)
ω , lq

)
coincides with

(
Lp(.), lq

)
(see [7], [26]) .

In 2014, Meskhi and Zaighum showed that the maximal operator is bounded in
weighted variable exponent amalgam spaces under some conditions [30].

Throughout this paper, we assume that p (.) ∈ P log(R), 1 < p− ≤ p (.) ≤
p+ <∞ and ω ∈ Ap(.).

3. θ−Summability on the Weighted Variable Exponent Wiener
Amalgam Spaces

Lemma 1. Let 1 ≤ p (.) , q < ∞ and 0 < c ≤ ω. Then the inclusion
(
L
p(.)
ω , lq

)
⊂(

L1, l∞
)
holds.

Proof. Take any f ∈
(
L
p(.)
ω , lq

)
. It is well known that f ∈

(
L
p(.)
ω , lq

)
if and only

if
{
‖f‖

L
p(.)
ω [k,k+1)

}
k∈Z
∈ lq. If we use Proposition 3.5 in [3] and the definition of

‖.‖(L1,l∞) , then we have L
p(.)
ω [k, k+ 1) ↪→ L1ω[k, k+ 1) ↪→ L1[k, k+ 1), lq ↪→ l∞ for

1 ≤ p (.) , q <∞, 0 < c ≤ ω and so
‖f‖(L1,l∞) = sup

k∈Z
‖f‖L1[k,k+1) ≤ C sup

k∈Z
‖f‖

L
p(.)
ω [k,k+1)
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≤ C

(∑
k∈Z
‖f‖q

L
p(.)
ω [k,k+1)

) 1
q

= C ‖f‖(
L
p(.)
ω ,lq

) <∞.
Hence we obtain that f ∈

(
L1, l∞

)
and

(
L
p(.)
ω , lq

)
⊂
(
L1, l∞

)
. �

Theorem 1. Let 1 ≤ q ≤ p− ≤ p (.) ≤ p+ <∞ and 0 < c ≤ ω. Then the inclusion(
Lp(.)ω , lq

)
↪→ Lqω ↪→ Lq,

hold for all f ∈
(
L
p(.)
ω , lq

)
.

Proof. Let f ∈
(
L
p(.)
ω , lq

)
be given. Then we get

(
L
p(.)
ω , lq

)
↪→

(
Lp
−

ω , lq
)
↪→

(Lqω, l
q) = Lqω by Proposition 3.5 in [3] and [24]. Hence we have that there exists a

C > 0 such that the inequality

‖f‖Lq ≤ C ‖f‖(Lp(.)ω ,lq
)

holds for any f ∈
(
L
p(.)
ω , lq

)
. This completes the proof. �

Definition 7. Let θ ∈ L1 (R) be radial function. The θ-means of f ∈
(
L
p(.)
ω , lq

)
is

defined by

σθT f (x) := (f ∗ θT ) (x) =
∫
R

f (x− t) θT (t) dt,

where

θT (t) := T dθ (Tt) , (x ∈ R, T > 0).

Theorem 2. Let 1 ≤ p (.) , q < ∞ and 0 < c ≤ ω. Assume that θ has radial
majorant. Then;
i) The limit

lim
T→∞

σθT f (x) =

∫
R

θ (y) dy.f(x)

is valid for any Lebesgue point of f ∈
(
L
p(.)
ω , lq

)
.

ii) If in addition 1 ≤ q ≤ p− ≤ p (.) ≤ p+ <∞, then the following limit equality

lim
T→0+

σθT f (x) = 0

is available for all f ∈
(
L
p(.)
ω , lq

)
and x ∈ R.
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Proof. i) Let x ∈ R be a Lebesgue point of f . Since there exists the inclusion(
L
p(.)
ω , lq

)
⊂
(
L1, l∞

)
by Lemma 1, we write that

lim
T→∞

σθT f (x) =

∫
Rn

θ (y) dy.f (x)

for f ∈
(
L
p(.)
ω , lq

)
by Theorem 2.2 in [34].

ii) Take any f ∈
(
L
p(.)
ω , lq

)
and x ∈ R. By Theorem 1 and Theorem 2.3 in [34],

we have that f ∈ Lq (R) and

lim
T→0+

σθT f (x) = 0.

�

Proposition 1. Cc (R), which consists of continuous functions on R whose support
is compact, is dense in

(
L
p(.)
ω , lq

)
for 1 ≤ p(.), q <∞ ( see Proposition 2.9 in [6]).

Theorem 3. For all f ∈
(
L
p(.)
ω , lq

)
the following statements are valid :

i)
∥∥σθT f∥∥(Lp(.)ω ,lq

) ≤ C ‖f‖(
L
p(.)
ω ,lq

) (T > 0) .

ii) lim
T→∞

σθT f =

∫
R

θ (x) dx.f in the
(
L
p(.)
ω , lq

)
-norm.

iii) lim
T→0+

σθT f = 0 in the
(
L
p(.)
ω , lq

)
-norm.

Proof. i) It is well known that the maximal operator is bounded in
(
L
p(.)
ω , lq

)
[30].

Then we have that ∥∥σθT f∥∥(Lp(.)ω ,lq
) ≤ C ‖f‖(

L
p(.)
ω ,lq

) (T > 0)

for all f ∈
(
L
p(.)
ω , lq

)
by Theorem 2.1 in [34].

ii) Also, if we follow Theorem 3.8 in [34], Theorem 2.3 in [9], Theorem 5.11
in [10], and Theorem 8 in [1], then we have that

lim
T→∞

σθT f =

∫
R

θ (x) dx.f

in the
(
L
p(.)
ω , lq

)
-norm.

iii) Let ε > 0 be given. Using Proposition 1, it is obtained that the following
inequality

‖f − g‖(
L
p(.)
ω ,lq

) < ε
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is valid for g ∈ Cc (R), whose compact support suppg is K. Using i) and Proposition
2 in [7], we have that∥∥σθT f∥∥(Lp(.)ω ,lq

) ≤
∥∥σθT (f − g)∥∥(Lp(.)ω ,lq

) + ∥∥σθT g∥∥(Lp(.)ω ,lq
)

< Cε+ |S(K)|
1
q
∥∥σθT g∥∥Lp(.)ω (K)

.

Also using Theorem 3.8 in [34], we get the limit

lim
T→0+

∥∥σθT g∥∥Lp(.)ω (K)
= 0.

So this completes the proof. �

4. Convergence of ρS and ρS,T

Theorem 4. Assume that g, γ have radial log-majorants and
∫
R (g

∗ ∗ γ) (x) dx = 0.
If ω ∈ A1 and 0 < c ≤ ω,then for all f ∈

(
L
p(.)
ω , lq

)
the following relation holds;

ρSf = σθ1
S
f , (S > 0)

where

θ (y) =

∞∫
1

(g∗ ∗ γ)
(y
u

) 1

un+1
χB(0,1) (y) du−

1∫
0

(g∗ ∗ γ)
(y
u

) 1

un+1
χRn�B(0,1) (y) du.

Proof. Let f ∈ L1ω ∩
(
L
p(.)
ω , lq

)
and y ∈ R. Then we have decomposition of ρSf (y)

as

ρSf (y) =

∞∫
S

∫
R

1

s3

∫
R

f (t) g

(
t− x
s

)
γ

(
y − x
s

)
dtdxds

=

∞∫
S

∫
|y−t|<S

1

s3

∫
R

f (t) g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

−
S∫
0

∫
|y−t|≥S

1

s3

∫
R

f (t) g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

+

∞∫
0

∫
|y−t|≥S

1

s3

∫
R

f (t) g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

= I − II + III
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by from [29], [34] . Also it is well known that

I =
(
f ∗ ϕ 1

S

)
(y) and II =

(
f ∗ ψ 1

S

)
(y) ,

where

ϕ (t) =

∞∫
1

(g∗ ∗ γ)
(
t

u

)
1

un+1
χB(0,1) (t) du

and

ψ (t) =

1∫
0

(g∗ ∗ γ)
(
t

u

)
1

un+1
χRn�B(0,1) (t) du

by proof of Theorem 1.1 in [29]. On the other hand, Szarvas and Weisz proved that
ϕ and ψ have radial majorants by Theorem 5.1 in [34] in case g and γ have radial
log-majorants. Since g, γ have radial log-majorants, f ∈ L1ω, ω ∈ A1 and∫

R

(g∗ ∗ γ) (x) dx = 0,

then we have

III =

∞∫
0

∫
|y−t|≥S

1

s3

∫
R

f (t) g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

=
1

ω0

∫
|y−t|≥S

f (t)

|y − t|

∫
R

(g∗ ∗ γ) (u) dudt = 0

by Lemma 2.5 in [29]. Therefore we get

ρSf (y) =
(
f ∗ ϕ 1

S

)
(y)−

(
f ∗ ψ 1

S

)
(y) + 0

= f ∗
(
ϕ 1

S
− ψ 1

S

)
(y) = f ∗ θ 1

S
(y) = σθ1

S
f (y) ,

where

θ (y) = ϕ (y)− ψ (y)

=

∞∫
1

(g∗ ∗ γ)
(y
u

) 1

un+1
χB(0,1) (y) du−

1∫
0

(g∗ ∗ γ) (y) 1

un+1
χRn�B(0,1) (y) du.

If ϕ,ψ have radial majorants, then θ = ϕ− ψ have radial majorant, that is, θ is a
non-negative and non-increasing function, and belongs to the space L1 ∩L∞. So it
is obtained that

‖θ‖(L∞,l1) =
∑
k∈Z

∥∥∥θχ[k,k+1)∥∥∥∞ ≤∑
k∈Z

θ (k) <∞

and θ ∈
(
L∞, l1

)
. Then using Hölder inequality and Lemma 1, we have
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|ρSf (y)| =
∣∣∣σθ1

S
f (y)

∣∣∣ ≤ 1

S

∫
R

|f (y − t)|
∣∣∣∣θ( tS

)∣∣∣∣ dt
≤ C ‖f‖(L1,l∞) ‖θ‖(L∞,l1)
≤ C ‖f‖(

L
p(.)
ω ,lq

) ‖θ‖(L∞,l1) .
Hence the function ρS is linear and bounded from L1ω ∩

(
L
p(.)
ω , lq

)
to C. Also, it

is well known that the inclusion Cc ⊂ L1ω ∩
(
L
p(.)
ω , lq

)
⊂
(
L
p(.)
ω , lq

)
. Since Cc is

dense in
(
L
p(.)
ω , lq

)
[6], then we find that L1ω ∩

(
L
p(.)
ω , lq

)
is dense in

(
L
p(.)
ω , lq

)
.

Therefore, from the density principle, the function ρs is extended from
(
L
p(.)
ω , lq

)
to C. This completes the proof. �

Theorem 5. Let f ∈
(
L
p(.)
ω , lq

)
. Moreover, assume that g, γ have radial log-

majorants and
∫
R (g

∗ ∗ γ) (x) dx = 0. If ω ∈ A1 and 0 < c ≤ ω, then

i) lim
S→0+

ρSf (x) = C ′g,γf (x)

for any Lebesgue point of the function f .
ii) If in addition 1 ≤ q ≤ p (.) ≤ p+ <∞, then

lim
S→0+,T→∞

ρS,T f (x) = C ′g,γf (x)

for any Lebesgue point of the function f .

Proof. i) Since p (.) ∈ P log(R) and 1 < p− ≤ p (.) ≤ p+ < ∞, then A1 ⊂ Ap(.) [4].
By Theorem 2 and Theorem 4, we deduce that

lim
S→0+

ρSf (x) = lim
S→0+

σθ1
S
f (x) =

∫
R

θ (y) dyf (x)

for all Lebesgue points of f ∈
(
L
p(.)
ω , lq

)
. On the other hand, using Theorem 5.2

in [34] , we have that
∫
R θ (y) dy = C ′g,γ and

lim
S→0+

ρSf (x) = C ′g,γf (x) .

ii) By Theorem 5.2 in [34] we can write the equality ρS,T f (x) = ρSf (x)−ρT f (x)
for x ∈ R. Then using (i), Theorem 2 and Theorem 4, we obtain that

lim
S→0+,T→∞

ρS,T f (x) = lim
S→0+

ρSf (x)− lim
T→∞

ρT f (x)

= lim
S→0+

σθ1
S
f (x)− lim

T→∞
σθ1
T
f (x)

= C ′g,γf (x)− 0 = C ′g,γf (x) .

�
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Corollary 1. Assume that g, γ have radial log-majorants,
∫
R (g

∗ ∗ γ) (x) dx = 0.
If ω ∈ A1 and 0 < c ≤ ω, then the following statements are valid for any f ∈(
L
p(.)
ω , lq

)
;

i) lim
S→0+

ρsf (x) = C ′g,γf (x) a.e.

ii) If in addition 1 ≤ q ≤ p (.) ≤ p+ <∞, then
lim

S→0+,T→∞
ρs,T f (x) = C ′g,γf (x) a.e.

Proof. Let f ∈
(
L
p(.)
ω , lq

)
. Then by Lemma 1, we have f ∈

(
L1, l∞

)
. It is known

that if f ∈
(
L1, l∞

)
, then real numbers almost everywhere is a Lebesgue point of

f , [16], [17]. Hence by the Theorem 5, we complete the proof. �
Theorem 6. Assume that g, γ have radial log-majorants and

∫
R (g

∗ ∗ γ) (x) dx = 0.
If ω ∈ A1 and 0 < c ≤ ω, then the following results
i) lim
S→0+

ρsf = C ′g,γf,

ii) lim
S→0+,T→∞

ρs,T f = C ′g,γf

are satisfied in the
(
L
p(.)
ω , lq

)
-norm for all f ∈

(
L
p(.)
ω , lq

)
.

Proof. i) Using ω ∈ A1 ⊂ Ap(.), Theorem 3 and Theorem 4, we have

lim
S→0+

ρSf = lim
S→0+

σθ1
S
=

∫
R

θ (y) dyf

in the
(
L
p(.)
ω , lq

)
-norm for all f ∈

(
L
p(.)
ω , lq

)
. On the other hand, since

∫
R

θ (y) dy =

C ′g,γ , then we obtain that
lim
S→0+

ρSf = C ′g,γf

in the
(
L
p(.)
ω , lq

)
-norm.

ii) Since ρS,T f = ρSf − ρT f , then we have that
lim

S→0+,T→∞
ρs,T f = lim

S→0+
ρSf − lim

T→∞
ρT f

= lim
S→0+

σθ1
S
f − lim

T→∞
σθ1
T
f = C ′g,γf

in the
(
L
p(.)
ω , lq

)
-norm by (i), Theorem 3 and Theorem 4. �
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