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THE LOMAX-LINDLEY DISTRIBUTION: PROPERTIES AND

APPLICATIONS TO LIFETIME DATA
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Department of Mathematics, Maku Branch, Islamic Azad University, Maku, IRAN

Abstract. This paper introduces a new three-parameter distribution which is
obtained by combining the Lomax and Lindley distributions in a serial system

and is called the Lomax-Lindley distribution. The new distribution is quite
flexible to model lifetime data. This distribution provides a simple form for

hazard rate function which can be increasing, decreasing, bathtub-shaped and

unimodal for different choices of the parameter values. Some statistical prop-
erties of the Lomax-Lindley distribution such as quantiles, moments, order

statistics, Renyi entropy and mean deviations are discussed. The maximum

likelihood estimators of its unknown parameters are obtained and the approx-
imate confidence intervals of the parameters are provided. A Monte Carlo

simulation study is conducted to investigate the performance of the maximum

likelihood estimators and their corresponding confidence intervals. Finally, two
real data sets having bathtub-shaped and unimodal hazard rate functions are

analyzed and it is shown that the proposed distribution can provide a better

fit than other distributions for both lifetime data.

1. Introduction

The Lomax (also known as the Pareto Type II) distribution has been intro-
duced by Lomax [16] as a model for lifetime data analysis. The Lomax distribution
is a heavy-tailed distribution and it has wide applications in many fields such as
business, economics, actuarial modeling, queuing problems, biological sciences, re-
liability and life testing problems. For more details we refer to Arnold [5].

The cumulative distribution function (cdf) of the Lomax distribution with two
parameters α and β is given by

F (x) = 1− (1 + βx)
−α
, x > 0, α, β > 0. (1)

Keywords. Lomax distribution, Lindley distribution, maximum likelihood estimation, lifetime
data analysis.

bahtary@gmail.com

0000-0002-1517-7365.

©2021 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

965



966 B. TARVIRDIZADE

Another distribution that has been extensively used over the past decades for
modeling data in reliability, biology, insurance, finance and lifetime analysis is Lind-
ley distribution. This distribution was introduced by Lindley [15] in the context
of fiducial and Bayesian inference. Ghitany et al. [11] showed that the Lindley
distribution is more flexible than the exponential distribution for modeling lifetime
data. In recent years, Lindley distribution has been considered by several authors.
See, for example, Gupta and Singh [12] and Maiti and Mukherjee [17].

The cdf of the Lindley distribution with parameter θ is given by

F (x) = 1−
(

1 +
θx

θ + 1

)
e−θx, x > 0, θ > 0. (2)

Although the Lomax and the Lindley distributions are very useful for modeling
lifetime data, they have monotone hazard rate functions. The hazard rate function
of Lomax distribution is decreasing and that of Lindley distribution is increasing.
Therefore, these distributions may not provide a reasonable parametric fit for mod-
eling phenomena with non-monotone hazard rates such as the bathtub-shaped and
unimodal hazard rates which are often encountered in practice. In this regard, some
researchers have considered modified forms and generalizations of these distribu-
tions to provide more flexibility for describing different types of data. For example,
McDonald Lomax distribution by Lemonte and Cordeiro [14], Weibull-Lomax distri-
bution by Tahir et al. [23], Burr X exponentiated Lomax distribution by Aboraya
[1], new extended generalized lindley distribution by Maya and Irshad [19], odd
log-logistic Lindley distribution by Ozel et al. [21], odd log-logistic Marshal-Olkin
Lindley distribution by Alizadeh et al. [3] and exponentiated power Lindley power
series class of distributions by Alizadeh et al. [2]. Most of these distributions have
four or more parameters which cause estimation problems as a consequence of the
number of parameters. On the other hand, the hazard rate functions in most of
these models have the complex forms and therefore cannot have many applications
for lifetime data analysis in practice. Therefore, major motivation of this study is
to introduce a new flexible three-parameter distribution based on the Lomax and
the Lindley distributions which its hazard rate function is simple and can cover
monotone as well as non-monotone hazard rates.

To obtain more flexible models with simple hazard rate functions, a useful tech-
nique is combining the hazard rates of two distributions. For example, additive
Weibull distribution by Xie and Lai [25], new modified Weibull distribution by Al-
malki and Yuan [4] and power-exponential hazard rate distribution by Tarvirdizade
and Nematollahi [24] are some models introduced by using this technique. The goal
of this article is to propose a new three-parameter lifetime distribution called the
Lomax-Lindley (L-L) distribution using the combination of the Lomax and the
Lindley distributions in a serial system. The new distribution can be used effec-
tively for analyzing lifetime data since it provides a simple hazard function which
can cover increasing, decreasing, bathtub-shaped and unimodal hazard rates. Some
properties of the L-L distribution including the density and hazard rate functions,
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quantiles, moments, order statistics, Renyi entropy and mean deviations are pre-
sented. The method of maximum likelihood estimation (MLE) is used to estimate
the unknown parameters of this new class of distributions. The flexibility of the
new model is demonstrated by fitting the L-L distribution to two real data sets
having bathtub-shaped and unimodal hazard rate functions.

The contents of this paper are organized as follows. In Section 2, we define
the L-L distribution and and study the shape of the hazard rate function of this
model. In Section 3, we consider some distributional properties of the new model.
In Section 4, the MLEs of unknown parameters are discussed and their asymptotic
confidence intervals are provided. In Section 5, a Monte Carlo simulation study is
conducted. The applications of the L-L distribution are illustrated by analyzing
two real data sets in Section 6. Finally, the conclusions of this paper are given in
Section 7.

2. The L-L distribution

We define the cdf of the L-L distribution with three parameters α, β and θ as

F (x) = 1− (1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θx, x > 0, α > 0, β, θ ≥ 0, (3)

where β+θ > 0. The probability density function (pdf) of this distribution is given
by

f(x) =

(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−α
e−θx,

x > 0, α > 0, β, θ ≥ 0. (4)

Henceforth, we denote a random variable X having pdf (4) by X ∼ L-L(α, β, θ).
The L-L model in (4) can be interpreted as the lifetime of a serial system with
two components, one following Lomax distribution with parameters α and β and
another following Lindley distribution with parameter θ, and the system’s lifetime
is the minimum of the two components. Clearly, the L-L distribution contains
Lomax and Lindley distributions as special cases.

The hazard rate function of the L-L distribution takes a simple form as

h(x) =
αβ

1 + βx
+

θ2(1 + x)

1 + θ(1 + x)
. (5)

To derive the shape of h(x), we obtain the first derivative of (5) as

h′(x) = − αβ2

(1 + βx)
2 +

θ2

[1 + θ(1 + x)]
2 .

Setting h′(x) = 0, we obtain

x0 =

√
αβ(1 + θ)− θ
θβ(1−

√
α)

.
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Then it can be seen that the hazard rate function has bathtub-shaped property if

α < 1, β <
1√
α
, θ <

√
αβ

1−
√
αβ

,

and the hazard rate function is unimodal if

α > 1, β <
1√
α
, θ >

√
αβ

1−
√
αβ

.

For other values of the parameters α, β and θ, the hazard rate function can also
be increasing or decreasing. Plots of increasing, bathtub-shaped, decreasing and
unimodal hazard rate functions of the L-L distribution and the corresponding pdfs
for different values of the parameters α, β and θ are displayed in Figures 1 and 2,
respectively.
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Figure 1. The increasing and bathtub-shaped hazard rate func-
tions of the L-L distribution and the corresponding pdfs for differ-
ent parameter values.

3. Properties of the L-L distribution

We discuss some of the basic statistical properties of the L-L distribution in this
section, which consist of quantiles, moments, order statistics, Renyi entropy and
mean deviations.
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Figure 2. The decreasing and unimodal hazard rate functions
of the L-L distribution and the corresponding pdfs for different
parameter values.

3.1. Quantiles. The quantile function is one of the important functions in prob-
ability theory and statistical applications which can be used in data generation
from a distribution. The qth quantile (xq) of the L-L(α, β, θ) is obtained by solving
F (xq) = q where F (x) is given in (3). It can be easily shown that xq is the real
solution of the following equation

α log(1 + βxq)− log

(
1 +

θxq
θ + 1

)
+ θxq + log(1− q) = 0.

The above equation has no closed form solution in xq and therefore, a numerical
technique such as the Newton-Raphson method can be employed to get the quantile.
In particular, the median of the L-L(α, β, θ) is obtained for q = 0.5.

3.2. Moments. The rth moment (µr) of the L-L(α, β, θ) could be obtained from
(4) and integration by parts as follow:

µr = E(Xr) =

∫ ∞
0

xr
(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−α
e−θxdx

=

∫ ∞
0

rxr−1(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx, r = 1, 2, .... (6)

Now, using the Taylor expansion

(1 + βx)
−α

=

∞∑
i=0

(−1)
i

(
α+ i− 1

i

)
(βx)i, (7)
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it follows from (6) that

µr =

∞∑
i=0

(−1)
i
βi
(
α+ i− 1

i

)∫ ∞
0

rxr+i−1
(

1 +
θx

θ + 1

)
e−θxdx. (8)

Finally, using the transformation y = θx, we obtain the rth moment of the L-
L(α, β, θ) as

µr =

∞∑
i=0

(−1)
i
βi
(
α+ i− 1

i

)
r

θr+i

[
Γ (r + i) +

1

θ + 1
Γ (r + i+ 1)

]
, (9)

where Γ(.) is the gamma function.
Some of the most important characteristics of a distribution can be obtained

through moments. For example, the measures of variance, skewness and kurto-
sis of the L-L distribution can be obtained according to the following relations,
respectively,

σ2 = µ2 − µ2
1, SK =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
, KU =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1

(µ2 − µ2
1)

2 .

3.3. Order statistics. Order statistics make their appearance in many areas of
statistical theory and practice. In this subsection, we provide an expression for the
pdf of the ith order statistic (Xi:n) of a random sample X1, X2, ..., Xn drawn from
the L-L(α, β, θ). From Balakrishnan and Nagaraja [6], the pdf of Xi:n is given by

fi:n(x) =
1

B(i, n− i+ 1)
f(x)F (x)i−1(1− F (x))n−i, (10)

where B(., .) is the beta function. Using (3), (4) and the binomial expansion, we
have

fi:n(x) =
1

B(i, n− i+ 1)

i−1∑
j=0

(−1)
j

(
i− 1
j

)(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
×

(
1 +

θx

θ + 1

)n−i+j
(1 + βx)

−(n−i+j+1)α
e−(n−i+j+1)θx

=
1

B(i, n− i+ 1)

i−1∑
j=0

n−i+j∑
k=0

(−1)
j

(
i− 1
j

)(
n− i+ j

k

)(
θx

θ + 1

)k
×

(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−(n−i+j+1)α
e−(n−i+j+1)θx.

(11)

Some statistical properties of the L-L distribution such as moments, generating
function and mean deviations of the order statistics can be derived using (11).
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3.4. Renyi entropy. The entropy is an index for measuring variation or uncer-
tainty of a random variable and has been used in many fields such as physics,
engineering and economics among others. A popular entropy measure is Renyi
entropy. Renyi entropy of a random variable with pdf f(.) is defined as follows:

IR(r) =
1

1− r
log

∫ ∞
0

fr(x)dx,

where r > 0 and r 6= 1. Let X ∼ L-L(α, β, θ). Then, using (4) and the binomial
expansion, we have

fr(x) =

r∑
i=0

(
r
i

)
(αβ)

i

(
1 +

θx

θ + 1

)i(
θ2(1 + x)

1 + θ

)r−i
(1 + βx)

−(rα+i)
e−rθx

=

r∑
i=0

r−i∑
j=0

(
r
i

)(
r − i
j

)
(−1)

j
(αβ)

i
θr−i

(
1

θ + 1

)j(
1 +

θx

θ + 1

)r−j
×(1 + βx)

−(rα+i)
e−rθx

=

r∑
i=0

r−i∑
j=0

r−j∑
k=0

(
r
i

)(
r − i
j

)(
r − j
k

)
(−1)

j
(αβ)

i
θr−i

(
1

θ + 1

)j(
θx

θ + 1

)k
×(1 + βx)

−(rα+i)
e−rθx.

Now, using the Taylor expansions of (1 + βx)
−(rα+i)

, it follows that

fr(x) =

r∑
i=0

r−i∑
j=0

r−j∑
k=0

∞∑
`=0

(
r
i

)(
r − i
j

)(
r − j
k

)(
rα+ i+ `− 1

`

)
×(−1)j+`(αβ)iθr−i

(
1

θ + 1

)j(
θx

θ + 1

)k
(βx)`e−rθx.

Finally, by making the transformation y = rθx and by identifying a gamma density
inside the integral sign, Renyi entropy of X is given by

IR(r) =
1

1− r
log

r∑
i=0

r−i∑
j=0

r−j∑
k=0

∞∑
`=0

(
r
i

)(
r − i
j

)(
r − j
k

)(
rα+ i+ `− 1

`

)
× (−1)

j+`
αiβi+`θr−i+k

(θ + 1)
j+k

Γ(k + `+ 1)

(rθ)
k+`+1

. (12)

The values of some important measures of the L-L distribution such as the
median, mean, variance, skewness, kurtosis and Renyi entropy (r = 2) for various
choices of the parameters (α, β, θ) are presented in Table 1.

3.5. Mean deviations. The totality of deviations from the mean and median is
an index for measuring the amount of scatter in a population. Let X be a random
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Table 1. The values of some measures of the L-L distribution for
different parameter values

α β θ Median Mean Variance Skewness Kurtosis IR(2)
0.5 0.5 0.5 1.6632 2.3438 5.1731 1.8618 8.0781 1.5610
0.5 0.5 3 0.2716 0.3835 0.1392 1.8874 8.2468 -0.2493
0.5 1 0.5 1.2725 1.9780 4.5025 2.0830 9.2932 1.3022
0.5 1 3 0.2512 0.3602 0.1276 1.9563 8.6825 -0.3232
1 0.5 0.5 1.1298 1.7308 3.4137 2.1972 10.267 1.1925
1 0.5 3 0.2490 0.3547 0.1219 1.9365 8.5762 -0.3338
1 1 0.5 0.7273 1.2819 2.4594 2.6654 13.755 0.7655
1 1 3 0.2159 0.3155 0.1027 2.0620 9.4225 -0.4701
2 0.5 0.5 0.6514 1.0642 1.5340 2.6978 14.694 0.6536
2 0.5 3 0.2129 0.3074 0.0947 2.0165 9.1454 -0.4868
2 1 0.5 0.3668 0.6666 0.7861 3.5006 23.599 0.0906
2 1 3 0.1673 0.2500 0.0685 2.2203 10.670 -0.7202

variable with cdf (3), pdf (4), mean µ and median M . Then, the mean deviation
from the mean and the mean deviation from the median are defined by

δ(µ) =

∫ ∞
0

|x− µ| f(x)dx = 2µF (µ)− 2I(µ),

and

δ(M) =

∫ ∞
0

|x−M | f(x)dx = 2MF (M)−M + µ− 2I(M),

respectively, where

I(a) =

∫ a

0

xf(x)dx = aF (a)−
∫ a

0

F (x)dx

= −a(1 + βa)
−α
(

1 +
θa

θ + 1

)
e−θa +

∫ a

0

(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx,

and using (7) and the Taylor expansion of e−θx,∫ a

0

(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx

=

∞∑
i=0

∞∑
j=0

(−1)
i+j

j!

(
α+ i− 1

i

)
βiθj

∫ a

0

xi+j
(

1 +
θx

θ + 1

)
dx

=

∞∑
i=0

∞∑
j=0

(−1)
i+j

j!

(
α+ i− 1

i

)
βiθj

(
ai+j+1

i+ j + 1
+

θ

θ + 1

ai+j+2

i+ j + 2

)
.
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4. Maximum likelihood estimation

In this section, we apply the maximum likelihood method for estimating the
unknown parameters α, β and θ. Let x = (x1, x2, ..., xn) be n observations of a
random sample from the L-L(α, β, θ). The likelihood function of this sample using
(4) can be written as

L(α, β, θ|x) =

n∏
i=1

(
θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

1 + θ

)
(1 + βxi)

−(α+1)
e−θxi , (13)

and hence the log-likelihood function is given by

`(α, β, θ|x) =

n∑
i=1

log
(
θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
−n log(θ + 1)− (α+ 1)

n∑
i=1

log(1 + βxi)− θ
n∑
i=1

xi. (14)

Setting the first partial derivatives of ` with respect to α, β and θ equal to zero,
the likelihood equations are obtained in the following form

∂`

∂α
=

n∑
i=1

(
β(1 + θ + θxi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
−

n∑
i=1

log(1 + βxi) = 0,

(15)

∂`

∂β
=

n∑
i=1

(
θ2(1 + xi)xi + α(1 + θ + θxi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
− (α+ 1)

n∑
i=1

xi
1 + βxi

= 0,

(16)

∂`

∂θ
=

n∑
i=1

(
2θ(1 + xi)(1 + βxi) + αβ(1 + xi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
− n

θ + 1
−

n∑
i=1

xi = 0.

(17)

To find the MLEs of α, β and θ, say α̂, β̂ and θ̂, we should solve the above system of
non-linear equations (15)–(17) with respect to α, β and θ. These equations cannot
be solved analytically and therefore, we have to solve the equations numerically. We
can use iterative techniques such as a Newton-Raphson type algorithm to obtain
the MLEs of the parameters α, β and θ. The subroutines to solve non-linear
optimization problem are available in R software. We maximize the log-likelihood
function using nlm() package.

To obtain the confidence intervals for the parameters α, β and θ, the distributions

of the MLEs α̂, β̂ and θ̂ are needed. Since the MLEs were not obtained in closed
forms, then it is not possible to derive their exact distributions. Thus, for interval
estimation of the parameters α, β and θ, we derive the approximate confidence
intervals of the parameters based on the asymptotic distributions of their MLE
which is need to calculate the Fisher information matrix. We obtain the observed
information matrix since the expected information matrix is very complicated and
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will require numerical integration. The elements of the 3×3 observed information
matrix I are given in the Appendix. Then the asymptotic distribution of the MLE
of the parameters α, β and θ is given by α̂

β̂

θ̂

 ∼ N
 α

β
θ

 ,V

 , (18)

where V is the variance-covariance matrix and can be approximated by the re-
ciprocal of the observed information matrix, i.e., V = I−1. Since V involves the
parameters α, β and θ, we replace the parameters by the corresponding MLEs in
order to obtain an estimate of V, which is denoted by

V̂ =

 V̂11 V̂12 V̂13
V̂21 V̂22 V̂23
V̂31 V̂32 V̂33

 =

 Î11 Î12 Î13
Î21 Î22 I23
Î31 Î32 Î33

−1, (19)

where Îij is the (i, j)th element of the observed information matrix I when α, β

and θ are replaced by α̂, β̂ and θ̂, respectively. Now, using (18), the 100(1 −
γ)% approximate confidence intervals for the parameters α, β and θ are given,
respectively, as

α̂± zγ/2
√
V̂11, β̂ ± zγ/2

√
V̂22, θ̂ ± zγ/2

√
V̂33, (20)

where zγ/2 is the (1− γ/2) quantile of the standard normal distribution.

5. A simulation study

In this section, we perform a Monte Carlo simulation study to assess the perfor-
mance of the point and interval estimates of the parameters presented in Section
4. The performance of the MLEs is compared in terms of their average estimates
and mean squared errors (MSEs). We also compare the performance of the confi-
dence intervals in terms of their expected length and coverage probability. To this
end, the samples of size n = 10, 30, 80, 150 are generated from the L-L distribution
with three different values for the parameters (α, β, θ), namely, (0.5, 0.5, 2), (0.5,
1, 2), and (1.5, 0.5, 2) which correspond to the increasing, bathtub-shaped and
unimodal hazard rates, respectively. We report the average estimates and MSEs
of the parameters in Table 2. The expected length and coverage probability of the
confidence intervals for confidence level (1− γ) = 0.95 are also reported in Table 3.
This simulation study is performed using the statistical software R and the number
of Monte Carlo replications was 5000.

The results of Table 2 indicate that the MSEs for all the selected parameter values
decrease with increasing the sample size, which confirm the consistency properties
of the MLEs. Based on the results in Table 3, it is observed that increasing the
sample size result in a decrease in the expected lengths of the intervals. Also,
the assessment of the coverage probabilities show that the approximate confidence
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Table 2. Average estimates and MSEs (in parentheses) of the param-
eters (α, β, θ)

n α = 0.5 β = 0.5 θ = 2
10 0.1029 (0.4945) 0.0113 (0.2918) 2.3134 (0.6471)
30 0.0719 (0.3537) 0.0134 (0.2635) 2.2286 (0.2787)
80 0.0058 (0.2878) 0.0097 (0.2583) 2.2473 (0.1249)
150 0.0085 (0.2510) 0.0112 (0.2488) 2.2568 (0.0993)
n α = 0.5 β = 1 θ = 2
10 0.0523 (0.4019) 0.0584 (1.3474) 2.7009 (1.3509)
30 0.0382 (0.3736) 0.0380 (0.9569) 2.4825 (0.3880)
80 0.0257 (0.3080) 0.0249 (0.8908) 2.4428 (0.2663)
150 0.0135 (0.2483) 0.0139 (0.7824) 2.4000 (0.1915)
n α = 1.5 β = 0.5 θ = 2
10 0.7741 (6.5418) 0.1515 (0.8265) 2.9206 (1.9750)
30 0.2392 (2.3196) 0.0669 (0.2934) 2.7443 (0.7976)
80 0.1907 (1.9680) 0.0665 (0.2554) 2.6547 (0.5210)
150 0.2264 (1.8560) 0.0845 (0.2158) 2.6232 (0.4418)

Table 3. Expected lengths and coverage probabilities (in parentheses)
of the parameters (α, β, θ)

n α = 0.5 β = 0.5 θ = 2
10 2.3847 (0.874) 6.7524 (0.951) 3.4349 (0.848)
30 1.6174 (0.849) 6.3374 (0.964) 2.8423 (0.890)
80 1.3127 (0.870) 5.5297 (0.956) 2.3102 (0.862)
150 0.9047 (0.866) 4.5623 (0.978) 1.7505 (0.872)
n α = 0.5 β = 1 θ = 2
10 2.5894 (0.824) 7.7381 (0.894) 5.6279 (0.944)
30 1.9630 (0.806) 6.3784 (0.892) 4.1238 (0.948)
80 1.1327 (0.778) 3.0566 (0.898) 2.4911 (0.934)
150 0.7995 (0.752) 1.9818 (0.887) 1.5862 (0.942)
n α = 1.5 β = 0.5 θ = 2
10 3.6819 (0.786) 6.8136 (0.978) 5.7652 (0.928)
30 2.2182 (0.768) 5.4194 (0.971) 3.2770 (0.904)
80 1.2703 (0.757) 3.5746 (0.968) 1.8928 (0.913)
150 0.8794 (0.734) 2.6734 (0.973) 1.2594 (0.921)

intervals for most of the parameters provides the coverage probabilities smaller than
their nominal level.
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6. Applications

In this section, two applications to real data sets with bathtub-shaped and uni-
modal hazard rates are considered in order to illustrate the potentiality of the
L-L distribution. We use goodness-of-fit tests including the Anderson-Darling (A-
D) and Kolmogorov-Smirnov (K-S) tests to compare the L-L distribution with its
sub-models, namely the Lindley and Lomax distributions, and the following three-
parameter distributions:

(1) Exponential Lomax (E-Lo) distribution with the pdf

f(x) =
αλ

β

(
β

x+ β

)−α+1

e−λ(
β
x+β )

−α

, x > 0, α, β, λ > 0,

which was introduced by El-Bassiouny et al. [10].

(2) Generalized Lomax (G-Lo) distribution with the pdf

f(x) = αβγxγ−1(1 + βxγ)−(α+1), x > 0, α, β, γ > 0,

which was introduced by Maurya et al. [18].

(3) Lindley-Lomax (Li-Lo) distribution with the pdf

f(x) =
αθ2

σ(θ + 1)

[
1 + α log

(
1 +

x

σ

)](
1 +

x

σ

)−(αθ+1)

, x > 0, α, θ, σ > 0,

which was introduced by Cakmakyapan and Ozel [7].

(4) Lindley Weibull (Li-W) distribution with the pdf

f(x) =
βθ2

(θ + 1)

(
αβxβ−1 + α2βx2β−1

)
e−θ(αx)

β

, x > 0, α, β, θ > 0,

which was introduced by Cordeiro et al. [8].

(5) Extended Generalized Lindley (EG-Li) distribution with the pdf

f(x) =
λ2(1 + x)

[
1−

(
1 + λx

1+λ

)
e−λx

]α−1 {
α+ (γ − α)

[
1−

(
1 + λx

1+λ

)
e−λx

]γ}
(1 + λ)eλx

{[
1−

(
1 + λx

1+λ

)
e−λx

]α
+ 1−

[
1−

(
1 + λx

1+λ

)
e−λx

]γ}2 ,

x > 0, α, γ, λ > 0,

which was introduced by Ranjbar et al. [22].

6.1. Bathtub-shaped hazard rate lifetime data. The first application consists
the times between failures (in hours) of load-haul-dump (LHD) machine used to
pick up rock or waste. The data has been obtained from Kumar et al. [13] and are
presented in Table 4. The TTT-plot presented by Kumar et al. [13] for this data
set exhibits a bathtub-shaped hazard rate function.
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Table 4. Times between failures of LHD machine (LHD data)

110 13 72 4 45 56 19 27 36 90 19 7 2 118 44 8 277
4 8 10 79 103 6 18 147 96 22 3 24 3 9 99 82 121
54 79 99 18 5 21 1 3 5 1 59 22 17 35 35 29

Table 5 present the MLEs of the model parameters as well as values of A-D
statistics, K-S statistics and their corresponding p-values for all models. These
results show that the L-L distribution has the lowest A-D and K-S values and, has
the biggest p-value of K-S test statistic among all the fitted models. Hence, L-L
distribution yields a better fit than Lindley, Lomax, E-Lo, G-Lo, Li-Lo, Li-W and
EG-Li distributions under these criteria. Furthermore, Figure 3 show the empirical
cdf versus fitted cdfs and the histogram of the data versus fitted pdfs for the LHD
data. This figure confirms the goodness-of-fit of L-L distribution with respect to
its sub-models and the other competitor distributions.

Substituting the MLE of the unknown parameters in (19), we obtain estimation

of the variance-covariance matrix V̂ as

V̂ =

 0.1227 −0.0316 −0.0017
−0.0316 0.0091 0.0004
−0.0017 0.0004 4.4× 10−5

 .

Therefore, the approximate 95% confidence intervals of the parameters α, β and
θ using (20) are given as (-0.2207, 1.1525), (-0.0966, 0.2789) and (0.0077, 0.0337),
respectively.

6.2. Unimodal hazard rate lifetime data. As second application, we consider
a clinical trial data set involving survival times (in days) of 45 head and neck cancer
patients in arm B which was considered earlier by Efron [9]. The data are presented
in Table 6. Mudholkar et al. [20] discussed that this data set indicates a unimodal
hazard rate function.

Table 5. MLEs of parameters, A-D statistic, K-S statistic and
corresponding p-value

Distribution Estimates A-D statistic K-S statistic p-value

Lindley(θ) 0.0432 - - 8.1689 0.2383 0.0068
Lomax(α, β) 0.0788 7020 - 17.006 0.5027 0.0000
L-L(α, β, θ) 0.4658 0.0911 0.0207 0.2864 0.0699 0.9672
E-Lo(α, β, λ) 0.8621 0.0254 0.0016 0.4053 0.0823 0.8865
G-Lo(α, β, γ) 77.547 0.0005 0.8717 0.4166 0.0830 0.8806
Li-Lo(α, θ, σ) 0.3819 15.138 8203.02 0.6425 0.0928 0.7816
Li-W(α, β, θ) 0.2223 0.6868 0.3984 0.4360 0.0845 0.8670
EG-Li(α, γ, λ) 0.4311 0.2170 0.0198 0.4810 0.0874 0.8386
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Figure 3. (a) The fitted cdfs and empirical cdf. (b) The fitted
pdfs and histogram of the data for LHD data.

Table 6. Survival times of 45 head and neck cancer patients (Can-
cer data)

37 84 92 94 110 112 119 127 130 133 140 146
155 159 169 173 179 194 195 209 249 281 319 339
432 469 519 528 547 613 633 725 759 817 1092 1245
1331 1557 1642 1771 1776 1897 2023 2146 2297

To compare the goodness of fit of L-L distribution with other distributions, the
MLEs of the model parameters as well as values of A-D statistics, K-S statistics
and their corresponding p-values for all models are calculated and the results are
reported in Table 7. It is observed that the L-L distribution provides the lowest
A-D and K-S values and, has the biggest p-value of K-S test statistic in comparison
with its sub-models and the other competitor distributions and therefore, it could
be chosen as the best model under these criteria. Figure 4 show the empirical cdf
versus fitted cdfs and the histogram of the data versus fitted pdfs for the cancer
data. This figure confirms the goodness-of-fit of L-L distribution with respect to
all the fitted distributions.

Substituting the MLE of the unknown parameters in (19), we obtain estimation

of the variance-covariance matrix V̂ as

V̂ =

 0.0937 8.6× 10−5 −3.1× 10−5

8.6× 10−5 2.1× 10−7 −4.9× 10−8

−3.1× 10−5 −4.9× 10−8 1.8× 10−7

 .
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Table 7. MLEs of parameters, A-D statistic, K-S statistic and
corresponding p-value

Distribution Estimates A-D statistic K-S statistic p-value

Lindley(θ) 0.0031 - - 7.5923 0.3037 0.0003
Lomax(α, β) 0.0626 7266.3 - 16.594 0.5436 0.0000
L-L(α, β, θ) 1.5395 0.0013 0.0010 1.0182 0.1258 0.4383
E-Lo(α, β, λ) 0.9813 0.8707 0.0015 1.3949 0.1579 0.1904
G-Lo(α, β, γ) 1.1442 0.0002 1.4413 1.0320 0.1341 0.3608
Li-Lo(α, θ, σ) 146.12 0.0151 321.13 1.0544 0.1334 0.3663
Li-W(α, β, θ) 0.0001 0.9759 10.344 1.3961 0.1582 0.1887
EG-Li(α, γ, λ) 0.5304 0.1198 0.0012 1.2175 0.1410 0.3027
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Figure 4. (a) The fitted cdfs and empirical cdf. (b) The fitted
pdfs and histogram of the data for cancer data.

Therefore, the approximate 95% confidence intervals of the parameters α, β and
θ using (20) are given as (0.9395, 2.1396), (0.0004, 0.0022) and (0.0002, 0.0019),
respectively.

7. Conclusions

In this paper, we have proposed a new three-parameter lifetime distribution
which is referred to as the the Lomax-Lindley distribution. This distribution is ob-
tained by combining the Lomax and Lindley distributions in a serial system. The
new distribution is quite flexible to model lifetime data since it provides a sim-
ple form for hazard rate function which can cover increasing, decreasing, bathtub-
shaped and unimodal hazard rates. We have studied some important mathematical
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properties of new distribution, which consist of quantiles, moments, order statis-
tics, Renyi entropy and mean deviations. The maximum likelihood estimation and
asymptotic confidence intervals for the model parameters are also discussed and a
simulation study is conducted to evaluate the performances of the point and in-
terval estimates of the parameters. Two real data sets having bathtub-shaped and
unimodal hazard rate functions are analyzed to show the superiority of the new
distribution. It observed that the present distribution can provide a better fit than
other competitor distributions for both lifetime data.

Appendix A

In Section 4, we used the observed information matrix I to construct the asymp-
totic confidence intervals for the parameters of the L-L distribution. The elements
of this matrix are given by

I11 =

n∑
i=1

(
β(1 + θ + θxi)

gi

)2

,

I12 = −
n∑
i=1

θ2(1 + xi)(1 + θ + θxi)

g2i
+

n∑
i=1

xi
1 + βxi

,

I22 =

n∑
i=1

(
θ2(1 + xi)xi + α(1 + θ + θxi)

gi

)2

− (α+ 1)

n∑
i=1

(
xi

1 + βxi

)2

,

I13 =

n∑
i=1

βθ(1 + xi)(1 + βxi)(2 + θ + θxi)

g2i
,

I23 = −
n∑
i=1

αθ2(1 + xi)
2 − 2αθ(1 + xi)(1 + θ + θxi)

g2i
,

I33 = −
n∑
i=1

2(1 + xi)(1 + βxi)gi − [2θ(1 + xi)(1 + βxi) + αβ(1 + xi)]
2

g2i
− n

(θ + 1)
2 ,

where

gi(α, β, θ) = θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi).

Appendix B

Some programs developed in R for the L-L distribution fitting and estimation of
its parameters are given as follows:

library(MASS)
# LHD data
x=c(110, 13, 72, 4, 45, 56, 19, 27, 36, 90, 19, 7, 2, 118, 44, 8, 277, 4, 8, 10, 79,

103, 6, 18, 147, 96, 22, 3, 24, 3, 9, 99, 82, 121, 54, 79, 99, 18, 5, 21, 1, 3, 5, 1, 59,
22, 17, 35, 35, 29)

n=50
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logL=function(par){
al=par[1]
be=par[2]
te=par[3]
-sum(log((1+x)*(1+be*x)*teˆ 2+al*be*(1+te+te*x))-log(te+1)-(al+1)

*log(1+be*x)-te*x)}
est=nlm(logL,c(1,.01,.01))
alpha=est $estimate[1]
beta=est$estimate[2]
theta=est$estimate[3]
print(c(alpha,beta,theta))

# Cumulative distribution function of the L-L distribution
F=function(z,al,be,te){
P=1-(1+te*z/(te+1))*exp(-te*z)/(1+be*z)ˆ al
return(P)
}
print(ks.test(x,”F”,alpha,beta,theta))

# Elements of the observed information matrix
g=(1+x)*(1+beta*x)*thetaˆ 2+alpha*beta*(1+theta+theta*x)
I=matrix(c(rep(0,9)),ncol=3)
I[1,1]=sum((beta*(1+theta+theta*x)/g)ˆ 2)
I[1,2]=I[2,1]=- sum((1+x)*(1+theta+theta*x)*thetaˆ 2/gˆ 2 -x/(1+beta*x))
I[1,3]=I[3,1]=sum(beta*theta*(1+x)*(1+beta*x)*(2+theta+theta*x)/gˆ 2)
I[2,2]=sum((((1+x)*x*thetaˆ 2+alpha*(1+theta+theta*x))/g)ˆ 2-(alpha+1)

*(x/(1+beta*x))ˆ 2)
I[2,3]=I[3,2]=- sum((alpha*thetaˆ 2*(1+x)ˆ 2-2*alpha*theta*(1+x)

*(1+theta+theta*x))/gˆ 2)
I[3,3]=- sum((2*(1+x)*(1+beta*x)*g-(2*theta*(1+x)*(1+beta*x)

+alpha*beta*(1+x))ˆ 2)/gˆ 2)-n/(theta+1)ˆ 2
V=ginv(I)
print(V)
al=alpha-qnorm(0.975)*sqrt(V[1,1])
au=alpha+qnorm(0.975)*sqrt(V[1,1])
print(c(al,au))
bl=beta-qnorm(0.975)*sqrt(V[2,2])
bu=beta+qnorm(0.975)*sqrt(V[2,2])
print(c(bl,bu))
tl=theta-qnorm(0.975)*sqrt(V[3,3])
tu=theta+qnorm(0.975)*sqrt(V[3,3])
print(c(tl,tu))
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