

Research Article

A New Class of Kantorovich-Type Operators

Adrian D. Indrea*, Anamaria M. Indrea, and Ovidiu T. Pop

ABSTRACT. The purpose of the paper called "A new class of Kantorovich-type operators", as the title says, is to introduce a new class of Kantorovich-type operators with the property that the test functions e_1 and e_2 are reproduced. Furthermore, in our approach, an asymptotic type convergence theorem, a Voronovskaja type theorem and two error approximation theorems are given. As a conclusion, we make a comparison between the classical Kantorovich operators and the new class of Kantorovich - type operators.

Keywords: Bernstein polynomials, Kantorovich operators, King operators, fixed points.

2010 Mathematics Subject Classification: 41A36, 41A60.

1. INTRODUCTION

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. We denote by e_j the monomial of j degree, $j \in \mathbb{N}_0$, $L_1([0,1]) = \{f | f : [0,1] \longrightarrow \mathbb{R} \text{ and } f \text{ integrable Lebesgue on } [0,1]\}$.

In 1930, L. Kantorovich [7] constructed and studied the linear positive operators K_m : $L_1([0,1]) \longrightarrow C([0,1])$, defined for any $f \in L_1([0,1])$, $x \in [0,1]$ and $m \in \mathbb{N}$ by

(1.1)
$$(K_m f)(x) = (m+1) \sum_{k=0}^m \binom{m}{k} x^k (1-x)^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) dt.$$

The operators (1.1) are known as Kantorovich operators and they preserve the test function e_0 . Following the ideas from [3]-[6], in this paper we introduce a general class which preserves the test functions e_1 and e_2 . For our operators a convergence theorem, a Voronovskaja-type theorem and two error approximation theorems are obtained.

The paper is organized as follows: in Section 2 we introduce some preliminary notions which we will use in the construction of the new type of Kantorovich operators, in Section 3 we will construct the new operators and in Section 4 we give an asymptotic type convergence theorem, a Voronovskaja type theorem, two error approximation theorems and a comparison between the classical Kantorovich operators and the new one.

Received: 24.07.2020; Accepted: 23.08.2020; Published Online: 01.09.2020 *Corresponding author: Anamaria M. Indrea, anamaria.indrea@yahoo.com DOI: 10.33205/cma.773424

2. Preliminaries

In this section, we recall some notions and results which we will use in what follows. We consider I, J real intervals with the property $I \cap J \neq \emptyset$, let E(I), F(J) be certain subsets of the space of all real functions defined on I, respectively J,

$$B(I) = \{f | f : I \to \mathbb{R}, f \text{ bounded on } I\},\$$

$$C(I) = \{f | f : I \to \mathbb{R}, f \text{ continuous on } I\}$$

and

$$C_B(I) = B(I) \cap C(I).$$

For $x \in I$, we consider the function $\psi_x : I \to \mathbb{R}, \psi_x(t) = t - x, t \in I$. For any $m \in \mathbb{N}$, we consider the functions $\varphi_{m,k} : J \to \mathbb{R}$, with the property $\varphi_{m,k}(x) \ge 0$, for any $x \in J, k \in \{0, 1, ..., m\}$ and the linear positive functionals $A_{m,k} : E(I) \to \mathbb{R}, k \in \{0, 1, ..., m\}$. For $m \in \mathbb{N}$, we define the operators $L_m : E(I) \to F(J)$ by

(2.1)
$$(L_m f)(x) = \sum_{k=0}^m \varphi_{m,k}(x) A_{m,k}(f).$$

Remark 2.1. The operators $(L_m)_{m \in \mathbb{N}}$ are linear and positive on $E(I \cap J)$.

For any $f \in E(I)$, $x \in I \cap J$ and for $i \in \mathbb{N}_0$, we define $T_{m,i}$ by

(2.2)
$$(T_{m,i}L_m)(x) = m^i (L_m \psi_x^i)(x) = m^i \sum_{k=0}^m \varphi_{m,k}(x) A_{m,k}(\psi_x^i)$$

In the following, let *s* be a fixed even natural number and we suppose that the operators $(L_m)_{m \in \mathbb{N}}$ verifies the following conditions:

there exists the smallest $\alpha_s, \alpha_{s+2} \in [0, \infty)$ such that

(2.3)
$$\lim_{m \to \infty} \frac{(T_{m,j}L_m)(x)}{m^{\alpha_j}} = B_j(x) \in \mathbb{R},$$

for any $x \in I \cap J, j \in \{s, s+2\}$ and

$$(2.4) \qquad \qquad \alpha_{s+2} < \alpha_s + 2$$

If $I \subset \mathbb{R}$ is a given interval and $f \in C_B(I)$, then the first order modulus of smoothness of f is the function $\omega_1(f; \cdot) : [0, +\infty) \to \mathbb{R}$ defined for any $\delta \ge 0$ by $\omega_1(f, \delta) = \sup\{|f(x') - f(x'')| : x', x'' \in I, |x' - x''| \le \delta\}$.

Theorem 2.1. ([8]) Let $f : I \longrightarrow \mathbb{R}$ be a function. If $x \in I \cap J$ and f is s times derivable function on I, the function $f^{(s)}$ is continuous on I, then

(2.5)
$$\lim_{m \to \infty} m^{s - \alpha_s} \left((L_m f)(x) - \sum_{i=0}^s \frac{f^{(i)}(x)}{m^i i!} (T_{m,i} L_m)(x) \right) = 0.$$

If f is a s times differentiable function on I, the function $f^{(s)}$ is continuous on I and there exists $m(s) \in \mathbb{N}$ and $k_j \in \mathbb{R}$ such that for any natural number $m \ge m(s)$ and for any $x \in I \cap J$ we have

(2.6)
$$\frac{(T_{m,j}L_m)(x)}{m^{\alpha_j}} \le k_j,$$

where $j \in \{s, s + 2\}$, then the convergence given in (2.5) is uniformly on $I \cap J$ and

(2.7)
$$m^{s-\alpha_s} \left| (L_m f)(x) - \sum_{i=0}^s \frac{f^{(i)}(x)}{m^i i!} (T_{m,i} L_m)(x) \right|$$

$$\leq \frac{1}{s!} (k_s + k_{s+2}) \omega_1 \left(f^{(s)}; \frac{1}{\sqrt{m^{2 + \alpha_s - \alpha_{s+2}}}} \right)$$

for any $x \in I \cap J$ and $m \ge m(s)$.

Let φ_x be defined by

(2.8)
$$\varphi_x(t) = |t - x|, t \in I, x \in I$$

Theorem 2.2. [9] Let $L : C(I) \longrightarrow B(I)$ be a linear positive operator. Let φ_x be defined by (2.8). (*i*) If $f \in C_B(I)$, then for every $x \in I$ and $\delta > 0$, one has

$$\begin{aligned} |(Lf)(x) - f(x)| &\leq |f(x)| \, |(Le_0)(x) - 1| \\ &+ \left((Le_0)(x) + \delta^{-1} \sqrt{(Le_0)(x) \cdot (L\varphi_x^2)(x)} \right) \omega_1(f;\delta) \end{aligned}$$

(*ii*) If f is differentiable on I and $f' \in C_B(I)$, then for every $x \in I$ and $\delta > 0$, one has

$$|(Lf)(x) - f(x)| \le |f(x)| |(Le_0)(x) - 1| + |f'(x)||(Le_1)(x) - x(Le_0)(x)| + \sqrt{(L\varphi_x^2)(x)} \left(\sqrt{(Le_0)(x)} + \delta^{-1} \cdot \sqrt{(L\varphi_x^2)(x)}\right) \omega_1(f';\delta)$$

3. A NEW CLASS OF KANTOROVICH-TYPE OPERATORS

Let $a_m, b_m : J \longrightarrow \mathbb{R}$ be functions such that $a_m(x) \ge 0$, $b_m(x) \ge 0$ for any $x \in J$ and $m \in \mathbb{N}_1$, where J and $\mathbb{N}_1 \subset \mathbb{N}$ will be determined later. We define the operators of the following form

(3.1)
$$(K_m^*f)(x) = (m+1)\sum_{k=0}^m \binom{m}{k} (a_m(x))^k (b_m(x))^{m-k} \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t)dt$$

for any $x \in J$, $m \in \mathbb{N}_1$ and $f \in L_1([0,1])$. Then, we get

(3.2)
$$(K_m^* e_0)(x) = (a_m(x) + b_m(x))^m,$$

(3.3)
$$(K_m^* e_1)(x) = \frac{m}{m+1} a_m(x) \left(a_m(x) + b_m(x) \right)^{m-1} + \frac{1}{2(m+1)} \left(a_m(x) + b_m(x) \right)^m$$

and

(3.4)

$$(K_m^*e_2)(x) = \frac{m(m-1)}{(m+1)^2} a_m^2(x) (a_m(x) + b_m(x))^{m-2} + \frac{2m}{(m+1)^2} a_m(x) (a_m(x) + b_m(x))^{m-1} + \frac{1}{3(m+1)^2} (a_m(x) + b_m(x))^m$$

for any $x \in J$ and $m \in \mathbb{N}_1$.

In what follows, we impose the additional condition to be fulfilled by our operators

(3.5)
$$(K_m^* e_0)(x) = 1 + u_m(x),$$

where $x \in J$, $m \in \mathbb{N}_1$ and $u_m : J \longrightarrow \mathbb{R}$.

Remark 3.1. We want that $K_m^*, m \in \mathbb{N}_1$ be positive operators, then from $(K_m^*e_0) \ge 0$ and (3.5), we have

(3.6)
$$1 + u_m(x) \ge 0, x \in J, m \in \mathbb{N}_1.$$

We will show in Lemma 3.3 that $1 + u_m(x) > 0, x \in J, m \in \mathbb{N}_1$. From (3.2), we get

(3.7)
$$(a_m(x) + b_m(x))^m = 1 + u_m(x), x \in J, m \in \mathbb{N}_1$$

from where

(3.8)
$$a_m(x) + b_m(x) = (1 + u_m(x))^{\frac{1}{m}}, x \in J, m \in \mathbb{N}_1.$$

The next conditions will be read as follows

(3.9)
$$(K_m^* e_1)(x) = x$$

and

(3.10)
$$(K_m^* e_2)(x) = x^2$$

for any $x \in J$ and $m \in \mathbb{N}_1$.

From (3.3), (3.8) and (3.9), we get

(3.11)
$$a_m(x) = \frac{m+1}{m} (1+u_m(x))^{\frac{1-m}{m}} \left(x - \frac{1}{2(m+1)} (1+u_m(x))\right),$$

 $x \in J, m \in \mathbb{N}_1.$

From (3.8) and (3.11) we obtain

(3.12)
$$b_m(x) = (1 + u_m(x))^{\frac{1}{m}} \left(1 - \frac{m+1}{m} \cdot \frac{1}{1 + u_m(x)} \left(x - \frac{1}{2(m+1)} (1 + u_m(x)) \right) \right),$$

 $x \in J, m \in \mathbb{N}_1.$ Because $a_{-}(x) > 0, h_{-}(x)$

Because $a_m(x) \ge 0, b_m(x) \ge 0, x \in J, m \in \mathbb{N}_1$, from (3.7), (3.11) and (3.12) we get

$$x - \frac{1}{2(m+1)}(1 + u_m(x)) \ge 0$$

and

$$1 - \frac{m+1}{m} \cdot \frac{1}{1 + u_m(x)} \left(x - \frac{1}{2(m+1)} (1 + u_m(x)) \right) \ge 0,$$

 $x \in J, m \in \mathbb{N}_1$, from where we obtain

(3.13)
$$\frac{2(m+1)}{2m+1}x - 1 \le u_m(x) \le 2(m+1)x - 1.$$

 $x \in J, m \in \mathbb{N}_1.$

From (3.4), (3.8), (3.10) and (3.11) it follows

(3.14)

$$(-5m-3)u_m^2(x) + (-12m(m+1)^2x^2 + 12(m+1)^2x - 2(5m+3))u_m(x) + (-12(m+1)^2x^2 + 12(m+1)^2x - (5m+3)) = 0.$$

The relation (3.14) is an equation in $u_m(x)$ with the discriminant

(3.15)
$$\Delta_m(x) = 48(m+1)^2 x^2 \Big(3(m+1)^2 (mx-1)^2 + (5m+3)(m-1) \Big).$$

The discriminant $\Delta_m(x)$, after some calculation, has the following form

(3.16)
$$\Delta_m(x) = \left(12m(m+1)^2 x^2 - 12(m+1)^2 x\right)^2 + 4(5m+3)12(m+1)^2 x^2(m-1),$$

so for $x \neq 0$ and $m \in \mathbb{N}$ we obtain that $\Delta_m(x) > 0$.

Then, in the above conditions, we have the solutions of the equation (3.14)

(3.17)
$$u_{m,1}(x) = \frac{-6m(m+1)^2x^2 + 6(m+1)^2x - (5m+3)}{5m+3} - \frac{2(m+1)x\sqrt{9(m+1)^2(mx-1)^2 + 3(5m+3)(m-1)}}{5m+3}$$

and

(3.18)
$$u_{m,2}(x) = \frac{-6m(m+1)^2x^2 + 6(m+1)^2x - (5m+3)}{5m+3} + \frac{2(m+1)x\sqrt{9(m+1)^2(mx-1)^2 + 3(5m+3)(m-1)}}{5m+3}$$

for any $x \in J$, $m \in \mathbb{N}_1$.

For $u_{m,1}(x)$, we have $\lim_{m \to \infty} u_{m,1}(x) = -\infty$ then $u_{m,1}(x)$ does not satisfy the relation (3.6), so from the relation (3.18) follows that $u_m(x) = u_{m,2}(x)$.

Lemma 3.1. *The relation* (3.13) *happens for any* $x \in J, m \in \mathbb{N}_1$ *if and only if*

(3.19)
$$\frac{2}{3(m+1)} \le x \le \frac{2(3m^2 + 3m + 1)}{3(m+1)(2m+1)}$$

Proof. After some calculation, it follows from the relations (3.13) and (3.18).

Remark 3.2. (*i*) The following inequalities state

$$\frac{2}{3(m+1)} > 0$$

and

$$\frac{2(3m^2+3m+1)}{3(m+1)(2m+1)} < 1$$

for $m \in \mathbb{N}$.

(ii) The sequence $\left(\frac{2}{3(m+1)}\right)_{m\in\mathbb{N}}$ is decreasing and the sequence $\left(\frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}\right)_{m\in\mathbb{N}}$ is increasing. (iii) From (ii), the following relations state

$$\frac{2}{3(m+1)} \leq \frac{1}{3}$$

and

$$\frac{7}{9} \le \frac{2(3m^2 + 3m + 1)}{3(m+1)(2m+1)}, m \in \mathbb{N}.$$

(iv) From (3.19) and (iii) follows $\frac{1}{3} \le x \le \frac{7}{9}$, so the operators K_m^* are positive for $m \in \mathbb{N}$. (v) If $c \in (0, \frac{1}{3})$, because $\lim_{m \to \infty} \frac{2}{3(m+1)} = 0$ it follows that there exists $m(c) \in \mathbb{N}$ such that $\frac{2}{3(m+1)} \leq c$, for any $m \in \mathbb{N}$ and $m \geq m(c)$.

(vi) If $d \in \left(\frac{7}{9}, 1\right)$, because $\lim_{m \to \infty} \frac{2(3m^2 + 3m + 1)}{3(m+1)(2m+1)} = 1$ follows that there exists $m(d) \in \mathbb{N}$ such that $d \leq \frac{2(3m^2+3m+1)}{3(m+1)(2m+1)}$, for any $m \in \mathbb{N}$ and $m \geq m(d)$. (vii) Let $\mathbb{N}_1 = \{m \in \mathbb{N} \mid m \ge \max(m(c), m(d)) = m(c, d)\}.$

Lemma 3.2. If 0 < c < d < 1, then exists $m(c, d) \in \mathbb{N}$ such that the operators K_m^* are positive on [c, d], for $m \in \mathbb{N}, m \ge m(c, d)$.

 $1 + u_m(x) > 0$

Proof. It follows from Lemma 3.1 and Remark 3.2.

Lemma 3.3. *The inequality*

(3.20)

holds for any $x \in [c, d]$ *and* $m \in \mathbb{N}_1$ *.*

Proof. We take into account the relation (3.18).

Let *c* and *d* be real numbers with 0 < c < d < 1, then I = [0, 1], J = [c, d],

$$\varphi_{m,k}(x) = (m+1)(1+u_m(x))^{1-k} \\ \times \left(\frac{m+1}{m}\left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^k \\ \times \left(1 - \frac{m+1}{m(1+u_m(x))}\left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^{m-k}$$

and

$$A_{m,k}(f) = \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t)dt,$$

 $f \in L_1([0,1]), x \in [c,d], m \in \mathbb{N}_1.$

Then the operators (3.1) become

(3.21)

$$(K_m^*f)(x) = (m+1)\sum_{k=0}^m \binom{m}{k} (1+u_m(x))^{1-k} \\
\times \left(\frac{m+1}{m} \left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^k \\
\times \left(1 - \frac{m+1}{m(1+u_m(x))} \left(x - \frac{1}{2(m+1)}(1+u_m(x))\right)\right)^{m-k} \\
\times \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t)dt,$$

 $x \in [c,d], m \in \mathbb{N}_1.$

Lemma 3.4. For $x \in [c, d]$ and $m \in \mathbb{N}_1$, the following identities

(3.22)
$$(T_{m,0}K_m^*)(x) = 1 + u_m(x),$$

(3.23)
$$(T_{m,1}K_m^*)(x) = -mxu_m(x),$$

(3.24)
$$(T_{m,2}K_m^*)(x) = m^2 x^2 u_m(x)$$

hold.

Proof. We take (2.2), (3.9) and (3.10) into account.

Lemma 3.5. For $x \in [c, d]$, $m \in \mathbb{N}_1$, $m \ge m_*$, $m_* = \max(m(0), m(2))$, we have

$$\alpha_0 = 0,$$
 $\alpha_2 = 1,$
 $B_0(x) = 1,$ $B_2(x) = x(1-x),$
 $k_0 = 1,$ $k_2 = \frac{1}{4}.$

Proof. We have that

$$(T_{m,0}K_m^*)(x) = 1 + u_m(x)$$

then

$$\lim_{m \longrightarrow \infty} \frac{(T_{m,0}K_m^*)(x)}{m^0} = 1,$$

so from relations (2.3), (2.4) and (2.6) we get $\alpha_0 = 0, B_0(x) = 1$ and $k_0 = 1$ for $x \in [c, d]$, $m \in \mathbb{N}_1, m \ge m(0)$.

We have that

$$(T_{m,2}K_m^*)(x) = m^2 x^2 u_m(x).$$

Because

$$\lim_{m \to \infty} m u_m(x) = \frac{1-x}{x},$$

we obtain

$$\lim_{n \to \infty} \frac{(T_{m,2}K_m^*)(x)}{m^1} = x(1-x).$$

Then from relations (2.3), (2.4) and (2.6), we get $\alpha_2 = 1, B_2(x) = x(1-x)$ and $k_2 = \frac{1}{4}$ for $x \in [c, d], m \in \mathbb{N}_1, m \ge m(2)$.

4. PROPERTIES FOR THE NEW CLASS OF KANTOROVICH TYPE OPERATORS

In this section, we present some properties of the new class of Kantorovich type operators, where *c* and *d* are real fixed numbers, 0 < c < d < 1.

Theorem 4.3. *If* $f \in C([0, 1])$ *, then*

(4.1)
$$\lim_{m \to \infty} (K_m^* f)(x) = f(x)$$

uniformly on [c, d] and

(4.2)
$$|(K_m^*f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + \frac{5}{4} \cdot \omega_1\left(f; \frac{1}{\sqrt{m}}\right),$$

for any $x \in [c, d]$ and $m \in \mathbb{N}_1$.

Proof. From (2.7), for $\alpha_0 = 0$, $\alpha_2 = 2$, $k_0 = 0$ and $k_2 = \frac{1}{4}$, we get

(4.3)
$$|(K_m^*f)(x) - f(x)(1 + u_m(x))| \le \frac{5}{4} \cdot \omega_1\left(f; \frac{1}{\sqrt{m}}\right),$$

for any $x \in [c, d]$, $m \in \mathbb{N}_1$, $m \ge m_*$ which is equivalent with (4.2).

Theorem 4.4. Let $f : [0,1] \longrightarrow \mathbb{R}$ be a function. If f is two times differentiable on [0,1], the function $f^{(2)}$ is continuous on [0,1] and $x \in [c,d]$, then

 \square

(4.4)
$$\lim_{m \to \infty} m((K_m^*f)(x) - f(x)) = \frac{1-x}{x} f(x) + (x-1)f^{(1)}(x) + \frac{x(1-x)}{2} f^{(2)}(x),$$

for any $x \in [c, d]$ *,* $m \in \mathbb{N}_1$ *.*

Proof. Using the relation (2.5) and Lemma (3.1), the relation (4.4) follows.

122

The relation (4.4) is a Voronovskaja type theorem.

Theorem 4.5. If
$$f \in C([0,1])$$
, then
(4.5) $|(K_m^*f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + 3 \cdot \omega_1(f;\delta_1)$
for any $x \in [c,d]$, $m \in \mathbb{N}_1$, where $\delta_1 = \sqrt{\frac{mx+1}{m^2}}$.

Proof. Using Theorem 2.2 (i), from relation (3.2) for $\delta = \sqrt{(K_m^* e_0)(x) \cdot (K_m^* \varphi_x^2)(x)}$, we have (4.6) $|(K_m^* f)(x) - f(x)| \le |f(x)| \cdot |u_m(x)| + 3 \cdot \omega_1(f; \delta_1)$

for any $x \in [c,d], m \in \mathbb{N}_1$.

After some calculus, we get $\delta = \sqrt{(1 + u_m(x)) \cdot x^2 \cdot u_m(x)}$. Because $\lim_{m \to \infty} m u_m(x) = \frac{1 - x}{x}$, we have that there exists $m(1) \in \mathbb{N}_1$ such that $u_m(x) < \frac{1}{mx}$ for any $x \in [c, d], m \ge m(1), m(1) \in \mathbb{N}_1$. Then $\delta < \sqrt{\frac{mx+1}{m^2}} = \delta_1$ and from (4.6) we obtain (4.5).

We observe that for the genuine Kantorovich operators we have the relation $|(K_m f)(x) - f(x)| \le 2 \cdot \omega_1 \left(f; \frac{1}{2\sqrt{m+1}}\right)$ and for our operators we have the relation (4.5) and if we make a comparison between this two results, we remark that $\delta_1 < \frac{1}{2\sqrt{m+1}}$, for any $x \in [c, h]$, $m \ge m_1$, $m_1 \in \mathbb{N}_1$, where h is a real number that has the following properties: (i) 0 < c < h < d and $h < \frac{1}{4}$;

(ii) there exists
$$m(h) \in \mathbb{N}$$
 such that for any $m \ge m(h)$, the inequality $h < \frac{m^2 - 4m - 4}{4m^2 + 4m}$ holds,
where $\delta_1 < \frac{1}{2\sqrt{m+1}}$ is equivalent with $x < \frac{m^2 - 4m - 4}{4m^2 + 4m}$;
(iii) $m_1 = max\Big(m(c), m(h), m(d)\Big), m_1 \in \mathbb{N}_1$.

References

- O. Agratini: An asymptotic formula for a class of approximation processes of King's type. Studia Sci. Math. Hungar. 47 (2010), Number 4, 435–444.
- [2] F. Altomare, M. Campiti: Korovkin Type Approximation Theory and its Applications. Walter de Gruyter Studies in Math. Vol. 17, de Gruyter & Co., Berlin, 1994.
- [3] P. I. Braica, O. T. Pop, A. D. Indrea: About a King-type operator. Appl. Math. Inf. Sci. No. 6 (1) (2012), 191–197.
- [4] A. D. Indrea, A. M. Indrea: About a class of linear and positive Stancu-type operators. Acta Univ. Apulensis 42 (2015), 1–8.
- [5] A. D. Indrea, A. M. Indrea and P. I. Braica: Note on a Schurer-Stancu-type operator. Creative Mathematics and Informatics 24 (2015), No. 1, 61–67.
- [6] A. D. Indrea, O. T. Pop: Some general Baskakov type operators. Miskolc Math. Notes 2 (2014), No. 2, 497-508.
- [7] L. V. Kantorovich: Sur certain développments suivant les polynômes de la forme de S. Bernstein. I, II, C. R. Ac.ad. URSS (1930), 563-568, 595–600.
- [8] O. T. Pop: The generalization of Voronovskaja's theorem for a class of liniar and positive operators. Rev. Anal. Numer. Théor. Approx. 34 (2005), No. 1, 79–91.
- [9] O. Shisha, B. Mond: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1196–1200.
- [10] D. D. Stancu: On a generalization of the Bernstein polynomials. Studia Univ. "Babeş Bolyai", Scr. Math Phis 14, (1969), 31–45 (in Romanian).

BABEŞ BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 1 KOGĂLNICEANU STREET, 400084, CLUJ-NAPOCA, ROMANIA ORCID: 0000-0002-5571-3599 *E-mail address*: adrian.indrea@yahoo.com BABEŞ BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 1 KOGĂLNICEANU STREET, 400084, CLUJ-NAPOCA, ROMANIA ORCID: 0000-0002-0420-1729 *E-mail address*: anamaria.indrea@yahoo.com

NATIONAL COLLEGE "MIHAI EMINESCU" 5 Mihai Eminescu Street, 440014 Satu Mare, Romania

E-mail address: ovidiutiberiu@yahoo.com