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Abstract 

This paper compares the small-sample properties of two non-parametric regression methods, running interval smoother 
and constrained b-spline smoothing. The running interval smoother method deals with estimation of a conditional quantile 
(or a measure of location) using different estimators and here our focus is on Harrell-Davis and newly proposed NO quantile 
estimators. The constrained b-spline smoothing method uses the quantile regression estimator while obtaining conditional 
quantile estimates. Constrained b-spline smoothing and running interval smoother methods are compared with a 
simulation study by using theoretical distributions. Furthermore, the methods are examined graphically to understand how 
they can model the relationship between variables. Constrained b-spline smoothing and running interval smoother with NO 
estimator outperformed running interval smoother with Harrell-Davis estimator in terms of mean squared error. 
Keywords: Non-parametric regression, Quantile estimators, RIS, COBS 

HAREKETLİ ARALIK DÜZLEŞTİRİCİSİ, KISITLI B-SPLINE DÜZLEŞTİRME VE 
FARKLI KANTİL KESTİRİCİLERİ KULLANILARAK DOĞRUSAL OLMAYAN 

İLİŞKİNİN MODELLENMESİ 

Özet 

Bu makalede iki parametrik olmayan regresyon yöntemi, hareketli aralık düzleştiricisi ve kısıtlı b-spline düzleştirme 
yöntemlerinin küçük örneklem özelliklerinin karşılaştırması yapılmaktadır. Hareketli aralık düzleştiricisi yöntemi farklı 
kestiriciler kullanarak koşullu kantil (veya konum ölçüsü) değerinin tahmini ile uğraşır ve burada Harrell-Davis ile yeni 
önerilen NO kantil kestiricisine odaklanılmıştır. Kısıtlı b-spline düzleştirme yöntemi, koşullu kantil tahminleri elde ederken 
kantil regresyon tahmincisini kullanır. Kısıtlı b-spline düzleştirme ve hareketli aralık düzleştiricisi yöntemleri teorik 
dağılımlar kullanılarak elde edilen bir simülasyon çalışması ile karşılaştırılmıştır. Ayrıca, bu yöntemler, değişkenler 
arasındaki ilişkinin nasıl modellendiğini anlamak için grafiksel olarak incelenmiştir. Kısıtlı b-spline düzleştirme ve NO 
kestiricisi ile kullanılan hareketli aralık düzleştiricisi yöntemleri hata kareler ortalaması açısından Harrell-Davis kestiricisi 
ile kullanılan hareketli aralık düzleştiricisi yönteminden daha iyi performans göstermektedir. 
Anahtar Kelimeler: Parametrik olmayan regresyon, Kantil kestiricileri, RIS, COBS 
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1.  Introduction 

Whereas the assumption of linearity in regression 
analysis seems providing a good approximation of the 
population regression model in numerous situations, this 
is not always true in many cases. One way of arranging 
any possible curvature is to use some parametric model 
with quadratic or cubic terms but this might be 
unsatisfactory in terms of model adequacy criterions. 
Non-parametric regression is used to explain the 
nonlinear relationship among variables. In the 

nonparametric regression analysis, the shape of the 
function is not pre-defined and there are no significant 
assumptions as in parametric regression analysis. In this 
way, flexibility is provided to reveal the relationship 
between variables. Despite to all these advantages, there 
are some difficulties in the application of nonparametric 
regression. First, a certain number is not given, but a 
large data set is needed and it requires intensive 
computer use.  
The estimators used in the nonparametric regression are 
called smoothers. The basic idea of smoothing is to use 
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locally weighted mean. The estimated value of the 
dependent variable at a certain point of interest of x is 
determined by taking a weighted mean of points in the 
neighborhood of x. Two of these methods are running 
interval smoother (RIS) and constrained b-spline 
smoothing (COBS). The purpose of using these methods 
is to monitor  the latent associations that might appear 
when analyzed in a way that is based on different 
quantile values. COBS and RIS methods enable this in a 
flexible and efficient manner. 
The RIS method deals with some robust measure of 
location connected with the random variable y, given x. 
Many nonparametric regression estimators of this 
measure of location have been proposed. This method 
can also obtain the predicted value of the dependent 
variable using quantile estimators. This conditional 
quantile is estimated using different estimators and here 
the focus is on  Harrell-Davis (HD) and NO quantile 
estimators [1,2]. 
The other non-parametric regression method is 
constrained b-spline smoothing (COBS). COBS is a very 
attractive method with some unique advantages. It 
facilitates robust function estimation via conditional 
median estimation of the dependent variable. It also 
provides computation of other conditional quantile 
functions which have gradually become an integral part 
of data analysis. The COBS method uses the quantile 
regression estimator proposed by Koenker and Bassett 
(1978) while obtaining conditional quantile estimates 
[3,4]. 

2.  Description of the Methods 

2.1. The Running Interval Smoother (RIS) 

The values of independent variable (𝑋) that are close to 
the point of interest of 𝑥 is determined and denoted by 
𝑋𝑖 . Then, a conditional quantile of the 𝑌𝑖 values 
corresponding to these 𝑋𝑖  is computed. For the running 
interval smoother, this conditional quantile might be 
estimated using different estimators. 
MAD, median absolute deviation, is a robust measure of 
scale. It is the median of |𝑋1 − 𝑀|, … , |𝑋𝑛 − 𝑀|, where M 
is the usual sample median based on random sample 
𝑋1, … , 𝑋𝑛 . When the parent distribution is normal, MAD 
estimates Z0.75σ where Z0.75=0.6745 is the 0.75 quantile 
of the standard normal distribution. So it is rescaled  and 
normalized version of MAD (MADN) estimates σ when 
sampling from a normal distribution. 𝑀𝐴𝐷𝑁 = 𝑀𝐴𝐷𝑋/
0.6745.  
The points 𝑋𝑖  are close to 𝑥 if 
 

|𝑥 − 𝑋𝑖| ≤ 𝑓 ∗ 𝑀𝐴𝐷𝑁 (1) 
 
where 𝑀𝐴𝐷𝑁 is computed using 𝑋1, … , 𝑋𝑛 and 𝑓 is a 
number between 0 and 1 and plays the role of a span. Let 
 

𝑁(𝑥) = {𝑖 = |𝑥 − 𝑋𝑖| ≤ 𝑓 ∗ 𝑀𝐴𝐷𝑁}. (2) 
 
That is, 𝑁(𝑥) indexes the set of all 𝑋𝑖  values that are close 

to 𝑥. Let 𝜃𝑖 be an estimate of some parameter of interest, 

based on the 𝑌𝑖 values such that 𝑖 ∈ 𝑁(𝑥). That is, use all 
of the 𝑌𝑖 values for which 𝑋𝑖  is close to x. To get a graph of 

the regression line, calculate 𝜃𝑖, the estimate of 𝑌 given 
that 𝑥 =  𝑋𝑖 , i= 1, . . . , n, and then plot the points 

(𝑋1, 𝜃1), . . . , (𝑋𝑛 , 𝜃𝑛) [5]. 

 
The span 𝑓 controls the roughness of the line. As the 𝑓 
value increases a smooth will be a straight, horizontal 
line. However, if 𝑓 is too close to zero, the result is a very 
ragged line. Often the choice 𝑓 = 1 and 𝑓 = 0.8 and give 
good results, but both larger and smaller values might be 
of interest particularly when 𝑛 is small.  A good method 
for an optimum f is to try out some values in an 
interactive graphics environment, the general strategy is 
to find the smallest f so that the plot of the points is 
reasonably smooth. 

2.1.1. HD Quantile Estimator 

A concern when estimating the 𝑞𝑡ℎ quantile with a single 
order statistics �̂�𝑞 = 𝑋(𝑚), 𝑚 = [𝑞𝑛 + 0.5], is that its 

standard error can be relatively high. The problem is of 
particular concern when sampling from a light-tailed or 
normal distribution. A natural strategy for addressing 
this problem is to use all of the order statistics to estimate 
𝑥𝑞, as opposed to a single order statistic, and several 

methods have been proposed. One such estimator was 
derived by Harrell and Davis (1982) [1]. To compute it, 
let Y be a random variable having a beta distribution with 
parameters 𝑎 = (𝑛 + 1)𝑞 and 𝑏 = (𝑛 + 1)(1 − 𝑞). That 
is, the probability density function of Y is 
 

Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1 (3) 

 
(Γ is the gamma function). Let 
 

𝑊𝑖 = 𝑃 (
𝑖 − 1

𝑛
≤ 𝑌 ≤

𝑖

𝑛
). (4) 

 
Then the Harrell–Davis estimate of the 𝑞𝑡ℎ quantile is 
 

𝜃𝑞 = ∑ 𝑊𝑖 𝑋(𝑖).

𝑛

𝑖=1

 (5) 

 
2.1.2. NO Quantile Estimator 

With the aim of improving the performance in the lower 
and upper quantiles especially with small sample sizes, a 
new quantile estimator which is again a weighted 
average of all order statistics (𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)) is 

introduced [2]. 
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𝑁𝑂𝑞 = [𝐵(0; 𝑛, 𝑞)2𝑞 + 𝐵(1; 𝑛, 𝑞)𝑞]𝑋(1)

+ 𝐵(0; 𝑛, 𝑞)(2 − 3𝑞)𝑋(2)

− 𝐵(0; 𝑛, 𝑞)(1 − 𝑞)𝑋(3)

+ ∑[𝐵(𝑖; 𝑛, 𝑞)(1 − 𝑞)

𝑛−2

𝑖=1

+ 𝐵(𝑖 + 1; 𝑛, 𝑞)𝑞]𝑋(𝑖+1)

− 𝐵(𝑛; 𝑛, 𝑞)𝑞𝑋(𝑛−2)

+ 𝐵(𝑛; 𝑛, 𝑞)(3𝑞 − 1)𝑋(𝑛−1)

+ [𝐵(𝑛 − 1; 𝑛, 𝑞)(1 − 𝑞)
+ 𝐵(𝑛; 𝑛, 𝑞)(2 − 2𝑞)]𝑋𝑛 

(6) 

where 𝐵(𝑖; 𝑛, 𝑞), 𝑖 = 0,1,2, … , 𝑛 are the binomial 
probabilities with probability of success q and n is the 
sample size. This is a new quantile estimator and the 
performances of RIS with NO is totaly unknown. 
 
2.2.  Constrained B-Spline Smoothing (COBS) 

Regression splines are special functions defined by 
piecewise polynomials. The region defining the pieces is 
separated by a sequence of knots or breakpoints [6]. The 
aim is to force the piecewise polynomials to merge 
smoothly with the knots. 
Splines can be named according to degrees. The simplest 
spline has degree 0 and it is also called a step function. 
The next simplest spline has degree 1 and it is also called 
a linear spline. The next spline is the quadratic spline of 
degree 2.  
Constrained B-spline smoothing (COBS) method 
provides a way of dealing with quantiles [4,7]. This 
method is based on the estimated function of the 
constraints. In particular, COBS can include restrictions 
such as monotonicity, convexity, concavity and 
periodicity constraints. The COBS method uses the 
quantile regression estimator proposed by Koenker and 
Bassett (1978) while obtaining conditional quantile 
estimates [4]. 
Let 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)), where the indicator 
function 𝐼(𝑢 < 0) = 1 if 𝑢 < 0 otherwise 𝐼(𝑢 < 0) = 0. 
The goal is to estimate the 𝜏𝑡ℎ quantile of y given x by 
finding a function g(x) that minimizes 

∑ 𝜌𝜏(𝑦𝑖 − 𝑔(𝑥𝑖)) + 𝜆 ∫ |𝑔𝚤𝚤(𝑥)| 𝑑𝑥 (7) 

based on the random sample (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) where 𝜆 
is a scalar that controls smoothness and ∫ |𝑔𝚤𝚤(𝑥)| 𝑑𝑥 
denotes the roughness penalty as 𝐿1 norm of the second 
derivative of function. 𝜆 can be taken from zero to 
infinity.  

3. Design of Simulation Study 

RIS and COBS were compared via simulations based on K 
= 10000 replications. Sample sizes were n=25 and n=50. 
The model used for generating data was 
 

𝑌 = 𝑋 + 𝜆 (𝑋)𝜖 (8) 
 
where X is distributed N(0,1). The distribution for the 
error term was taken to be one of four g-and-h 
distributions [8]. g-and-h distributions are well-known 

distributions especially in robust statistical researches. 
The reason for using the g-and-h distribution is that it 
provides a simple method for generating observations 
from a wide variety of distributions, which include 
extreme departures from normality as measured by 
skewness and kurtosis. Let Z be a random variable which 
is generated from standard normal distribution. When 
𝑔 ≠ 0, the transformation 
 

𝑋 =
exp(𝑔𝑍) − 1

𝑔
exp (ℎ𝑍2/2) (9) 

and when 𝑔 = 0, the transformation 
 

𝑋 = 𝑍𝑒𝑥𝑝(ℎ𝑍2/2) (10) 
is used to generate data from g-and-h distribution. 
The four error term distributions used here were the 
standard normal (g = h = 0.0), a symmetric heavy-tailed 
distribution (h = 0.2, g = 0.0), an asymmetric distribution 
with relatively light tails (h = 0.0, g = 0.2), and an 
asymmetric distribution with heavy tails (g = h = 0.2). 
Table 1 shows the estimated skewness (𝜅1), kurtosis (𝜅2) 
values and p-values of each distribution. D'Agostino test 
(P-DT) [9] for skewness and Bonett-Seier test of Geary's 
(P-BST) [10] for kurtosis are used to obtain p values of 
each distribution. 

Table 1. Estimated skewness, kurtosis and p-values of 
tests of the g-and-h distributions 

g h 𝜿𝟏 𝜿𝟐 P-DT P-BST 
0 0 0 3 0.1907 0.6338 
0 0.2 0 21.46 0.0000 0.0000 

0.2 0 0.61 3.68 0.0000 0.0000 
0.2 0.2 2.81 155.98 0.0000 0.0000 

 
Three different variance patterns (VP) were used. For 
VP1, 𝜆 (𝑋) = 1 for VP2, 𝜆 (𝑋) = |𝑋| + 1 and for VP3, 
𝜆 (𝑋) = 1/(|𝑋| + 1).  
The criterion used to compare RIS and COBS was mean 
squared error that was estimated with 

𝑀𝑆𝐸 =
1

𝑛𝐾
∑ ∑(𝜃𝑞𝑖𝑘 − 𝜃𝑞𝑖𝑘)2

𝑛

𝑖=1

𝐾

𝑘=1

 
 
(11) 

where for the kth replication, 𝜃𝑞𝑖𝑘  is the true conditional 

qth quantile of 𝑌 given 𝑋 = 𝑋𝑖 and again 𝜃𝑞𝑖𝑘 is the 

estimate of 𝜃𝑞𝑖𝑘  based on either RIS or COBS. 

The methods were compared with three quantile values: 
q=0.1, q=0.5 and q=0.9, with sample sizes of n=25 and 
n=50. R programming language of version 3.5.2 was used 
for this simulation study. Here, COBS is applied via the 
qsmcobs function and RIS is applied via the rungen 
function. These functions are available in the WRS2 
package. For the COBS, 𝑙𝑎𝑚𝑏𝑑𝑎 = 0 and for the RIS, 
𝑠𝑝𝑎𝑛 = 0.8. Typically, taking the span to be 0.8 suffices in 
terms of providing a relatively accurate estimate of 
conditional quantile, based on mean squared error. Here, 
span = 0.8 is assumed unless stated otherwise. On the 
other hand, RIS method is used with HD and NO 
estimators. 
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3.1. Simulation Results 

Table 2. MSE values when 𝜖 was distributed as standard 
normal (Z) 

    RIS 
   COBS HD NO 

n=25 

q=0.1 
VP1 2.249 3.113 2.601 
VP2 6.948 8.671 7.170 
VP3 0.984 1.684 1.400 

q=0.5 
VP1 0.895 0.973 0.970 
VP2 2.862 3.100 3.083 
VP3 0.384 0.438 0.438 

q=0.9 
VP1 2.253 3.105 2.598 
VP2 6.923 8.697 7.193 
VP3 0.979 1.669 1.390 

n=50 

q=0.1 
VP1 2.528 3.248 2.923 
VP2 8.570 9.232 8.165 
VP3 1.052 1.723 1.557 

q=0.5 
VP1 0.952 1.019 1.018 
VP2 3.238 3.384 3.375 
VP3 0.401 0.452 0.452 

q=0.9 
VP1 2.536 3.240 2.919 
VP2 8.557 9.237 8.179 
VP3 1.052 1.726 1.561 

 
Table 3. MSE values when 𝜖 was distributed as g=0.2 

and h=0 
    RIS 
   COBS HD NO 

n=25 

q=0.1 
VP1 2.170 2.993 2.603 
VP2 6.667 8.269 7.199 
VP3 0.941 1.623 1.398 

q=0.5 
VP1 0.961 1.034 1.031 
VP2 3.081 3.310 3.290 
VP3 0.413 0.465 0.464 

q=0.9 
VP1 2.651 3.579 2.844 
VP2 7.995 9.981 7.761 
VP3 1.157 1.873 1.490 

n=50 

q=0.1 
VP1 2.433 3.137 2.884 
VP2 8.120 8.868 8.094 
VP3 1.008 1.682 1.546 

q=0.5 
VP1 1.020 1.084 1.083 
VP2 3.474 3.620 3.610 
VP3 0.428 0.477 0.477 

q=0.9 
VP1 2.904 3.628 3.183 
VP2 10.000 10.516 8.981 
VP3 1.198 1.883 1.667 

 
Table 2 reports simulation results in which X and 𝜖 has 
standard normal distribution and Table 3 reports 
simulation results in which X has standard normal 
distribution and 𝜖 has asymmetric light tailed 
distribution. When q=0.5, COBS, RIS with NO and RIS 
with HD give close results. The RIS with NO estimator 
gives better results than COBS for VP2 and extreme 
quantiles as the sample size increases.  
 

Table 4. MSE values when 𝜖 was distributed as g=0 and 
h=0.2 

    RIS 
   COBS HD NO 

n=25 

q=0.1 
VP1 4.891 6.050 4.515 
VP2 15.091 17.833 13.309 
VP3 2.130 2.958 2.218 

q=0.5 
VP1 1.948 2.036 2.029 
VP2 6.373 6.805 6.755 
VP3 0.828 0.879 0.878 

q=0.9 
VP1 4.849 6.023 4.509 
VP2 14.978 17.716 13.233 
VP3 2.128 2.980 2.232 

n=50 

q=0.1 
VP1 4.973 5.850 5.010 
VP2 17.614 17.894 14.914 
VP3 1.974 2.801 2.440 

q=0.5 
VP1 2.070 2.141 2.139 
VP2 6.995 7.235 7.212 
VP3 0.868 0.918 0.917 

q=0.9 
VP1 4.924 5.849 5.017 
VP2 17.523 17.730 14.806 
VP3 1.965 2.784 2.429 

 

Table 4 reports simulation results in which X has 
standard normal distribution and 𝜖 has symmetric heavy 
tailed distribution. When q=0.5, COBS, RIS with NO and 
RIS with HD give close results. For extreme quantiles 
where VP2, RIS with NO estimator competes well with 
COBS as the sample size increases.  
 

Table 5. MSE values when 𝜖 was distributed as g=0.2 
and h=0.2 

    RIS 
   COBS HD NO 

n=25 

q=0.1 
VP1 4.512 5.632 4.620 
VP2 14.274 16.867 14.037 
VP3 1.980 2.811 2.288 

q=0.5 
VP1 2.176 2.267 2.258 
VP2 6.983 7.426 7.362 
VP3 0.920 0.971 0.970 

q=0.9 
VP1 6.134 7.355 5.001 
VP2 19.738 22.292 14.768 
VP3 2.651 3.528 2.420 

n=50 

q=0.1 
VP1 4.765 5.693 5.104 
VP2 16.667 17.443 15.478 
VP3 1.932 2.744 2.477 

q=0.5 
VP1 2.340 2.407 2.404 
VP2 7.870 8.108 8.079 
VP3 0.988 1.035 1.035 

q=0.9 
VP1 5.909 6.823 5.558 
VP2 22.187 21.263 16.620 
VP3 2.305 3.189 2.678 

 

Table 5 reports simulation results in which X has 
standard normal distribution and 𝜖 has asymmetric 
heavy tailed distribution. When n=25 and extreme 
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quantiles, the performance of RIS with NO is improved in 
heavy-tailed distributions. 
In terms of the distribution of the data generated in the 
simulation study, as the g and h values increase, the MSE 
values increase, especially in the extreme quantiles. On 
the other hand, one more simulation was performed 
when n=500 with 1000 replications and 36 experimental 
settings. In this simulation, RIS with NO gave the smallest 
MSE values 28 times out of 36 settings. But it can not be 
said that the MSE values were less than the ones 
computed when n=25 or 50. Each distributional setting 
lasted 10 hours on the average here.   

4. Real Data Example 
4.1. Example 1 

Sochett et al. (1987) report data related to patterns of 
residual insulin secretion in children at the time they 
were diagnosed with diabetes [11]. A portion of the study 
was concerned with whether age can be used to predict 
the logarithm of C-peptide concentrations at diagnosis. 
This data set has 43 observations. 

 

Figure 1. Association between age and c-peptide 
 

Figure 1 shows the relationship between age and 
logarithm of C-peptide. There is an interesting 
association among these two variables. A weak but 
positive slope up to a certain age point 10 then the rest 
might be interpreted in different ways depending on the 
interest of the researcher. Using different quantile points 
simplifies this matter significantly. 

 

Figure 2. Comparisons of RIS with NO, RIS with HD and 
COBS (quantile values are 0.1, 0.5 and 0.9) 

The data in Figure 2 is used to illustrate method RIS with 
NO, RIS with HD and COBS. In the COBS method, 
smoothing parameter (𝜆) equals 0. In the RIS with NO 
and RIS with HD, span (𝑓) equals 0.8. For quantile 
regression line when q=0.1, notice that for age under 10 
the plot suggests a positive association but over 10 
methods suggest a negative association with C-peptide. 
For quantile regression line when q=0.5, notice that for 
age under 10 the plot suggests a positive association but 
over 10 methods suggest a little or no association with C-
peptide. For quantile regression line when q = 0.9, notice 
that for age under 10 the plot suggests that there is little 
or no association but  over 10 methods suggest a positive 
association with C-peptide. For COBS at q = 0.9, COBS 
indicated some unusually shaped regression lines. Here, 
there is concern about the shape of the regression line. 
 

Table 6. MSE values of methods for example 1 
 q=0.1 q=0.5 q=0.9 

RIS with 
NO 

1.063089 0.4055781 1.080137 

RIS with 
HD 

1.229652 0.4053521 1.229841 

COBS 0.9410627 0.4118963 1.311917 
 
MSE values of this data set for different quantiles are 
shown in Table 6. For q = 0.9, RIS with NO gives better 
results than the other methods. It is seen that the median 
gives close results. For q = 0.1, COBS gives more reliable 
results. 

4.2. Example 2 

Between March 12, 2020 and April 23, 2020 estimate of 
the number of daily cases occurred in Turkey COVID-19 
can be modeled using these methods. The independent 
variable is days and the dependent variable is daily 
deaths. The data were obtained from the website of the 
World Health Organization [12]. 

 

Figure 3. Association between days and daily deaths 
 

Figure 3 shows the relationship between days and daily 
deaths. The relationship between variables is modeled 
using COBS, RIS with NO, RIS with HD and third order 
polynomial regression model (PR). 



Burak Dilber and A. Fırat Özdemir 
Modelling Nonlinear Relation by Using Running Interval Smoother, Constrained B-Spline Smoothing and Different Quantile Estimators 

 

126 

 

 

Figure 4. Comparisons of RIS with NO, RIS with HD, 
COBS and PR (quantile value is 0.5) 

 

The data in Figure 4 is used to illustrate method RIS with 
NO, RIS with HD, COBS and PR. In the COBS method, 
smoothing parameter (𝜆) equals 0. In the RIS with NO 
and RIS with HD, span (𝑓) equals 0.4. For quantile 
regression line when q=0.5, notice that the plot suggests 
a positive association with daily deaths. 
 

Table 7. MSE values of methods for example 2 

 
RIS with 

NO 
RIS with 

HD 
COBS PR 

q=0.5 25.3764 23.8560 44.2608 48.5388 
 
MSE values of this data set for median are shown in Table 
7. It is seen that the RIS with HD and RIS with NO give 
more reliable results. 
 

Table 8. Predicted value of daily deaths 
DAYS REAL 

VALUE 
PREDICTED VALUE 

 
COBS RIS 

with 
NO 

RIS 
with 
HD 

PR 

15/04/2020 107 113 108 108 112 
16/04/2020 115 116 112 112 115 
17/04/2020 125 118 115 115 117 
18/04/2020 126 120 117 117 119 
19/04/2020 121 121 118 119 121 
20/04/2020 127 121 120 120 121 
21/04/2020 123 121 121 121 122 
22/04/2020 119 119 122 122 122 
23/04/2020 117 117 123 123 121 
24/04/2020 115 114 122 122 119 
25/04/2020 109 110 121 121 117 
26/04/2020 106 106 121 121 114 
27/04/2020 99 101 119 120 111 
28/04/2020 95 95 118 118 106 
29/04/2020 92 88 117 117 101 

 
Table 8 shows the estimated and real values of daily 
deaths between 15 April 2020 and 29 April 2020. It is 

seen that COBS method are more successful especially 
when compared with the other methods. 

5. Conclusion 

In this paper, two nonparametric regression methods 
that can be used to model nonlinear relationship were 
compared. After introducing the fundamental structure 
of the conventional nonparametric regression methods, 
a simulation study was carried out by using g-h 
distributions with different skewness and kurtosis levels. 
The performance of the methods were also monitored 
with graphs using  real data sets. 
In the simulation study, the methods were compared in 
terms of mean squared error (MSE). In general, the COBS 
and the running interval smoother with NO quantile 
estimator gave better results than the running interval 
smoother with HD quantile estimator. That means they 
are more efficient than the other method. COBS and RIS 
with NO methods gave similar results for all g-h 
distributions but increasing the kurtosis and skewness 
levels (non-normality) resulted in better efficiency 
values for RIS with NO quantile estimator. 
Under the normality, COBS and RIS with NO methods 
gave similar results so both can be preferred. When the 
distribution is asymmetric light tailed, in 15 of the 18 
different cases examined, the COBS method had a lower 
MSE value, while in 3 of them the RIS with NO method 
had a lower value. However, both methods can be 
preferred because the MSE values are quite similar to 
each other. RIS with HD is not preferred. When the 
distribution is symmetric heavy tailed, in 12 of the 18 
different situation examined, COBS method can be 
preferred, in other situations RIS with NO quantile 
estimator can be preferred. When the distribution is 
symmetric heavy tailed, in 12 of the 18 different situation 
examined, COBS method can be preferred, in other 
situations RIS with NO quantile estimator can be 
preferred. When the distribution is asymmetric heavy 
tailed, since COBS and RIS give similar results, both 
methods can be preferred. However, the RIS with NO 
method is recommended for VP2. 
Performances of methods were also compared by 
sketching graphs. The type and degree of relationship 
among variables might change depending on the quantile 
points of interest. Using more than one quantile points let 
the researchers observe different patterns and make 
correct predictions accordingly. Preferring RIS or COBS 
enable this when analyzing nonlinear trends.  
Moreover, predicted values of COVID-19 daily deaths for 
Turkey are obtained and it has been seen that COBS 
method makes very successful predictions. 
Constrained B-Spline Smoothing (COBS) and Running 
Interval Smoother (RIS) with NO quantile estimator are 
suggested as efficient, flexible and robust tools of 
modelling nonlinear relationship among variables. 
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