

Research Article

A New Class of Kantorovich-Type Operators

ADRIAN D. INDREA*, ANAMARIA M. INDREA, AND OVIDIU T. POP

ABSTRACT. The purpose of the paper called "A new class of Kantorovich-type operators", as the title says, is to introduce a new class of Kantorovich-type operators with the property that the test functions e_1 and e_2 are reproduced. Furthermore, in our approach, an asymptotic type convergence theorem, a Voronovskaja type theorem and two error approximation theorems are given. As a conclusion, we make a comparison between the classical Kantorovich operators and the new class of Kantorovich - type operators.

Keywords: Bernstein polynomials, Kantorovich operators, King operators, fixed points.

2010 Mathematics Subject Classification: 41A36, 41A60.

1. INTRODUCTION

Let N be the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. We denote by e_j the monomial of j degree, $j \in \mathbb{N}_0$, $L_1([0, 1]) = \{f | f : [0, 1] \longrightarrow \mathbb{R} \text{ and } f \text{ integrable Lebesgue on } [0, 1] \}.$

In 1930, L. Kantorovich [\[7\]](#page-7-0) constructed and studied the linear positive operators K_m : $L_1([0,1]) \longrightarrow C([0,1])$, defined for any $f \in L_1([0,1])$, $x \in [0,1]$ and $m \in \mathbb{N}$ by

(1.1)
$$
(K_m f)(x) = (m+1) \sum_{k=0}^{m} {m \choose k} x^k (1-x)^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) dt.
$$

The operators [\(1.1\)](#page-0-0) are known as Kantorovich operators and they preserve the test function e_0 . Following the ideas from [\[3\]](#page-7-1)-[\[6\]](#page-7-2), in this paper we introduce a general class which preserves the test functions e_1 and e_2 . For our operators a convergence theorem, a Voronovskaja-type theorem and two error approximation theorems are obtained.

The paper is organized as follows: in Section 2 we introduce some preliminary notions which we will use in the construction of the new type of Kantorovich operators, in Section 3 we will construct the new operators and in Section 4 we give an asymptotic type convergence theorem, a Voronovskaja type theorem, two error approximation theorems and a comparison between the classical Kantorovich operators and the new one.

Received: 24.07.2020; Accepted: 23.08.2020; Published Online: 01.09.2020 *Corresponding author: Anamaria M. Indrea, anamaria.indrea@yahoo.com DOI: 10.33205/cma.773424

2. PRELIMINARIES

In this section, we recall some notions and results which we will use in what follows. We consider I, J real intervals with the property $I \cap J \neq \emptyset$, let $E(I), F(J)$ be certain subsets of the space of all real functions defined on I, respectively J,

$$
B(I) = \{f | f : I \to \mathbb{R}, f \text{ bounded on } I\},
$$

$$
C(I) = \{f | f : I \to \mathbb{R}, f \text{ continuous on } I\}
$$

and

$$
C_B(I) = B(I) \cap C(I).
$$

For $x \in I$, we consider the function $\psi_x : I \to \mathbb{R}, \psi_x(t) = t - x, t \in I$. For any $m \in \mathbb{N}$, we consider the functions $\varphi_{m,k} : J \to \mathbb{R}$, with the property $\varphi_{m,k}(x) \geq 0$, for any $x \in J, k \in$ $\{0, 1, \ldots, m\}$ and the linear positive functionals $A_{m,k} : E(I) \to \mathbb{R}$, $k \in \{0, 1, \ldots, m\}$. For $m \in \mathbb{N}$, we define the operators $L_m : E(I) \to F(J)$ by

(2.1)
$$
(L_m f)(x) = \sum_{k=0}^{m} \varphi_{m,k}(x) A_{m,k}(f).
$$

Remark 2.1. *The operators* $(L_m)_{m \in \mathbb{N}}$ *are linear and positive on* $E(I \cap J)$ *.*

For any $f \in E(I), x \in I \cap J$ and for $i \in \mathbb{N}_0$, we define $T_{m,i}$ by

(2.2)
$$
(T_{m,i}L_m)(x) = m^i(L_m\psi_x^i)(x) = m^i \sum_{k=0}^m \varphi_{m,k}(x)A_{m,k}(\psi_x^i).
$$

In the following, let s be a fixed even natural number and we suppose that the operators $(L_m)_{m \in \mathbb{N}}$ verifies the following conditions:

there exists the smallest $\alpha_s, \alpha_{s+2} \in [0, \infty)$ such that

(2.3)
$$
\lim_{m \to \infty} \frac{(T_{m,j} L_m)(x)}{m^{\alpha_j}} = B_j(x) \in \mathbb{R},
$$

for any $x \in I \cap J$, $j \in \{s, s+2\}$ and

$$
\alpha_{s+2} < \alpha_s + 2.
$$

If $I \subset \mathbb{R}$ is a given interval and $f \in C_B(I)$, then the first order modulus of smoothness of f is the function $\omega_1(f; \cdot) : [0, +\infty) \to \mathbb{R}$ defined for any $\delta \ge 0$ by $\omega_1(f, \delta) = sup\{|f(x') - f(x'')| :$ $x', x'' \in I, |x' - x''| \le \delta$.

Theorem 2.1. ([\[8\]](#page-7-3)) Let $f : I \longrightarrow \mathbb{R}$ be a function. If $x \in I \cap J$ and f is s times derivable function on *I*, the function $f^{(s)}$ is continuous on *I*, then

(2.5)
$$
\lim_{m \to \infty} m^{s-\alpha_s} \Big((L_m f)(x) - \sum_{i=0}^s \frac{f^{(i)}(x)}{m^i i!} (T_{m,i} L_m)(x) \Big) = 0.
$$

If f *is a* s *times differentiable function on* I*, the function* f (s) *is continuous on* I *and there exists* $m(s)$ ∈ N and k_j ∈ R such that for any natural number $m \ge m(s)$ and for any $x \in I \cap J$ we have

$$
\frac{(T_{m,j}L_m)(x)}{m^{\alpha_j}} \le k_j,
$$

where $j \in \{s, s + 2\}$, then the convergence given in (2.5) is uniformly on $I \cap J$ and

(2.7)
$$
m^{s-\alpha_s} \left| (L_m f)(x) - \sum_{i=0}^s \frac{f^{(i)}(x)}{m^i i!} (T_{m,i} L_m)(x) \right|
$$

$$
\leq \frac{1}{s!} (k_s + k_{s+2}) \omega_1 \left(f^{(s)}; \frac{1}{\sqrt{m^{2+\alpha_s - \alpha_{s+2}}}}\right)
$$

for any $x \in I \cap J$ *and* $m \geq m(s)$ *.*

Let φ_x be defined by

$$
\varphi_x(t) = |t - x|, t \in I, x \in I.
$$

Theorem 2.2. [\[9\]](#page-7-4) Let $L: C(I) \longrightarrow B(I)$ be a linear positive operator. Let φ_x be defined by [\(2.8\)](#page-2-0). (i) If $f \in C_B(I)$, then for every $x \in I$ and $\delta > 0$, one has

$$
|(Lf)(x) - f(x)| \le |f(x)| |(Le_0)(x) - 1|
$$

+
$$
\left((Le_0)(x) + \delta^{-1} \sqrt{(Le_0)(x) \cdot (L\varphi_x^2)(x)} \right) \omega_1(f; \delta).
$$

 (ii) If f is differentiable on I and $f' \in C_B(I)$, then for every $x \in I$ and $\delta > 0$, one has

$$
|(Lf)(x) - f(x)| \le |f(x)| |(Le_0)(x) - 1| + |f'(x)| |(Le_1)(x) - x(Le_0)(x)|
$$

+ $\sqrt{(L\varphi_x^2)(x)} \left(\sqrt{(Le_0)(x)} + \delta^{-1} \cdot \sqrt{(L\varphi_x^2)(x)}\right) \omega_1(f';\delta).$

3. A NEW CLASS OF KANTOROVICH-TYPE OPERATORS

Let $a_m, b_m : J \longrightarrow \mathbb{R}$ be functions such that $a_m(x) \geq 0$, $b_m(x) \geq 0$ for any $x \in J$ and $m \in \mathbb{N}_1$, where J and $\mathbb{N}_1 \subset \mathbb{N}$ will be determined later. We define the operators of the following form

(3.1)
$$
(K_m^* f)(x) = (m+1) \sum_{k=0}^m {m \choose k} (a_m(x))^k (b_m(x))^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) dt
$$

for any $x \in J$, $m \in \mathbb{N}_1$ and $f \in L_1([0,1])$. Then, we get

(3.2)
$$
(K_m^* e_0)(x) = (a_m(x) + b_m(x))^m,
$$

(3.3)
$$
(K_m^*e_1)(x) = \frac{m}{m+1}a_m(x)\big(a_m(x) + b_m(x)\big)^{m-1} + \frac{1}{2(m+1)}\big(a_m(x) + b_m(x)\big)^m
$$

and

(3.4)

$$
(K_m^* e_2)(x) = \frac{m(m-1)}{(m+1)^2} a_m^2(x) (a_m(x) + b_m(x))^{m-2} + \frac{2m}{(m+1)^2} a_m(x) (a_m(x) + b_m(x))^{m-1} + \frac{1}{3(m+1)^2} (a_m(x) + b_m(x))^m
$$

for any $x \in J$ and $m \in \mathbb{N}_1$.

In what follows, we impose the additional condition to be fulfilled by our operators

(3.5)
$$
(K_m^* e_0)(x) = 1 + u_m(x),
$$

where $x \in J$, $m \in \mathbb{N}_1$ and $u_m : J \longrightarrow \mathbb{R}$.

Remark 3.1. We want that K_m^* , $m \in \mathbb{N}_1$ be positive operators, then from $(K_m^*e_0) \geq 0$ and (3.5) (3.5) , we *have*

(3.6)
$$
1 + u_m(x) \ge 0, x \in J, m \in \mathbb{N}_1.
$$

We will show in Lemma [3.3](#page-5-0) that $1 + u_m(x) > 0, x \in J, m \in \mathbb{N}_1$. From [\(3.2\)](#page-2-2), we get

(3.7)
$$
(a_m(x) + b_m(x))^m = 1 + u_m(x), x \in J, m \in \mathbb{N}_1,
$$

from where

(3.8)
$$
a_m(x) + b_m(x) = (1 + u_m(x))^{\frac{1}{m}}, x \in J, m \in \mathbb{N}_1.
$$

The next conditions will be read as follows

(3.9) (K[∗] ^me1)(x) = x

and

(3.10) (K[∗] ^me2)(x) = x 2

for any $x \in J$ and $m \in \mathbb{N}_1$.

From [\(3.3\)](#page-2-3), [\(3.8\)](#page-3-0) and [\(3.9\)](#page-3-1), we get

$$
(3.11) \t a_m(x) = \frac{m+1}{m} (1+u_m(x))^{\frac{1-m}{m}} \left(x - \frac{1}{2(m+1)} (1+u_m(x)) \right),
$$

 $x \in J, m \in \mathbb{N}_1$.

From (3.8) and (3.11) we obtain

(3.12)
$$
b_m(x) = (1 + u_m(x))^{\frac{1}{m}} \left(1 - \frac{m+1}{m} \cdot \frac{1}{1 + u_m(x)} \cdot \frac{1}{(1 + u_m(x))}\right),
$$

 $x \in J, m \in \mathbb{N}_1$. Because $a_m(x) \ge 0$, $b_m(x) \ge 0$, $x \in J$, $m \in \mathbb{N}_1$, from [\(3.7\)](#page-3-3), [\(3.11\)](#page-3-2) and [\(3.12\)](#page-3-4) we get

$$
x - \frac{1}{2(m+1)}(1 + u_m(x)) \ge 0
$$

and

$$
1 - \frac{m+1}{m} \cdot \frac{1}{1 + u_m(x)} \left(x - \frac{1}{2(m+1)} (1 + u_m(x)) \right) \ge 0,
$$

 $x \in J, m \in \mathbb{N}_1$, from where we obtain

(3.13)
$$
\frac{2(m+1)}{2m+1}x - 1 \le u_m(x) \le 2(m+1)x - 1,
$$

 $x \in J, m \in \mathbb{N}_1$.

From [\(3.4\)](#page-2-4), [\(3.8\)](#page-3-0), [\(3.10\)](#page-3-5) and [\(3.11\)](#page-3-2) it follows

(3.14)
$$
(-5m - 3)u_m^2(x) +
$$

$$
(-12m(m + 1)^2x^2 + 12(m + 1)^2x - 2(5m + 3))u_m(x) +
$$

$$
(-12(m + 1)^2x^2 + 12(m + 1)^2x - (5m + 3)) = 0.
$$

The relation [\(3.14\)](#page-3-6) is an equation in $u_m(x)$ with the discriminant

(3.15)
$$
\Delta_m(x) = 48(m+1)^2 x^2 \left(3(m+1)^2 (mx-1)^2 + (5m+3)(m-1)\right).
$$

The discriminant $\Delta_m(x)$, after some calculation, has the following form

$$
(3.16)\qquad \Delta_m(x) = \left(12m(m+1)^2x^2 - 12(m+1)^2x\right)^2 + 4(5m+3)12(m+1)^2x^2(m-1),
$$

so for $x \neq 0$ and $m \in \mathbb{N}$ we obtain that $\Delta_m(x) > 0$.

Then, in the above conditions, we have the solutions of the equation [\(3.14\)](#page-3-6)

(3.17)
$$
u_{m,1}(x) = \frac{-6m(m+1)^2x^2 + 6(m+1)^2x - (5m+3)}{5m+3} - \frac{2(m+1)x\sqrt{9(m+1)^2(mx-1)^2 + 3(5m+3)(m-1)}}{5m+3}
$$

and

(3.18)
$$
u_{m,2}(x) = \frac{-6m(m+1)^2x^2 + 6(m+1)^2x - (5m+3)}{5m+3} + \frac{2(m+1)x\sqrt{9(m+1)^2(mx-1)^2 + 3(5m+3)(m-1)}}{5m+3}
$$

for any $x \in J$, $m \in \mathbb{N}_1$.

For $u_{m,1}(x)$, we have $\lim_{m\to\infty}u_{m,1}(x)=-\infty$ then $u_{m,1}(x)$ does not satisfy the relation [\(3.6\)](#page-2-5), so from the relation [\(3.18\)](#page-4-0) follows that $u_m(x) = u_{m,2}(x)$.

Lemma 3.1. *The relation* (3.[13\)](#page-3-7) *happens for any* $x \in J, m \in \mathbb{N}$ *if and only if*

(3.19)
$$
\frac{2}{3(m+1)} \le x \le \frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}.
$$

Proof. After some calculation, it follows from the relations [\(3.13\)](#page-3-7) and [\(3.18\)](#page-4-0). □

Remark 3.2. *(i) The following inequalities state*

$$
\frac{2}{3(m+1)} > 0
$$

and

$$
\frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}<1
$$

for $m \in \mathbb{N}$.

(*ii*) The sequence $\left(\frac{2}{3(m+1)}\right)_{m\in\mathbb{N}}$ is decreasing and the sequence $\left(\frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}\right)_{m\in\mathbb{N}}$ is increasing. *(iii) From (ii), the following relations state*

$$
\frac{2}{3(m+1)}\leq \frac{1}{3}
$$

and

$$
\frac{7}{9} \le \frac{2(3m^2 + 3m + 1)}{3(m+1)(2m+1)}, m \in \mathbb{N}.
$$

(iv) From (3.[19\)](#page-4-1) and *(iii)* follows $\frac{1}{3} \le x \le \frac{7}{9}$, so the operators K_m^* are positive for $m \in \mathbb{N}$. (*v*) If $c \in (0, \frac{1}{3})$, because $\lim_{m \to \infty} \frac{2}{3(m+1)} = 0$ it follows that there exists $m(c) \in \mathbb{N}$ such that $\frac{2}{3(m+1)} \leq c$, for any $m \in \mathbb{N}$ and $m \geq m(c)$.

(*vi*) If $d \in (\frac{7}{9}, 1)$, because $\lim_{m \to \infty}$ $\frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}=1$ *follows that there exists* $m(d) \in \mathbb{N}$ *such that* $d \leq \frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}$, for any $m \in \mathbb{N}$ and $m \geq m(d)$. (*vii*) Let $\mathbb{N}_1 = \{ m \in \mathbb{N} \mid m \ge \max(m(c), m(d)) = m(c, d) \}.$

Lemma 3.2. If $0 < c < d < 1$, then exists $m(c, d) \in \mathbb{N}$ such that the operators K_m^* are positive on $[c, d]$ *, for* $m \in \mathbb{N}, m \geq m(c, d)$ *.*

Proof. It follows from Lemma [3.1](#page-4-2) and Remark [3.2.](#page-4-3) □

Lemma 3.3. *The inequality*

(3.20) $1 + u_m(x) > 0$

holds for any $x \in [c, d]$ *and* $m \in \mathbb{N}_1$ *.*

Proof. We take into account the relation (3.18) .

Let c and d be real numbers with $0 < c < d < 1$, then $I = [0, 1]$, $J = [c, d]$,

$$
\varphi_{m,k}(x) = (m+1)(1+u_m(x))^{1-k}
$$

$$
\times \left(\frac{m+1}{m}\left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^k
$$

$$
\times \left(1 - \frac{m+1}{m(1+u_m(x))}\left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^{m-k}
$$

and

$$
A_{m,k}(f) = \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t)dt,
$$

 $f \in L_1([0,1]), x \in [c,d], m \in \mathbb{N}_1.$

Then the operators (3.1) become

(3.21)
\n
$$
(K_m^* f)(x) = (m+1) \sum_{k=0}^m {m \choose k} (1 + u_m(x))^{1-k}
$$
\n
$$
\times \left(\frac{m+1}{m} \left(x - \frac{1}{2(m+1)}(1 + u_m(x))\right)\right)^k
$$
\n
$$
\times \left(1 - \frac{m+1}{m(1 + u_m(x))} \left(x - \frac{1}{2(m+1)}(1 + u_m(x))\right)\right)^{m-k}
$$
\n
$$
\times \int_{\frac{k+1}{m+1}}^{\frac{k+1}{m+1}} f(t) dt,
$$

 $x \in [c, d], m \in \mathbb{N}_1.$

Lemma 3.4. *For* $x \in [c, d]$ *and* $m \in \mathbb{N}_1$ *, the following identities*

(3.22)
$$
(T_{m,0}K_m^*)(x) = 1 + u_m(x),
$$

(3.23)
$$
(T_{m,1}K_m^*)(x) = -mxu_m(x),
$$

(3.24)
$$
(T_{m,2}K_m^*)(x) = m^2x^2u_m(x)
$$

hold.

Proof. We take (2.2) , (3.9) and (3.10) into account.

Lemma 3.5. *For* $x \in [c, d]$, $m \in \mathbb{N}_1, m \ge m_*, m_* = \max(m(0), m(2))$, we have

$$
\alpha_0 = 0,
$$
 $\alpha_2 = 1,$
\n $B_0(x) = 1,$ $B_2(x) = x(1 - x),$
\n $k_0 = 1,$ $k_2 = \frac{1}{4}.$

Proof. We have that

$$
(T_{m,0}K_m^*)(x) = 1 + u_m(x),
$$

then

$$
\lim_{m \to \infty} \frac{(T_{m,0}K_m^*)(x)}{m^0} = 1,
$$

so from relations [\(2.3\)](#page-1-1), [\(2.4\)](#page-1-2) and [\(2.6\)](#page-1-3) we get $\alpha_0 = 0, B_0(x) = 1$ and $k_0 = 1$ for $x \in [c, d]$, $m \in \mathbb{N}_1, m \geq m(0).$

We have that

$$
(T_{m,2}K_m^*)(x) = m^2 x^2 u_m(x).
$$

Because

$$
\lim_{m \to \infty} mu_m(x) = \frac{1-x}{x},
$$

we obtain

$$
\lim_{m \to \infty} \frac{(T_{m,2}K_m^*)(x)}{m^1} = x(1-x).
$$

Then from relations [\(2.3\)](#page-1-1), [\(2.4\)](#page-1-2) and [\(2.6\)](#page-1-3), we get $\alpha_2 = 1, B_2(x) = x(1 - x)$ and $k_2 = \frac{1}{4}$ for $x \in [c, d], m \in \mathbb{N}_1, m \geq m(2).$

4. PROPERTIES FOR THE NEW CLASS OF KANTOROVICH TYPE OPERATORS

In this section, we present some properties of the new class of Kantorovich type operators, where c and d are real fixed numbers, $0 < c < d < 1$.

Theorem 4.3. *If* $f \in C([0, 1])$ *, then*

(4.1)
$$
\lim_{m \to \infty} (K_m^* f)(x) = f(x)
$$

uniformly on [c, d] *and*

(4.2)
$$
|(K_m^* f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + \frac{5}{4} \cdot \omega_1 \left(f; \frac{1}{\sqrt{m}} \right),
$$

for any $x \in [c, d]$ *and* $m \in \mathbb{N}_1$ *.*

Proof. From [\(2.7\)](#page-1-4), for $\alpha_0 = 0$, $\alpha_2 = 2$, $k_0 = 0$ and $k_2 = \frac{1}{4}$, we get

(4.3)
$$
|(K_m^* f)(x) - f(x)(1 + u_m(x))| \leq \frac{5}{4} \cdot \omega_1 \left(f; \frac{1}{\sqrt{m}} \right),
$$

for any $x \in [c, d]$, $m \in \mathbb{N}_1$, $m \ge m_*$ which is equivalent with [\(4.2\)](#page-6-0).

Theorem 4.4. *Let* $f : [0, 1] \longrightarrow \mathbb{R}$ *be a function. If* f *is two times differentiable on* [0, 1]*, the function* $f^{(2)}$ is continuous on $[0,1]$ and $x \in [c,d]$, then

П

(4.4)
$$
\lim_{m \to \infty} m((K_m^* f)(x) - f(x)) = \frac{1-x}{x} f(x) + (x - 1) f^{(1)}(x) + \frac{x(1-x)}{2} f^{(2)}(x),
$$

for any $x \in [c, d]$ *,* $m \in \mathbb{N}_1$ *.*

Proof. Using the relation (2.5) and Lemma (3.1) , the relation (4.4) follows.

The relation [\(4.4\)](#page-6-1) is a Voronovskaja type theorem.

Theorem 4.5. If
$$
f \in C([0, 1])
$$
, then
\n(4.5) $|(K_m^* f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + 3 \cdot \omega_1(f; \delta_1)$
\nfor any $x \in [c, d]$, $m \in \mathbb{N}_1$, where $\delta_1 = \sqrt{\frac{mx+1}{m^2}}$.

Proof. Using Theorem [2.2](#page-2-7) (i), from relation [\(3.2\)](#page-2-2) for $\delta = \sqrt{(K_m^* e_0)(x) \cdot (K_m^* \varphi_x^2)(x)}$, we have (4.6) $|(K_m^* f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + 3 \cdot \omega_1(f; \delta_1)$

for any $x \in [c, d], m \in \mathbb{N}_1$.

After some calculus, we get $\delta = \sqrt{(1 + u_m(x)) \cdot x^2 \cdot u_m(x)}$. Because $\lim_{m \to \infty} mu_m(x) = \frac{1 - x}{x}$, we have that there exists $m(1) \in \mathbb{N}_1$ such that $u_m(x) < \frac{1}{mx}$ for any $x \in [c, d], m \ge m(1), m(\overline{1}) \in$ $\mathbb{N}_1.$ Then $\delta<\sqrt{\frac{mx+1}{m^2}}=\delta_1$ and from [\(4.6\)](#page-7-5) we obtain [\(4.5\)](#page-7-6).

We observe that for the genuine Kantorovich operators we have the relation $|(K_m f)(x) |f(x)| \leq 2 \cdot \omega_1 \left(f; \frac{1}{2\sqrt{n}}\right)$ $\frac{1}{2\sqrt{m+1}}$ and for our operators we have the relation [\(4.5\)](#page-7-6) and if we make a comparison between this two results, we remark that $\delta_1 < \frac{1}{2\sqrt{n}}$ $\frac{1}{2\sqrt{m+1}}$, for any $x\in[c,h]$, $m\geq m_1$, $m_1 \in \mathbb{N}_1$, where h is a real number that has the following properties: (i) $0 < c < h < d$ and $h < \frac{1}{4}$;

(ii) there exists
$$
m(h) \in \mathbb{N}
$$
 such that for any $m \ge m(h)$, the inequality $h < \frac{m^2 - 4m - 4}{4m^2 + 4m}$ holds,
where $\delta_1 < \frac{1}{2\sqrt{m+1}}$ is equivalent with $x < \frac{m^2 - 4m - 4}{4m^2 + 4m}$;
(iii) $m_1 = max(m(c), m(h), m(d)), m_1 \in \mathbb{N}_1$.

REFERENCES

- [1] O. Agratini: *An asymptotic formula for a class of approximation processes of King's type*. Studia Sci. Math. Hungar. **47** (2010), Number 4, 435–444.
- [2] F. Altomare, M. Campiti: *Korovkin Type Approximation Theory and its Applications*. Walter de Gruyter Studies in Math. Vol. **17**, de Gruyter & Co., Berlin, 1994.
- [3] P. I. Braica, O. T. Pop, A. D. Indrea: *About a King-type operator*. Appl. Math. Inf. Sci. No. **6** (1) (2012), 191–197.
- [4] A. D. Indrea, A. M. Indrea: *About a class of linear and positive Stancu-type operators*. Acta Univ. Apulensis **42** (2015), 1–8.
- [5] A. D. Indrea, A. M. Indrea and P. I. Braica: *Note on a Schurer-Stancu-type operator*. Creative Mathematics and Informatics **24** (2015), No. 1, 61–67.
- [6] A. D. Indrea, O. T. Pop: *Some general Baskakov type operators*. Miskolc Math. Notes **2** (2014), No. 2, 497–508.
- [7] L. V. Kantorovich: *Sur certain développments suivant les polynômes de la forme de S. Bernstein*. I, II, C. R. Ac.ad. URSS (1930), 563-568, 595–600.
- [8] O. T. Pop: *The generalization of Voronovskaja's theorem for a class of liniar and positive operators*. Rev. Anal. Numer. Théor. Approx. **34** (2005), No. 1, 79–91.
- [9] O. Shisha, B. Mond: *The degree of convergence of linear positive operators*. Proc. Nat. Acad. Sci. U.S.A. **60** (1968), 1196–1200.
- [10] D. D. Stancu: On a generalization of the Bernstein polynomials. Studia Univ. "Babeş Bolyai", Scr. Math Phis 14, (1969), 31–45 (in Romanian).

BABES BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 1 KOGĂLNICEANU STREET, 400084, CLUJ-NAPOCA, ROMANIA ORCID: 0000-0002-5571-3599 *E-mail address*: adrian.indrea@yahoo.com

BABES BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 1 KOGĂLNICEANU STREET, 400084, CLUJ-NAPOCA, ROMANIA ORCID: 0000-0002-0420-1729 *E-mail address*: anamaria.indrea@yahoo.com

NATIONAL COLLEGE "MIHAI EMINESCU" 5 MIHAI EMINESCU STREET, 440014 SATU MARE, ROMANIA

E-mail address: ovidiutiberiu@yahoo.com