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Abstract. Integral inequalities are very important in applied sciences. Cheby-
shev�s integral inequality is widely used in applied mathematics. First of all,
some necessary de�nitions and results regarding conformable derivative are
given in this article. Then we give Chebyshev inequality for simultaneously
positive (or negative) functions using the conformable fractional derivative.
We used the Gronwall inequality to prove our results, unlike other studies in
the literature.

1. Introduction

Various de�nitions are given in the literature for fractional derivatives [8, 14,
17, 20]. Some of which are Riemann-Liouville, Caputo, Grünwald-Letnikov, Riesz,
Weyl fractional derivatives. Having more than one de�nition of derivative in frac-
tional analysis ensures that the most suitable one is used according to the type of
the problem and thus the best solution is obtained.
In [12], a new fractional derivative that is known as conformable derivative has

been de�ned by Khalil. This new fractional derivative based on classical limit def-
inition. Authors gave linearity condition, the product rule, the division rule, Rolle
theorem and mean value theorem for this new de�nition of fractional derivative.
They also de�ned the fractional integral of order 0 < � � 1 only.
In [1], de�nition of left and right conformable fractional integrals of any order

� > 0 has been given by Abdeljawad. He also gave chain rule, linear di¤erential
systems, Laplace transforms and exponential functions on a fractional version.
Conformable fractional derivative has been formulated in [1, 12] as

D�z(t) = lim
�!0

z(t+ �t1��)�z(t)
�

;
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or in [11] as

D�z(t) = lim
�!0

z(te�t��)�z(t)
�

; D �z(0) = limD
t!0+

�z(t);

provided the limit exist; in both we have

D�z(t) = t1��D
0
(t);

where z0
(t) = lim

�!0
[z(t+ �)�z(t)]=�.

In [2], Anderson and Ulness present an exact de�nition of a conformable frac-
tional derivative of order � for 0 � � � 1 and t 2 R, where D0 is the identity
operator and D1 is the classical di¤erential operator.
Monotonicity is an important part of applications of derivatives. The monocity

of a function gives an idea about behaviour of the function. Monotonic function is
de�ned as a function that is either completely non-increasing or completely non-
decreasing.
For monotonicity and convexity results for fractional integrals and some of their

application we recommend the readers to refer the literature [18,13,7, 5, 19].

2. Preliminaries

Main de�nitions and results of conformable derivatives from [2] will be presented
as follows:

De�nition 1. Let � 2 [0; 1] . A di¤erential operator D� is conformable if and
only if

D0z(t) = z(t) and D1z(t) =
d

dt
z(t) = z0(t); (1)

where D0 is the identity operator and D1 is the classical di¤erential operator.

De�nition 2. Let � 2 [0; 1] and let the functions �0; �1 : [0; 1] � R ! [0;1) be
continuous such that

lim
�!0+

�1(�; t) = 1; lim
�!0+

�0(�; t) = 0; 8t 2 R;

lim
�!1�

�1(�; t) = 0; lim
�!1�

�0(�; t) = 1;8t 2 R;

�1(�; t) 6= 0 , � 2 [0; 1); �0(�; t) 6= 0; � 2 (0; 1] , 8t 2 R:
Then the following di¤erential operator D�, de�ned via

D�z(t) = �1(�; t)z(t) + �0(�; t)z0(t); (3)

is conformable provided the function z is di¤erentiable at t and z0
= d
dtz.

For more information on conformable derivative and integral, we refer [1, 2, 12,
11,4].
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De�nition 3. (Partial Conformable Derivatives). Let � 2 [0; 1], and let
the functions �0; �1 : [0; 1] � R ! [0;1) be continuous and satisfy (2). Given a
function z : R2 ! R such that @

@tz(t; s) exists for each �xed s 2 R, de�ne the
partial di¤erential operator D�

t via

D�
t z(t; s) = �1(�; t)z(t; s) + �0(�; t)

@

@t
z(t; s): (4)

De�nition 4. (Conformable Exponential Function). Let � 2 (0; 1], the points
s; t 2 R with s � t, and the function � : [s; t] ! R be continuous. Let �0; �1 :
[0; 1] � R ! [0;1) be continuous and satisfy (2), with �=�0 and �1=�0 Riemann
integrable on [s; t]. After that the exponential function with respect to D� in (3) is
de�ned as follows

e�(t; s) = e

tR
s

�(�)��1(�;�)
�0(�;�)

d�
; e0(t; s) = e

�
tR
s

�1(�;�)

�0(�;�)
d�
: (5)

Lemma 5. (Basic Derivatives). Let the conformable di¤erential operator D�

be given as in (3), where � 2 [0; 1] , � : [s; t] ! R be continuous. Let �0; �1 :
[0; 1] � R ! [0;1) be continuous and satisfy (2), with �=�0 and �1=�0 Riemann
integrable on [s; t] . Assume the functions z and H are di¤erentiable as needed.
Then

(i) D�[az(t) + bH(t)] = aD�[z(t)] + bD�[H(t)] for all a; b 2 R;
(ii) D�[c] = c�1(�; t) for all constants c 2 R;
(iii) D�[z(t)H(t)] = z(t)D�[H(t)] +H(t)D�[z(t)]�z(t)H(t)�1(�; t);
(iv)D�[z(t)=H(t)] = H(t)D�[z(t)]�z(t)D�[H(t)]

H2(t) + z(t)
H(t)�1(�; t);

(v) for � 2 (0; 1] and �xed s 2 R, the exponential function satis�es
D�
t [e�(t; s)] = �(t)e�(t; s); (6)

for e�(t; s) given in (5);
(vi) for � 2 (0; 1] and for the exponential function e0 given in (5), we have

D�[

tZ
a

z(s)e0(t; s)
�0(�; s)

ds] = z(t). (7)

De�nition 6. Let � 2 (0; 1] and t0 2 R. In light of (5) and Lemma 1 (v) and (vi),
de�ne the antiderivative viaZ

D�z(t)d�t = z(t) + ce0(t; t0), c 2 R

Similarly, de�ne the integral of z over [a,b] as
tZ
a

z(s)e0(t; s)d�s =
tZ
a

z(s)e0(t; s)
�0(�; s)

ds; d�s =
1

�0(�; s)
; (8)
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recall that

e0(t; s) = e
�

tR
s

�1(�;�)

�0(�;�)
d�
= e

�
tR
s

�1(�;�)d��

from (5).

Lemma 7. Let the conformable di¤erential operator D� be given as in (3), the
integral be given as in (8) with � 2 (0; 1]. Let the functions �0; �1 be continuous
and satisfy (2), and let z and H be di¤erentiable as needed. Then

(i) the derivative of the de�nite integral of z is given by

D�[

tZ
a

z(s)e0(t; s)d�s] = z(t);

(ii) the de�nite integral of the derivative of z is given by
tZ
a

D�[z(s)]e0(t; s)d�s = z(s)e0(t; s) jts=a= z(t)�z(a)e0(t; a);

(iii) an integration by parts formula is given by
bZ
a

z(t)D�[H(t)]e0(b; t)d�t = z(t)H(t)e0(b; t) jbt=a

�
Z b

a

H(t)(D�[z(t)]� �1(�; ; t)z(t))e0(b; t)d�t;

(iv) a version of the Leibniz rule for di¤erentiation of an integral is given by

D�[

tZ
a

z(t; s)e0(t; s)d�s] =
tZ
a

(D�
t [z(t; s)]��1(�; t)z(t; s))e0(t; s)d�s+z(t; t);

using (4); or, if e0 is absent,

D�(

tZ
a

z(t; s)d�s) = z(t; t) +
tZ
a

D�
t [z(t; s)]d�s.

Lemma 8. (Variation of Constants). Assume �0, �1 satisfy (2). Let f; � :
[t0;1] ! R be continuous, let e� be as in (5), and let x0 2 R. Then the unique
solution of the initial value problem

D�x(t)� �(t)x(t) = f(t); x(t0) = x0;
is given by

x(t) = x0e�(t; t0) +

tZ
t0

e�(t; s)f(s)d�s; t 2 [to;1). (9)
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Theorem 9. (Gronwall�s Inequality). Let �; x; f be continuous functions on
[t0;1), with � � 0. Then

x(t) � f(t) +
tZ

t0

�(s)x(s)e0(t; s)d�s for all t 2 [t0;1);

implies

x(t) � f(t) +
tZ

t0

�(s)f(s)e0(t; s)d�s for all t 2 [t0;1).

Corollary 10. Let �; x be continuous functions on [t0;1), with � > 0. Then

x(t) 6
tZ

t0

�(s)x(s)e0(t; s)d�s for all t 2 [t0;1);

implies x(t) 6 0 for all t 2 [t0;1).

3. Main Result

It is new to refer to inequalities as a mathematics discipline. A very small portion
of these inequalities originated from the ancient traditions. In the 18th and early
19th century names such as Newton, Cauchy and Maclaurin started to work in this
�eld. In this period, only Bernoulli and Cauchy-Schwarz-Bunyakovsky inequalities,
which are mentioned with their own name, can be given as an example [9].
Towards the end of the 19th century, original products started to be given in the

�eld of inequalities. Hölder and Minkovski could be shown among their pioneers.
But the milestone in this area is the Chebyshev�s paper [6]. Chebyshev submit-
ted his paper to the Han�kovshov University�s Editorial Committee in order to be
published in the journal for the volumes in 1883. But the mentioned committee
extremely impressed from this paper that they published it in the last volume of
1882 [9].

Theorem 11. (Chebyshev Inequality). Let f and g be two integrable functions
on the [0; 1]. If both functions are simultaneously increasing or decreasing for the
same x 2 [0; 1], then

1Z
0

f(x)g(x)dx >
1Z
0

f(x)dx

1Z
0

g(x)dx:

If one of the functions is increasing, the other is decreasing for the same x 2 [0; 1]
values, then

1Z
0

f(x)g(x)dx �
1Z
0

f(x)dx

1Z
0

g(x)dx:
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(Chebyshev 1882).

Belarbi and Dahmani gave results on Chebyshev�s inequality using the Riemann-
Liouville integral in 2009 [4]. E.Set gave results on Chebyshev�s inequality using
conformable fractional integrals in 2019 [21]. For the background and summary on
inequalities, we refer the readers to the references [3, 9, 10,15].
Before giving Chebyshev inequality using conformable derivative, mentioning

about following results [16] that play a key role in our proof will provide a better
understanding:
Monotonicity

Let a > 0 and z : [a; b]! R be ��di¤erentiable on an interval [a; b].
i. If z�(x) � 0 for all x 2 [a; b], then z is nondecreasing on [a; b].
ii. If z�(x) > 0 for all x 2 [a; b], then z is increasing on [a; b].
iii. If z�(x) � 0 for all x 2 [a; b], then z is nonincreasing on [a; b].
iv. If z�(x) < 0 for all x 2 [a; b], then z is decreasing on [a; b].
v. If z�(x) = 0 for all x 2 [a; b], then z is constant on [a; b].

Theorem 12. Let f and g be two integrable functions on [a; b]. If both functions
are simultaneously positive or negative for the same x 2 [a; b] values then

bZ
a

f(x)g(x)e0(t; x)d�x >
bZ
a

f(x)e0(t; x)d�x

bZ
a

g(x)e0(t; x)d�x.

If one of the functions for the same x 2 [a; b] values is positive and the other is
negative then

bZ
a

f(x)g(x)e0(t; x)d�x 6
bZ
a

f(x)e0(t; x)d�x

bZ
a

g(x)e0(t; x)d�x.

Proof. Let f and g be two integrable functions on [a,b]. Let de�ne

z(x) =
xZ
a

f(t)g(t)e0(x; t)d�t�
xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

If we take the derivative of both sides, we have

D�z(x) = f(x)g(x)� f(x)
xZ
a

g(t)e0(x; t)d�t� g(x)
xZ
a

f(t)e0(x; t)d�t

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:
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D�z(x) =
f(x)g(x)

2
� f(x)

xZ
a

g(t)e0(x; t)d�t+
f(x)g(x)

2
� g(x)

xZ
a

f(t)e0(x; t)d�t

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

a) (i) Let g(x) > 0; assume that

g(x)� 2
xZ
a

g(t)e0(x; t)d�t 6 0;

then

g(x) 6 2
xZ
a

g(t)e0(x; t)d�t.

From Corollory 10 g(x) 6 0. This is the contradiction. Then;

g(x) > 0, g(x)� 2
xZ
a

g(t)e0(x; t)d�t > 0.

Using similar arguments, we can write

f(x) > 0, f(x)� 2
xZ
a

f(t)e0(x; t)d�t > 0.

(ii) Let g(x) < 0;�g(x) = G(x); G(x) > 0; assume that

g(x)� 2
xZ
a

g(t)e0(x; t)d�t � 0;

then

�G(x) + 2
xZ
a

G(t)e0(x; t)d�t � 0;
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this implies

G(x) � 2
xZ
a

G(t)e0(x; t)d�t:

From Corollory 10 G(x) � 0. This is the contradiction. Consequently,

g(x) < 0; g(x)� 2
xZ
a

g(t)e0(x; t)d�t < 0:

Using similar arguments, we can write

f(x) < 0; f(x)� 2
xZ
a

f(t)e0(x; t)d�t < 0:

Also we can say �1(�; t)
xR
a

f(t)e0(x; t)d�t
xR
a

g(t)e0(x; t)d�t � 0. As a result of this

part we have

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t;

is positive. So, the function z(x) is increasing on [a; b]. Then,

z(b) � z(a) = 0:

This implies the �rst inequality in theorem is proved.
b)Let f(x) > 0; assume that

f(x)� 2
xZ
a

f(t)e0(x; t)d�t � 0;

then

f(x) � 2
xZ
a

f(t)e0(x; t)d�t:

From Corollory 10 f(x) � 0. This is the contradiction. Hence,

f(x) > 0, f(x) > 2

xZ
a

f(t)e0(x; t)d�t.
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Now, from part a, if

g(x) < 0; g(x)� 2
xZ
a

g(t)e0(x; t)d�t < 0:

As a result of this part we have

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t;

is negative. So the function z(x) is decreasing on [a,b]. Then,
z(b) � z(a) = 0:

This implies the second inequality in theorem is proved. �
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