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Highlights 

• This paper focuses on quantum game theory for biological games. 

• Using a quantum perspective is proposed for the micro-level HIV-1 phenotypes game in the study. 

• The findings obtained by quantum game theory are compared with the decision of classical approach. 
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Abstract 

HIV-1 (Human Immunodeficiency Virus) is a virus that causes AIDS (Acquired 

Immunodeficiency Syndrome), which damages the immune system by reducing people's 

resistance to infections and diseases. Antiretroviral treatment methods are based on drug designs 

developed using inhibitors that suppress the dynamics that enable the maturation of the virus. 

However, studies are needed to improve treatment methods against infection because HIV-1 is 

frequently mutated and mutant viruses develop resistance to the treatment used. Therefore, it is 

important to model the evolutionary development of the virus. For this purpose, the 

developmental process and spread of HIV-1 are modeled as a game with the players of phenotypes 

in this study. The related searches known to be made so far have been carried out based on the 

rules of classical physics. However, games of survival are being played on the molecular level, 

where the rules of quantum mechanics work. Since the HIV-1 game is being played on the 

molecular level, the behaviors of the virus phenotypes are examined from the perspective of 

quantum computation. 
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1. INTRODUCTION 

 

HIV-1 is a virus widespread in the world that can cause immunodeficiency syndrome or AIDS, if it is not 

treated. HIV-1 attacks the immune system and spreads through blood and lymph nodes. Like all other 

viruses, HIV-1 cannot replicate on its own and needs live cells to reproduce itself. The primary target of 

HIV-1 is lymphocytes called CD4+T cells. In an infected person, while the CD4+T cells rapidly decrease 

over time, the number of HIV-1 greatly increases. With high viral load and low CD4+T cells, the body's 

defense mechanism is broken and becomes apparent to many other infections. Such a propensity for rapid 

replication and high degree of mutation brings diversity and evolutionary advantage for HIV-1. Therefore, 

if the nature of the virus mutation can be patterned and discoveries on the way of inhibiting the mutation 

can be obtained, then strongly important developments can be achieved in the therapy of infections. The 

studies on the developmental process of HIV-1 can be categorized into four main groups such as agent-

based modeling [1], differential equations [2], Markov models [3], and game theory [4-5].  

This work aims to examine the pattern of reproduction and developmental process of HIV-1 by using 

decision-making methods and to obtain inspirational results on drug design against infection. In the study, 

four HIV-1 phenotypes are analyzed, and each phenotype possesses all stages of the evolutionary process 

such as replication, mutation, and selection. Evolutionary game theory is preferred to examine the behaviors 

and evolutionary processes of these phenotypes and to monitor their effects on one another in an 

environment with HIV-1 infection. In this competitive environment, the development of HIV-1 phenotype 

swarms depends on the number of CD4+T cells that they can infect. 

http://dergipark.gov.tr/gujs
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The study divided into four sections is made up of this scheme: In the first section, the developmental 

process of HIV-1 is provided. In the second section, the game of HIV-1 phenotypes is constructed, and 

stable phenotype is obtained by using evolutionary game theory principles and quantum game theory 

concepts are explained. In the next section, the game is analyzed with the quantum perspective and the 

stable states of different scenarios are discussed. In the last section, the results are presented and references 

to further studies are given.  

 

2. GAME OF INFECTIOUS PHENOTYPES 

 

As a threshold matter, four HIV-1 phenotypes are considered in this study following Harada [2]; 

 

• An infectious virus with a low production rate (𝑣) 

• An infectious virus with a high production rate (𝑉) 

• A defective virus with a low production rate (𝑑) 

• A defective virus with a high production rate (𝐷). 

 

HIV-1 adheres to the targeted CD4+T cell through its molecules called gp120. During HIV-1 replication, 

sometimes the gp120 molecule is mutated and defective viruses (𝑑, 𝐷) appear that have lost the infectious 

capability. Defective viruses cannot adhere to the host cell and therefore cannot carry out replication and 

mutation processes. Therefore, in this study, viruses (𝑣, 𝑉) that are capable of infecting are investigated. 

These viruses can be transformed into a different phenotype after a probable mutation. Table 1 shows the 

phenotypes that viruses (𝑣, 𝑉) can be transformed after possible mutations. 

 

Table 1. The phenotypes (𝑣, 𝑉) that can be transformed by a mutation 

HIV-1 Phenotype Phenotypes After a Mutation 

𝒗 𝑉, 𝑑, 𝜙 

𝑽 𝑣, 𝐷 

 

A virus is called the provirus which is the presence of the virus in the host cell after replication by using its 

DNA. Sometimes a viral DNA cannot satisfy the conditions of being a provirus because of some mutations. 

In this case, the phenotype indicated by the symbol (𝜙) appears. 

To investigate the behavioral and evolutionary processes such as replication, mutation, and selection of 

phenotypes in an environment with HIV-1 infection and to observe their effects on each other, the game 

theory approach is adopted. 

Competition between phenotypes begins when the common resource sharing is made between the two 

phenotypes discussed in the study, and the situations that may arise are as follows: When the phenotype 𝑣 

encounters its species, the potential to share the existing CD4+T cells equally will emerge. Therefore, both 

viruses earn an equal outcome. Similarly, the 𝑉 phenotype will share CD4+T cells equally when faced with 

its species. Again, they will have equal outcomes. However, their gains will be smaller than those of the 

phenotype 𝑣. Because the 𝑉 phenotype is growing faster than the 𝑣 phenotype, and that will lead to rapid 

depletion of resources. That will cause 𝑉 to have a shorter life in terms of evolutionary continuity. If two 

different phenotypes meet, the gain of 𝑉 will be greater than 𝑣, as 𝑉 will reproduce faster and adhere to 

more CD4+T cells. Table 2 represents the outcomes of these possible matches with a game matrix. 

 

Table 2. Game matrix of infectious phenotypes 
Phenotypes 𝒗 𝑽 

𝒗  (𝛼, 𝛼) (𝛽, 𝛾) 

𝑽  (𝛾, 𝛽) (𝜃, 𝜃) 

 

So, in terms of survival and reproductive capacity, the relationship between outcomes is as follows: 𝛾 >
𝛼 > 𝜃 > 𝛽. 
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2.1. Evolutionary Game Theory 

 

Evolutionary game theory emerged from the utilization of game theory to the lifestyles of populations 

evolving in biology. Its theory is relying on the Darwinian process of natural selection [6]. It merges the 

fundamental structure of game theory and evolution with its dynamical systems to reveal the distribution 

of distinct phenotypes in biological populations [7]. According to Smith [8], evolutionary game theory is a 

way of thinking about their evolution at the phenotypic level in which the suitability of phenotypes depends 

on their frequency in the population. 

 

In evolutionary game theory context, the strategies or behaviors are involuntarily chosen by the genes of 

the players, not by the rational reasoning of the players, and accordingly, there are situations where the 

more successful one among these strategies grows and the less successful is extinct. What is open to 

research here is the question of which strategies to choose in an evolutionary environment. This question 

triggered biologists to conduct research on animal behavior and led to game theory for modeling and 

simulating [9]. 

The evolutionary approach adopts stable situations in which the strategies of all individuals in the 

population are balanced. In this respect, it has similar principles to the Nash equilibrium. 

In classical game theory, a player who has agreed to play the Nash equilibrium does not want to deviate 

from his equilibrium strategy. This is because, no player can increase his payoff as a result of choosing any 

other strategy, under the assumption of each player does not deviate his choice. The analog of this in 

evolutionary game theory is the concept of evolutionarily stable strategy. If almost all elements of a 

population have adopted a strategy �̂� of the game's strategy set 𝑆 and any mutant strategy cannot pervade 

the population under the effect of natural selection, then the strategy is evolutionarily stable. The 

mathematical definition of evolutionarily stable strategy was first described by J. M. Smith and G. R. Price 

[10,11]. For a two-player symmetric game, Definition 1 describes the evolutionarily stable strategy from a 

biological aspect whereas Definition 2 identifies from the game theory perspective [9]. 

Definition 1. The strategy �̂�, belonging to the strategy set S, is evolutionarily stable in pure strategies if it 

satisfies the inequality (1) for all possible deviations to 𝑠′ ∈ 𝑆 in consequence of the mutation size 𝜀 in the 

population, where ∀𝜀 < 𝜀 ̅and 𝜀̅ > 0 (𝜀:̅ small number) 

 
(1 − 𝜀)𝑢(�̂�, �̂�) + 𝜀𝑢(�̂�, 𝑠′) > (1 − 𝜀)𝑢(𝑠′, �̂�) + 𝜀𝑢(𝑠′, 𝑠′).                                                                        (1) 

The left side of the inequality is the expected payoff of the strategy �̂� in a mixed population that mutates 

with the size of 𝜀 playing 𝑠′ and the rest (1 − 𝜀) playing �̂�. On the other hand, the right side of the inequality 

is the expected payoff of the strategy 𝑠′ in the same mixed population and if the pure strategy �̂� is 

evolutionarily stable, then the incumbent gets a strictly better payoff. 

 

Definition 2. The strategy �̂� is evolutionarily stable in pure strategies if it satisfies the conditions given 

below. 

 

(1) (�̂�, �̂�) is a Nash equilibrium (𝑢(�̂�, �̂�) ≥ u(𝑠′, �̂�) for each 𝑠′), 

(2) If (�̂�, �̂�)  is not a strict Nash equilibrium (for some 𝑠′ ≠ �̂�, 𝑢(�̂� , �̂�) = 𝑢(𝑠′, �̂�), then 𝑢(�̂�, 𝑠′) >
𝑢(𝑠′, 𝑠′)). 

 

Similar evolutionarily stable strategy definitions can be made for mixed strategies. 

According to Definition 2, a strategy is evolutionarily stable, if it is strict Nash equilibrium. If case (2) is 

valid, the mutation gets payoff against the incumbent as well as the incumbent gets against itself, then the 

incumbent should get a better payoff against the mutant than the mutant gets against itself.  

An evolutionarily stable strategy is obtained by using those definitions on the game of infectious 

phenotypes. Table 3 represents the evolutionarily stable strategy for the game in bold color. 
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Table 3. The evolutionarily stable phenotype of the game 

Phenotypes 𝒗 𝑽 

𝒗 (𝛼, 𝛼) (𝛽, 𝛾) 

𝑽 (𝛾, 𝛽) (𝜃, 𝜃) 

 

Although it is not Pareto optimal, the equilibrium point occurs at the point of (𝑉 − 𝑉) combination with 

the payoffs (𝜃, 𝜃). So, 𝑉 is the evolutionarily stable phenotype. According to these results of classical 

aspects, one can interpret as “give the priority to the phenotype 𝑉 while developing pharmaceutical 

ingredients.” However, Eisert et al [12] indicated by referring to Dawkins [13] that “if the Selfish Genes 

are reality, then the games of survival are being played already on a molecular level where quantum 

mechanics dictates the rules.” This argument leads the biological games to a quantum perspective. 
 
2.2. Quantum Game Theory 

 
Game theory, being a branch of applied mathematics, defines games without reference to the physical 

universe. However, quantum mechanics is a physical theory and quantum game theory investigates the 

behavior of players with access to quantum randomization. Such technology can be employed in 

randomization devices and/or in communication devices. So, a quantum strategy can be thought of as a 

strategy conditioned on the value of some quantum mechanical observable [14].  

The foundations of quantum game theory began to develop formally about forty years ago. In 1980, 

Blaquiere analyzed wave mechanics as a two-player game with a connection between dynamic 

programming and the theory of differential games, on one hand, and wave mechanics on the other hand 

[15]. 

  

In 1998, Meyer introduced the basic ideas of game theory from the perspective of quantum algorithms and 

the first quantized coin-tossing game [16]. He theorized that a player can increase his payoff by choosing 

quantum strategy against his opponents’ classical strategy. After his work, numerous new quantum games 

with varying levels of complexities and outcomes have been written about by anyone from physicists to 

statisticians to game theorists [17]. 

 

Another important work on quantum games was developed by Eisert et al in 1999. They constructed a 

physical model of the Prisoner’s Dilemma and showed that the players can escape the dilemma if they both 

resort to quantum strategies. Moreover, they demonstrated that there exists a particular pair of quantum 

strategies that always gives reward and is a Nash equilibrium, and there exists a particular quantum strategy 

that always gives at least reward if played against any classical strategy [12]. 

 

After these significant developments, Marinatto and Weber extended the concept of a classical two-person 

static game to the quantum domain, by giving a Hilbert structure to the space of classical strategies and 

studying the Battle of the Sexes game [18]. 

 

Du et. al. generalized the quantum prisoner’s dilemma to the case where the players share nonmaximally 

entangled states and realized the quantum game on nuclear magnetic resonance quantum computer [19]. 

 

Iqbal and Toor introduced the quantized evolutionary game concepts by integrating quantum mechanics 

into biology. They explored the aftereffects when a limited group of mutants using quantum strategies 

attempt to pervade a classical evolutionarily stable strategy in a biological population operated in the 

symmetric game of Prisoner’s Dilemma [20], and equilibria of replicator dynamics [21]. 

 

By following these recent works, it is aimed to construct a quantized game model of HIV-1 phenotypes’ 

evolutionary process in this study. 
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Definition 3. A quantum game 𝑄 is defined as 𝑄 =  𝑄(𝐻, Λ, {𝑠𝑖}𝑗, {𝜋𝑖}𝑗) where 𝐻 is a Hilbert space, Λ is 

the initial state of the game, {𝑠𝑖}𝑗 is the set of moves of player j, {𝜋𝑖}𝑗 is the set of payoffs to player 𝑗 and 

the object of the game is determining the strategies that maximize the payoffs to player 𝑗 [22]. 

Quantum computation uses the Dirac notation. The Dirac notation labels a quantum state 𝜓 by the ket |𝜓⟩ 
which belongs to Hilbert space. A quantum state is a complex combination of an 𝑛-dimensional 

orthonormal basis (|𝜔𝑖⟩, 𝑖 = 1,2, … . , 𝑛) for Hilbert space as |𝜓⟩ = ∑ 𝑐𝑖
𝑛
𝑖=1 |𝜔𝑖⟩, where the 𝑐𝑖 are complex 

numbers.  

The bit is the fundamental unit of information in classical computation, taking the values 0 or 1. Its quantum 

analog is the quantum bit or qubit. Amongst its possible values, |0⟩ or |1⟩, known as the computational 

basis states. However, a qubit may also be a convex linear combination or superposition |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, 
with the normalization condition |𝛼|2 + |𝛽|2 = 1 [23]. 

Unitary operators are used to transforming states in quantum game theory. An operator is unitary if its 

Hermitian conjugate or adjoint is equal to its inverse. For a two-state system, it is useful to do this with the 

Pauli spin matrices 𝜎𝑥 (the not operator), 𝜎𝑦, 𝜎𝑧, and the Hadamard matrix (𝐻) [22] which are given in 

below 

 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

) and 𝐻 =
1

√2
(

1 1
1 −1

).              (2) 

 

𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and the identity matrix (𝐼) form a basis for the space of 2 × 2 unitary matrices. On the other part, 

the Hadamard matrix is a superposition halfway between |0⟩ and |1⟩. 
 

Quantum game theory requires an initial state for the game to start searching for the optimal strategies. For 

this game, the initial state of the game is defined as the competition of the phenotypes 𝑣 and 𝑣. The qubits 

of the strategies mapped as |0⟩ for 𝑣 and |1⟩ for 𝑉. Then, the initial state of the game becomes, 

Λ = 𝑈|𝑣𝑣⟩ = 𝑈|00⟩                                                                                                                                    (3) 

where 𝑈 is a unitary operator. 𝑈𝑣 is the set of moves (𝑠𝑣) of the phenotype 𝑣, and the 𝑈𝑉 is the set of moves 

(𝑠𝑉) of the phenotype 𝑉. Following the initial state 𝑈|00⟩ and after the phenotypes (𝑣, 𝑉) made their moves 

the state of the game becomes,  

(𝑈𝑣 ⊗ 𝑈𝑉)𝑈|00⟩.                                                                                                                                        (4) 

Then the phenotypes forward their qubits for final measurement. 𝑈† (the inverse of the unitary operator 𝑈) 

is applied, to bring the game to the state: 

|𝜓𝑓⟩ = 𝑈†(𝑈𝑣 ⊗ 𝑈𝑉)𝑈|00⟩.                                                                                                                      (5) 

 

The expected payoffs of the players (𝜋𝑣, 𝜋𝑉) can be obtained by using the outcomes of the game from Table 

2 as follows, 

𝜋𝑣 = 𝛼|⟨𝜓𝑓|00⟩|
2

+ 𝛽|⟨𝜓𝑓|01⟩|
2

+ 𝛾|⟨𝜓𝑓|10⟩|
2

+ 𝜃|⟨𝜓𝑓|11⟩|
2
                                                             (6) 

and 

𝜋𝑉 = 𝛼|⟨𝜓𝑓|00⟩|
2

+ 𝛾|⟨𝜓𝑓|01⟩|
2

+ 𝛽|⟨𝜓𝑓|10⟩|
2

+ 𝜃|⟨𝜓𝑓|11⟩|
2
.                                                            (7) 

For this game, the unitary matrix 𝑈 is defined as 

𝑈 =
1

√2
(𝐼⨂ 2 + 𝑖𝜎𝑥

⨂ 2)                                                                                                                                 (8) 

and the inverse of unitary operator 𝑈†, 
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𝑈† =
1

√2
(𝐼⨂ 2 − 𝑖𝜎𝑥

⨂ 2)                                                                                                                               (9) 

to give equal probability to each quantum move where ⨂2 denotes the tensor product 2 times. After the 

implementation of 𝑈 on the initial state Λ, the state of the system turns into, 

 

𝑈|00⟩ =
1

√2
(|00⟩ + 𝑖|11⟩).                                                                                                                       (10) 

 

3. THE QUANTUM GAME OF PHENOTYPES 
 

To start with, it is assumed that the phenotypes can play the quantum moves 𝐼 and 𝜎𝑥 (𝑠𝑣 , 𝑠𝑉 = {𝐼, 𝜎𝑥}). If 

the phenotype plays 𝐼, the state remains the same, and if the phenotype plays 𝜎𝑥 (the not operator), the state 

transforms into applied the not state. Table 4 represents the quantum payoffs that can be adapted from Table 

2. 

Table 4. Quantum payoffs of the game for the first scenario 

Quantum moves 𝑰 𝝈𝒙 

𝑰 (𝛼, 𝛼) (𝛽, 𝛾) 

𝝈𝒙 (𝛾, 𝛽) (𝜃, 𝜃) 

 

Then the quantum states that can discoverable related to these states and the expected payoffs are obtained 

by using the Equations (8) - (9) as follows, 

 

• if both phenotypes play their 𝐼 operator the state of the system becomes, 

   (𝐼 ⊗ 𝐼)𝑈|00⟩ =
1

√2
(|00⟩ + 𝑖|11⟩)                                                                                             (11) 

𝑈†(𝐼 ⊗ 𝐼)𝑈|00⟩ = 𝑈† 1

√2
(|00⟩ + 𝑖|11⟩) = |00⟩                                                                         (12) 

with the probability 1. The outcomes of the phenotypes for this state can be obtained from Table 

4 as 𝜋𝑣 = 𝛼, 𝜋𝑉 = 𝛼. 

 

• if the first phenotype plays 𝜎𝑥 and the second phenotype plays 𝐼, 

(𝜎𝑥 ⊗ 𝐼)𝑈|00⟩ =
1

√2
(|10⟩ + 𝑖|01⟩)                                                                                             (13) 

𝑈†(𝜎𝑥 ⊗ 𝐼)𝑈|00⟩ = 𝑈† 1

√2
(|10⟩ + 𝑖|01⟩) = |10⟩                                                                      (14) 

with the probability 1 and the outcomes are 𝜋𝑣 = 𝛾, 𝜋𝑉 = 𝛽. 

 

• if the first phenotype plays 𝐼 and the second phenotype plays 𝜎𝑥, 

             (𝐼 ⊗ 𝜎𝑥)𝑈|00⟩ =
1

√2
(|01⟩ + 𝑖|10⟩)                                                                                            (15) 

             𝑈†(𝐼 ⊗ 𝜎𝑥)𝑈|00⟩ = 𝑈† 1

√2
(|01⟩ + 𝑖|10⟩) = |01⟩                                                                     (16) 

with the probability 1 and the outcomes are 𝜋𝑣 = 𝛽, 𝜋𝑉 = 𝛾. 

• if both phenotypes play 𝜎𝑥, 
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            (𝜎𝑥 ⊗ 𝜎𝑥)𝑈|00⟩ =
1

√2
(|11⟩ + 𝑖|00⟩)                                                                                           (17) 

𝑈†(𝜎𝑥 ⊗ 𝜎𝑥)𝑈|00⟩ = 𝑈† 1

√2
(|11⟩ + 𝑖|00⟩) = |11⟩                                                                    (18) 

with the probability 1 and the outcomes are 𝜋𝑣 = 𝜃, 𝜋𝑉 = 𝜃. 

These four states are the classical outcomes of the game. Therefore, this result indicates that the classical 

game is a specific form of the quantum game. 

Then it is assumed that a mutant H comes into the population that can play the Hadamard matrix. In such a 

case, if the first phenotype plays I and the second phenotype plays H, the expected payoffs are obtained as 

follows, 

(𝐼 ⊗ 𝐻)𝑈|00⟩ =
1

2
[|00⟩ + |01⟩ + 𝑖|10⟩ − 𝑖|11⟩]                                                                                     (19) 

 

𝑈†(𝐼 ⊗ 𝐻)𝑈|00⟩ =
1

√2
(|01⟩ − 𝑖|11⟩)                                                                                                     (20) 

 

𝜋𝑣 = 𝛽|⟨𝜓𝑓|01⟩|
2

+ 𝜃|⟨𝜓𝑓|11⟩|
2

= 𝛽 |
1

√2
|

2
+ 𝜃 |

−𝑖

√2
|

2
=

𝛽+𝜃

2
                                                                 (21) 

 

and 

 

𝜋𝑉 = 𝛾|⟨𝜓𝑓|01⟩|
2

+ 𝜃|⟨𝜓𝑓|11⟩|
2

= 𝛾 |
1

√2
|
2

+ 𝜃 |
−𝑖

√2
|

2
=

𝛾+𝜃

2
.                                                                 (22) 

 

In this decision environment, the possible expected payoffs of phenotypes can be calculated in the same 

way, and they are represented in Table 5 for all quantum move combinations. 

Table 5. Quantum payoffs of the game for the second scenario 

Quantum moves 𝑰 𝝈𝒙 Mutant H 

𝑰 (𝛼, 𝛼) (𝛽, 𝛾) 
(
𝛽 + 𝜃

2
,
𝛾 + 𝜃

2
) 

𝝈𝒙 (𝛾, 𝛽) (𝜃, 𝜃) 
(
𝛽 + 𝜃

2
,
𝛾 + 𝜃

2
) 

Mutant H 
(
𝛾 + 𝜃

2
,
𝛽 + 𝜃

2
) (

𝛾 + 𝜃

2
,
𝛽 + 𝜃

2
) (

𝛼 + 𝛽 + 𝜃 + 𝛾

4
,
𝛼 + 𝛽 + 𝜃 + 𝛾

4
) 

 

The evolutionarily stable state and the Nash equilibrium of this game occur at the quantum moves 

combination (𝐻 − 𝐻). But still, it is not Pareto optimal. 

Then it is assumed that a mutant comes into the population which can play 𝜎𝑧 operator. For instance, if both 

phenotypes play 𝜎𝑧, the expected payoffs are calculated as shown below, 

(𝜎𝑧 ⊗ 𝜎𝑧)𝑈|00⟩ =
1

√2
(|01⟩ − 𝑖|11⟩)                                                                                                       (23) 

𝑈†(𝜎𝑧 ⊗ 𝜎𝑧)𝑈|00⟩ = |00⟩                                                                                                                       (24) 

with the probability 1 and the outcomes are 𝜋𝑣 = 𝛼, 𝜋𝑉 = 𝛼.  

The other possible payoffs can be calculated similarly. For this scenario, the payoff matrix is constructed 

as given in Table 6 for all quantum moves combinations. 
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Table 6. Quantum payoffs of the game for the third scenario 

Quantum 

moves 

𝑰 𝝈𝒙 Mutant H Mutant 𝝈𝒛 

𝑰 (𝛼, 𝛼) (𝛽, 𝛾) 
(
𝛽 + 𝜃

2
,
𝛾 + 𝜃

2
) 

(𝜃, 𝜃) 

𝝈𝒙 (𝛾, 𝛽) (𝜃, 𝜃) 
(
𝛽 + 𝜃

2
,
𝛾 + 𝜃

2
) 

(𝛽, 𝛾) 

Mutant H 
(
𝛾 + 𝜃

2
,
𝛽 + 𝜃

2
) (

𝛾 + 𝜃

2
,
𝛽 + 𝜃

2
) (

𝛼 + 𝛽 + 𝜃 + 𝛾

4
,
𝛼 + 𝛽 + 𝜃 + 𝛾

4
) (

𝛼 + 𝛽

2
,
𝛼 + 𝛾

2
) 

Mutant 𝝈𝒛 (𝜃, 𝜃) (𝛾, 𝛽) 
(
𝛼 + 𝛾

2
,
𝛼 + 𝛽

2
) 

(𝛼, 𝛼) 

 

The evolutionarily stable state and the Nash equilibrium are achieved at the quantum moves combination 

Mutant (𝜎𝑧, 𝜎𝑧), with the payoff (𝛼, 𝛼) that is also Pareto optimum. Thus, Pareto optimum evolutionarily 

stable strategies are obtained by the advantage of using quantum randomization. 

 

4. CONCLUSION 

 

Quantum games put a new complexion on the classical problems and dilemmas in game theory. Studies in 

recent years show that the adaptation of quantum mechanics to game theory provides more practical results 

in analyzing biological processes. 

 

Consistent with previous findings, in this study, it is shown that quantum game theory obtains a different 

equilibrium point from the classical game theory that is also Pareto optimum. According to the solution of 

this problem, it is not a good action to give priority to just one phenotype that has a high production rate in 

the treatment process as classical game theory suggests. In terms of the quantum approach, there may 

emerge different mutant strategies of phenotypes, and they may find an equilibrium point by using 

quantized strategies.  

This result also suggests that there could be evolutionary pressures to develop quantum strategies in micro-

level biological games and in future research decision-making environments in which the rules of quantum 

mechanics work should be designed for such games. Because computational resources that the universe is 

made available to us allow you to do things that you cannot do classically. 
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