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Abstract 

In this paper, we deal with a three-parameter inverse Lomax cited as the Topp-Leone inverse 

Lomax (TLIL) distribution depend on Topp-Leone-G family. Expressions of its density and 

distribution functions are explored. The structure properties of suggested model are provided like 

quantile function, moments, incomplete moments and Rényi entropy. Maximum likelihood 

estimators of the TLIL distribution parameters along with reliability estimator are worked out via 

complete and type II censored samples. To investigate the statistical properties of estimates we 

present numerical illustration along with two real data. 
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1. INTRODUCTION 

 
The inverse Lomax (IL) distribution is one of the notable lifetime models that gives an application in 

economics and actuarial sciences (see [1]). Kleiber [2] employed the IL to get Lorenz ordering relationship 

among ordered statistics. McKenzie et al. [3] applied the IL model on geophysical databases.   

 

The IL distribution is a particular model from generalized beta distribution of the second kind. The IL 

distribution is the inverse of Lomax distribution. The probability density function (pdf) of the IL 

distribution with shape parameter   and scale parameter   is  

 

1 ( 1)( ; , ) (1 ) ; 0, , 0.
x

g x x x      


− − − += +                                                     
       

                                       

(1) 

 

The associated cumulative distribution function (cdf) is  

 

( ; , ) (1 ) ; 0, , 0.
x

G x x   


−= +    
       

             (2) 
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Rahman and Aslam [4] discussed Bayesian estimation of unknown shape parameter of IL model owing to 

various loss functions. Further, Bayesian prediction of future ordered observations from IL mixture model 

was discussed by Rahman and Aslam [5]. Singh et al. [6] discussed reliability estimator of the IL 

distribution in presence of type II censoring (TIIC).  Jan and Ahmad [7] considered the behaving shape 

parameter of IL distribution through distinct approximation manner. Estimation of entropy for IL model 

was considered from multiple censored samples by Bantan et al. [8]. Recent extensions of the IL distribution 

for further usage have been provided by several researches, for instance the reader can refer to [9-13].  

 

Recently, several researchers considered various generated families of continuous distributions in order to 

develop new models as well as provide great flexibility in modelling real data. Many families of 

distributions were submitted from dissimilar bounded or unbounded distributions. Two essential 

components, namely generator and a parent distribution, are desired to assign new families (see [14]). Jones 

[15] provided beta family owing to beta random variable. Alzaarteh et al. [16] proposed the widespread 

family using any non-negative continuous random variable T as the generator, instead of the beta random 

variable. They defined this class as follows 

( (x))

0
( ) ( ) ,

W G

F x r t dt=   
 

 

where ( )r t  is the pdf of a non-negative continuous random variable T. This generated family is called “T-

X distribution”. The transformation ( ( ))W G x verify that:
 

( ( )) [0, )W G x   and it is a monotonic non- 

decreasing function. For a random variable T has the Topp Leone (TL) distribution on [0, 1], the TL-G 

family has been proposed by AL-Shomrani et al. [17] with cdf given by 

 

( )( ) 1 ( ( )) ,F x G x


= −  
   

                      

(3)     

                                 
 

where  is the shape parameter. The pdf corresponding to (3) is given by 

 

( )
1

( ) 2 ( ) ( ) 1 ( ( )) ,f x g x G x G x



−

= −  
   
              (4)     

 

where ( )G x is the baseline distribution function and ( )g x  is the associated density. Further, the TL-G 

family has been discussed by Rezaei et al. [18]. 

 

In many life-testing experiments, censoring is essential according to save the total time on test and to reduce 

the cost associated with the experiment. Various censoring methods are at hand to experimenter such as 

type-I in which the test stops at a pre-fixed time, and TIIC in which test stops at predetermined number of 

failures.  

 

In the present work, we define a new model as a modification of the IL distribution with three-parameter.  

We provide some comprehensive descriptions of its statistical properties. Then we estimate the reliability 

function and population parameters of the model using the maximum likelihood (ML) method when the 

available data are drawn from complete and TIIC. The layout of the paper consists of the following sections. 

In Section 2, we introduce the three-parameter TLIL distribution and the formation of the pdf and cdf of 

their expansions for stated distribution is given. Statistical properties of TLIL distribution are illustrated in 

Section 3. In Section 4, ML estimators, approximate confidence intervals (CIs) and reliability estimators 

are derived. Numerical study is given to assess the behaviour of estimates and analysis to real data is 

considered as appear in Section 5. Finally we come up with concluding remarks in Section 6.  
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2. TOPP-LEONE INVERSE LOMAX MODEL  

 

In this section, we define a three-parameter TLIL distribution. Expansions for the pdf and cdf, reliability, 

hazard and reversed hazard functions are also presented.  

 

Inserting (2) in (3) yields TLIL distribution with cdf specified by 

 

2( ; , , ) [1 {1 (1 ) } ] ; , , , 0.F x x
x

 
     −= − − +   

   

           

(5)   

                       
                    

The associated pdf corresponding to (5) is given by 

1 ( 1) 2 1( ; , , ) 2 (1 ) [1 (1 ) ][1 {1 (1 ) } ] ; 0; , , 0.
x

f x x x
x x

      
      



− − − + − − −= + − + − − +    
   

       

(6)   

  

 

Figure 1 shows possible shapes of TLIL pdf for certain values of parameters. The extra shape parameter 

  is considered as a manner to supply a more flexible TLIL distribution. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The pdf  plots of  TLIL distribution 

 

2.1. Expansions of pdf and cdf 

 

The binomial expansion, for real non-integer value of  , is given by 

  

0

( 1) ( 1)
(1 ) .

! ( 1 )

c
c

c

D D
c j

 





=

−  +
− =
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  

   
       (7)     

 

Then, by applying the previous binomial series for pdf (6), so it can be formed as follows 

                       
2 1

1 ( 1)

,
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( ; , , ) (1 ) )(1 ) ,
j
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j m

j m

x
f x x

x

   
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            (8)     
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,

2 1( 1) 2 ( 1)
.

! ( 1 )( 1)
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j

mj j m


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Also, it can be expressed as follows 
2 1
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0 0

( ; , , ) ( ),
j

j m m
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where 

 

,

, ,
( 1)

j m

j mw
m


=

+
 and 

1( ) ( 1) ( )( ( )) .m

mk x m g x G x+ = +   

Note that 1( )mk x+  is the exponentiated IL distribution with power parameter m. The expansion of the cdf 

is produced from expansion (7) for s is a positive integer as follows 

 

 
2

,

0 0

( ; , , ) [ ( )] ,
i

s l

i l

i l

F x G x   


= =

=  
   
                        

(9)          

                                            

                                                                                                     

where ,

2 ( 1) ( 1)

( 1 ) !

i l

i l

i s

l s i i






+  −  +
=  

 + − 
 and G(x) is the cdf of IL distribution. 

 
2.2. Reliability Analysis 

 

The reliability function; ( ; , , ),S x    the hazard rate function (hrf); ( ; , , ),x     cumulative hrf; 

( ; , , ),H x     and reversed hrf;TLIL distribution are respectively given bythe of  ( ; , , ),R x       

 

2( ; , , ) 1 [1 {1 (1 ) } ] ,S x
x

    −= − − − +  

1 ( 1) 2 1

2

2 (1 ) [1 (1 ) ][1 {1 (1 ) } ]

( ; , , ) .
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x
x

x x
x

x
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 

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−
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=
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2( ; , , ) ln(1 [1 {1 (1 ) } ] ).H x
x

 
   −= − − − − +

 

and, 

1 ( 1) 2 1( ; , , ) 2 [1 (1 ) ](1 ) [1 {1 (1 ) } ] .
x

R x x
x x

     
   



− − − − + − −= − + + − − +

 

 

Figure 2 shows a variety of possible shapes of hrf of TLIL distribution for specific values of parameters. 
 

 

  



1197 Amal HASSAN, Doaa ISMAIL/ GU J Sci, 34(4): 1193-1208 (2021) 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. Plots of  hrf of TLIL distribution 

 

3. PRINCIPLE PROPERTIES  
 

We derive some significant characteristics of the TLIL distribution, specifically; the rth moment, incomplete 

moments, moments of residual life function and Rényi entropy. 

 

3.1. Moments 

 

Moments in statistical analysis are important in study characteristics and shapes of distribution such that 

spread and dispersion which measured by mean and variance. It can study the flatness or peakedess of 

distribution which measured by kurtosis, also it can be used to study the symmetry of shape of distribution 

which measured by skewness. The rth moment for the TLIL can be obtained from pdf (8) as follows 

 
2 1
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0 0 0

(1 ) (1 ) d .
j
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x x

x
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

+
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= =

 = + +   

 
Hence the rth moment of TLIL is obtained as follows 

 
2 1

,
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( 1) .
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j
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r j m

j m

r r m
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 
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            (10)     

 
Fisher and Kılıcman [19] proved the following   
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( 1) ( 1)
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 
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where  denotes Euler's constant,
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r
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
=
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Setting r =1, 2, 3 and 4 in (10), we can obtain the first four moments about zero. The mean and 1( )   

variance 
2( )  of the TLIL distribution for some selected values of the parameters which can be calculated 

numerically in Table 1.  
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Table 1. Mean and variance of TLIL distribution  

2 =  1.5 = 1 = 
    

 
2  1   

2  1   
2  1  

0.164 0.062                                0.093 0.044                                 0.042 0.027                  0.02 

1.5 102.59 1.541                            58.175 1.106                               26.14 0.687                      0.5 

410.36 3.082                             232.70 2.212                          104.65 1.356                      1 

0.272 0.086                                0.154 0.062                                 0.069 0.039                      0.02 
 

2.5 
169.82 2.148                             96.316 1.558                               43.295 0.973                               0.5 

679.27 4.295                              385.26 3.115                             173.18 1.945                               1 

0.379 0.106                                0.215 0.077                                 0.097 0.049                                0.02 

3.5 236.64 2.647                             134.23 1.931                             60.347 1.218                               0.5 

946.55 5.295                             536.91 3.861                             241.39 2.436                              1 

 

Next, we derive a simple formula for the rth incomplete moment of X defined by 

( ) ( ).r

r y E X X y =   So, the quantity ( )r y comes from (8) as 

 
2 1

,

0 0

( ) (1 , , ),
j

r

r j m

j m

y B r r m
y


   



+

= =

 = − + +
+

  

 
where B(.,.,x) is the incomplete beta function. The incomplete moments are useful in fields like economics, 

reliability, demography, insurance and medicine.  

 
3.2. Skewness and Kurtosis 

 

The effect of each shape parameters   and   on the skewness and kurtosis of the TLIL distribution is 

considered here based on quantiles. The quantile function of the TLIL distribution say Q(u) can be obtained 

as 

 
1

11

( ) [1 1 ( ) ] 1 ,Q u u 

−

−
 
 = − − −
 
 

                                                                                                                                             (11) 

 

where u is a number between (0,1). The Bowley’ skewness and Moors’ kurtosis based on Equation (11) 

are plotted for certain values of   as function of  , and   as function of   (see Figures 3 and 4). These 

plots show that the skewness decreases when   gets larger for fixed  and when   increases for fixed .  

Figure 4 reveal that there is great flexibility of kurtosis curves.  

 

 



1199 Amal HASSAN, Doaa ISMAIL/ GU J Sci, 34(4): 1193-1208 (2021) 

 
 

 

 

 

 

             Figure 3. The Bowley’ skewness of the TLIL distribution as a function of   and  
 

 

 

 
Figure 4. The Moors’ kurtosis of the TLIL distribution as a function of   and  

 

 

3.3. Moments of Residual Life Function 

 

The nth moment of the residual life (RR) of TLIL model is given by 

 

1
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n
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m y x y f x dx
S y


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Hence, nth moment of RR of TLIL distribution is yielded by applying binomial expansion of  ( )nx y−  as 

follows 
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which leads to 
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where (.,., )x is the incomplete beta function. For n =1, we get the mean residual life of TLIL distribution 

which has many applications. 

 

3.4. Rényi Entropy 

 

The Rényi entropy of X for continuous random variable with range R is a measure of uncertainty. It is 

defined as follows 

 

1
( ) log{ ( ) }, 1, 0.

1
R

R

X f x dx  


=  
−                                                                 

To obtain Rényi entropy of the TLIL distribution, we must obtain explicit expression for ( ( ; , , )) ,f x     

as follows 

 
( 1)

( 1)
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2( 1) (2 ) ( ( 1) 1)
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j m
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= =

+ −  − +
= + + 
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Therefore, the Rényi entropy of TLIL distribution is given by 
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Furthermore, the  −  entropy,  where 0, 1,   is given by 

 

,

0 0

1 (2 1) ( ( 1) 1)
( ) 1 .

1 ( )
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   
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 
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4. PARAMETER ESTIMATION  
 
This section deals with parameter and reliability function estimators for TLIL distribution from complete 

and TIIC samples. ML estimators are obtained as well as the approximate CIs are constructed.   

  

The TΠC scheme is observed when n units are placed on test, and the test is stopped at the time of the hth 

failure. It has the advantage that the number of observed failures is fixed to be h which ensures reasonable 

information is available for statistical analysis.   

 

Suppose that n items in which their lifetimes follow TLIL distribution (6) are put on test and the test is 

stopped at fixed value of h failure. The likelihood function for the observed samples (1) (2) ( )... hX X X    

is given by  
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For simplicity, write ix instead of 
( ).ix  The logarithm of the previous equation, denoted by, ln L, takes 

the following form 

 

2

1 1 1 1

2

ln ln ln ln ( 1) ln( ) ( 1) ln(1 ) ln ( 1) ln(1 )
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h h h h
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where 1 (1 )i

i

z
x

 −= − + , 1 (1 )h

h

z
x

 −= − + . 

 

The components of the score vector ( ln L   , ln L   , ln L   ) are given below 
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(12)     

2 2
2

2
1

(1 z ) ln(1 z )ln
ln(1 ) ( ) ,

1 (1 z )

h
h h

i

i h

L h
z n h



  =

− −
= + − − −

 − −
  

   
          

(13)     

                                       

 

and 

2
1 1 1 1

2 1

2

2ln 1
ln ln ln(1 ) ( 1)

1

2 z (1 z )
( ) ,

1 (1 z )

h h h h
i i i i

i

i i i ii i

h h h

h

x z z zL h
h x

z z

z
n h





 
    





= = = =

−

 
= − + − + + − +

 −  

− 
+ −

− − 

   
 

   
          

(14)     

1 1
(1 ) ( ), (1 ) ln(1 ).i i

i i i i

z z

x x x x

   


 

− − − 
= + = + +

 
 

 
The ML estimators of the model parameters are produced after solving the non-linear Equations (12) - (14) 

numerically. Also, the ML estimators in case of complete sample are obtained by setting h = n in previous 

equations. However, it is difficult to find a closed form solution for the above equations; so an iterative 

procedure is applied to obtain ML estimates (MLEs).  

 

Based on invariance property of ML estimation, we obtain the ML estimator of S(x) by replacing the 

parameters from (12) - (14) by their ML estimators as follows: 

 

ˆ ˆ2ˆˆ ˆ ˆ ˆ( ; , , ) 1 [1 {1 (1 ) } ] .S x
x

    −= − − − +  

 

For interval estimation of the parameters, the observed information matrix ( ) { }uvI I =  for ( , ) ( , , )u v   =  

must be obtained. Under the regularity conditions, asymptotic variance–covariance matrix of the MLEs of 

,   and  can obtained by inverting the following observed information matrix,  
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2 2 2 2

1 2 2 2 2

2 2 2 2

ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆvar( ) cov( , ) cov( , ) ln ln ln
1ˆ ˆ ˆ ˆ ˆ ˆ( ) cov( , ) var( ) cov( , ) ln ln ln

ˆ ˆ ˆ ˆ ˆcov( , ) cov( , ) var( ) ln ln ln

L L L

I L L L
I

L L L
   

         

         

         

−

= =

         
  

 = =          
              ˆ

.

 =  

 

The asymptotic normality of ML estimation can be used to compute the asymptotic 100(1 )%, 0 1, −    
confidence limits for ,  and   as follows  

 

2

ˆ ˆvar( ),z 
2

ˆ ˆ( var( ),z   and 
2

ˆ ˆ( var( ),z   

 

where 
2

,z   standard normal percentile and (1 )− is the confidence coefficient. The asymptotic 

100(1 )%− confidence limits for reliability function is given by  

 

2

ˆ ˆ( ) var( ( )).S x z S x   

5. SIMULATION STUDY 
 

We present numerical study to examine the behaviour of the ML and reliability function estimates. 

Measures like mean square errors (MSEs), relative bias (RB), standard errors (SEs), lower bound (LB) of 

CIs, upper bound (UB) of CIs, and average length (Le) of 95% CIs are calculated. We perform the following 

algorithm. 

 

❖ 1000 random sample of sizes 50, 200 and 300 are generated from the TLIL distribution.  

❖ The number of failure items;  h, is chosen as 90% (censoring scheme) and 100% (complete sample). 

❖ Parameters values are specified as (i) ( 1, 0.8, 2)  = = = , (ii) ( 1.25, 0.8, 2)  = = = , (iii) (

0.8, 1.5, 2)  = = = , (iv) ( 1.3, 1, 1)  = = = , (v) ( 1, 1.5, 0.5)  = = = , (vii) ( 1.6, 0.8, 2)  = = = . 

❖ The MSEs, RB, SEs for all samples sizes and for all selected set of parameters are computed. 

❖ The LB, UB and Le atfor all samples sizes and for all selected sets of parameters are  0.05 =   

computed. 

❖ Reliability estimates and the associated 95% CI for reliability function at different mission time t0 

where t0= 0.1, 0.3, 0.5 for different sample sizes are presented. 

 

5.1. Numerical Results    

 

The observed outcomes are reported in Tables 2 to 9, we detect the following about the performance of 

estimates: 

 

▪ SE of all estimates decreases as n increases. Also, it has the smallest values in complete sample 

(see Tables 2 and 3). 

▪ The MSEs and RBs of ,  and   estimates decrease as n increases for all cases. Also, the MSEs 

and RBs at h = 0.9 n for all estimates are greater than the corresponding at h = n (see Tables 2 and 

3). 

▪ The MSEs and SEs of  estimates are less than the corresponding for   and  estimates in almost 

all cases (see Tables 2 and 3). 

▪ For all estimates of parameters, as the value of failure items; h increases the MSEs, RBs and SEs 

decrease. 

▪ For fixed value of  =2, sestimate  of  sand RB sincreases, the MSE  =0.8 and as the value of    

decrease at the same sample size (see Table 2). 

▪ For all cases, it is clear that the Le of CIs for MLEs decrease as n increases (see Tables 4 and 5). 



1203 Amal HASSAN, Doaa ISMAIL/ GU J Sci, 34(4): 1193-1208 (2021) 

 
 

▪ The MSE for   estimates gets the smallest values at 1.3, 1 = =  and 1 =  compared to other 

cases. The MSE for  estimates at 0.8, 1.5 = = andhas the smallest value compared to  2 =   

other cases.  The MSE of  estimates at 1, 0.8 = = andables Thas the smallest value (see  2 =   

2 and 3).  

▪ For all cases, reliability estimates decrease as the mission time's increase.  Also, the Le of CIs gets 

shorter as n increases (see Tables 6-8).  
 

Table 2. The MSEs RBs and SEs of the estimates for sets (i), (ii) and (iii) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n h 
 
Criteria 
Measures  

1, 0.8, 2  = = =  1.25, 0.8, 2  = = =  0.8, 1.5, 2  = = =  

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

50 

45 

MSE 0.241 0.005 0.247 0.113 0.010 0.184 0.560 0.303 0.552 

RB 0.453 0.038 0.089 0.184 0.048 0.043 0.855 0.349 0.273 

SE 0.004 0.001 0.009 0.005 0.002 0.008 0.006 0.003 0.010 

50 

MSE 0.231 0.005 0.202 0.109 0.011 0.153 0.553 0.303 0.542 

RB 0.443 0.033 0.066 0.060 0.047 0.026 0.846 0.348 0.259 

SE 0.004 0.001 0.009 0.005 0.001 0.008 0.006 0.003 0.010 

200 

180 

MSE 0.036 0.004 0.109 0.024 0.010 0.095 0.331 0.278 0.397 

RB 0.151 0.007 0.035 0.034 0.078 0.007 0.686 0.345 0.248 

SE 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.001 0.002 

200 

MSE 0.031 0.004 0.109 0.022 0.009 0.094 0.327 0.276 0.396 

RB 0.152 0.001 0.033 0.033 0.074 0.004 0.682 0.344 0.226 

SE 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.001 0.002 

300 

270 

MSE 0.021 0.003 0.085 0.015 0.009 0.068 0.317 0.275 0.343 

RB 0.109 0.009 0.040 0.012 0.086 0.012 0.680 0.345 0.242 

SE 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 

300 

MSE 0.021 0.003 0.083 0.015 0.009 0.067 0.301 0.271 0.333 

RB 0.108 0.006 0.025 0.011 0.084 0.012 0.661 0.343 0.237 

SE 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 
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Table 3. The MSEs, RBs and SEs of the estimates for sets (iv), (v) and (vi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The LB, UB and Le of the estimates for sets (i), (ii) and (iii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n h 
Criteria 

Measures 

1.3, 1, 1  = = =  1, 1.5, 0.5  = = =  1.6, 0.8, 2  = = =  

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

50 

45 

MSE 0.341 0.032 0.054 0.216 0.044 0.012 0.101 0.038 0.276 

RB 0.353 0.115 0.127 0.386 0.105 0.148 0.014 0.183 0.047 

SE 0.007 0.003 0.004 0.005 0.003 0.002 0.006 0.003 0.007 

50 

MSE 0.335 0.031 0.049 0.205 0.041 0.012 0.099 0.037 0.120 

RB 0.348 0.113 0.121 0.376 0.100 0.145 0.015 0.180 0.044 

SE 0.007 0.003 0.004 0.005 0.003 0.002 0.006 0.003 0.006 

200 

180 

MSE 0.114 0.014 0.029 0.085 0.048 0.008 0.052 0.033 0.092 

RB 0.209 0.082 0.066 0.385 0.048 0.270 0.088 0.196 0.058 

SE 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 

200 

MSE 0.111 0.014 0.029 0.077 0.041 0.008 0.049 0.029 0.091 

RB 0.204 0.080 0.066 0.225 0.105 0.084 0.079 0.183 0.057 

SE 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 

300 

270 

MSE 0.111 0.015 0.025 0.061 0.036 0.006 0.042 0.025 0.069 

RB 0.222 0.100 0.079 0.206 0.101 0.078 0.082 0.174 0.046 

SE 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 

300 

MSE 0.107 0.015 0.025 0.056 0.032 0.006 0.041 0.024 0.068 

RB 0.206 0.092 0.067 0.195 0.093 0.074 0.081 0.170 0.045 

SE 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 

   1, 0.8, 2  = = =  1.25, 0.8, 2  = = =  0.8, 1.5, 2  = = =  

n h  LB UB Le LB UB Le LB UB Le 

50 

45 

  1.080 1.524 0.444 0.999 1.599 0.600 0.889 1.665 0.775 
  0.641 0.898 0.257 0.654 1.023 0.369 0.646 1.306 0.660 
  1.267 3.087 1.820 1.262 2.909 1.647 1.501 3.531 2.029 

50 

  1.092 1.532 0.439 1.005 1.599 0.594 0.889 1.640 0.751 
  0.643 0.891 0.248 0.712 1.007 0.295 0.662 1.281 0.619 
  1.384 3.099 1.715 1.395 2.590 1.195 1.536 3.557 2.021 

200 

180 

  0.917 1.166 0.249 1.009 1.333 0.324 1.010 1.408 0.398 
  0.687 0.925 0.238 0.716 1.009 0.293 0.781 1.184 0.403 
  1.438 2.703 1.265 1.381 2.591 1.209 1.738 3.255 1.518 

200 

  0.927 1.177 0.250 1.009 1.331 0.322 1.009 1.403 0.394 
  0.683 0.915 0.232 0.717 1.011 0.294 0.783 1.186 0.403 
  1.451 2.707 1.256 1.385 2.585 1.201 1.740 3.294 1.514 

300 

270 

  0.942 1.155 0.213 1.028 1.294 0.266 1.058 1.385 0.327 
  0.688 0.898 0.210 0.743 0.994 0.251 0.816 1.149 0.334 
  1.532 2.630 1.098 1.466 2.485 1.019 1.837 3.131 1.294 

300 

  0.941 1.151 0.209 1.034 1.297 0.264 1.048 1.369 0.322 
  0.692 0.899 0.206 0.740 0.994 0.253 0.811 1.145 0.334 
  1.541 2.625 1.085 1.461 2.477 1.016 1.846 3.136 1.290 



1205 Amal HASSAN, Doaa ISMAIL/ GU J Sci, 34(4): 1193-1208 (2021) 

 
 

Table 5. The LB, UB and Le of the estimates for sets (iv), (v) and (vi) 

   1.3, 1, 1  = = =  1, 1.5, 0.5  = = =  1.6, 0.8, 2  = = =  

n h  LB UB Le LB UB Le LB UB Le 

50 

45 

  1.050 2.014 0.964 0.879 1.518 0.638 1.008 1.814 0.805 
  0.617 1.154 0.537 1.072 1.613 0.540 0.690 1.202 0.512 
  0.751 1.484 0.733 0.411 0.737 0.327 1.261 2.553 1.292 

50 

  1.031 1.994 0.964 0.883 1.500 0.681 1.010 1.816 0.806 
  0.623 1.151 0.528 1.084 1.616 0.532 0.692 1.196 0.504 
  0.756 1.487 0.730 0.408 0.736 0.328 0.937 2.201 1.263 

200 

180 

  1.214 1.696 0.481 0.907 1.294 0.387 1.105 1.524 0.419 
  0.731 1.067 0.335 1.067 1.583 0.517 0.782 1.132 0.350 
  0.761 1.384 0.623 0.390 0.699 0.309 1.335 2.435 1.100 

200 

  1.173 1.644 0.472 0.906 1.277 0.371 1.102 1.517 0.415 
  0.751 1.088 0.337 1.092 1.592 0.501 0.786 1.135 0.349 
  0.759 1.373 0.615 0.389 0.695 0.305 1.339 2.433 1.094 

300 

270 

  1.263 1.643 0.380 0.939 1.243 0.303 1.163 1.516 0.353 
  0.768 1.050 0.282 1.127 1.569 0.442 0.794 1.084 0.290 
  0.809 1.348 0.538 0.405 0.672 0.267 1.427 2.388 0.961 

300 

  1.246 1.621 0.376 0.933 1.231 0.298 1.165 1.518 0.353 
  0.762 1.041 0.279 1.140 1.582 0.442 0.791 1.082 0.291 
  0.809 1.345 0.537 0.405 0.669 0.264 1.429 2.390 0.961 

 

Table 6. MLEs and 95% CI of reliability estimates for sets (i) and (ii) at h =0.9 

 1, 0.8, 2  = = =  1.25, 0.8, 2  = = =  

n h t0 Ŝ  CI Ŝ  CI 

LB UB   Le LB UB Le 

50 45 0.1 0.836 0.824 0.849 0.024 0.895 0.885 0.906 0.020 

0.3 0.645 0.630 0.661 0.031 0.730 0.715 0.744 0.029 

0.5 0.522 0.506 0.538 0.032 0.606 0.590 0.622 0.032 

200 180 0.1 0.833 0.830 0.836 0.006 0.894 0.892 0.897 0.004 

0.3 0.646 0.642 0.649 0.007 0.728 0.724 0.733 0.009 

0.5 0.523 0.519 0.527 0.007 0.605 0.601 0.609 0.007 

300 270 0.1 0.833 0.831 0.835 0.003 0.894 0.891 0.895 0.003 

0.3 0.647 0.644 0.649 0.004 0.727 0.725 0.730 0.004 

0.5 0.525 0.522 0.527 0.005 0.605 0.601 0.608 0.006 
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Table 7. MLEs and 95% CI of reliability estimates for sets (iii) and (iv) at  h =0.9 

 0.8, 1.5, 2  = = =  1.3, 1, 1  = = =  

n h t0 Ŝ  CI Ŝ  CI 

LB UB Le LB UB Le 

50 45 0.1 0.957 0.951 0.963 0.012 0.899 0.889 0.909 0.019 

0.3 0.856 0.845 0.867 0.022 0.686 0.671 0.701 0.030 

0.5 0.761 0.748 0.774 0.026 0.530 0.513 0.546 0.034 

200 180 0.1 0.955 0.954 0.957 0.003 0.898 0.896 0.900 0.004 

0.3 0.853 0.850 0.855 0.005 0.688 0.684 0.691 0.007 

0.5 0.757 0.754 0.761 0.006 0.534 0.530 0.538 0.008 

300 270 0.1 0.956 0.955 0.957 0.002 0.897 0.895 0.899 0.003 

0.3 0.852 0.850 0.854 0.003 0.688 0.685 0.690 0.004 

0.5 0.757 0.755 0.759 0.004 0.534 0.531 0.536 0.005 

 

Table 8. MLEs and 95% CI of reliability estimates for sets v and vii at  h=0.9 

 1, 1.5, 0.5  = = =  1.6, 0.8, 2  = = =  

n h t0 Ŝ  CI Ŝ  CI 

LB UB Le LB UB Le 

50 45 0.1 0.871 0.860 0.882 0.022 0.944 0.937 0.952 0.015 

0.3 0.592 0.576 0.608 0.032 0.812 0.799 0.824 0.025 

0.5 0.415 0.399 0.432 0.033 0.695 0.680 0.709 0.029 

200 180 0.1 0.869 0.866 0.872 0.005 0.943 0.941 0.945 0.003 

0.3 0.593 0.589 0.596 0.007 0.812 0.809 0.815 0.006 

0.5 0.416 0.412 0.420 0.008 0.696 0.693 0.700 0.007 

300 270 0.1 0.869 0.867 0.871 0.003 0.943 0.942 0.944 0.002 

0.3 0.593 0.591 0.596 0.005 0.811 0.809 0.813 0.004 

0.5 0.418 0.415 0.421 0.005 0.696 0.693 0.698 0.004 

 
5.2. Data Analysis 

 

Two real data are provided to illustrate the importance of the TLIL distribution compared with IL, TL 

generalized exponential (TLGE) and TL inverse Weibull (TLIW). Kolmogorov- Smirnov goodness of fit 

test is obtained for each data set and the p-values in each distribution indicate that the model fits the data 

very well.  

The first data set about time between failures for repairable item (see [20]).  The second data reported by 

Jorgensen [21] represent active repair times (in hours) for airborne communication transceiver. To compare 

the fitted models, measures include; -2log-likelihood function evaluated at the parameter estimates, Akaike 

information criterion (AIC), Bayesian information criterion (BIC), consistent AIC (CAIC) and Hannan-

Quinn information criterion (HQIC) are considered. The better model is corresponding to the smallest 

values of mentioned measures. Table 9 gives the results of selected measures. 
 

Table 9. The statistics -2logL, AIC, CAIC, BIC and HQIC for the two real data sets  

 

Data  І Data Π 

model -2LogL AIC BIC CAIC HQIC -2LogL AIC BIC CAIC HQIC 

TLIL 99.63 105.63 109.84 106.84 106.98 187.78 193.76 198.85 194.45 99.63 

TLGE 600.25 606.25 610.46 607.46 607.60 195.39 201.39 206.45 202.05 600.25 

TLIW 325.54 331.54 335.74 332.46 332.88 224.82 230.82 235.89 231.49 325.54 

IL 199.01 205.01 209.22 205.94 206.36 314.48 320.48 325.55 321.15 199.01 
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Additionally, MLEs, reliability estimates of TLIL distribution and their SEs for both real data based on 

TIIC are listed in Table 10. 
 

Table 10. MLE, reliability estimate and SEs of TLIL distribution based on TIIC for both data  

SEs Estimate estimator h n 
Real 

data 

0.016 

0.307 

0.010 

0.000 

0. 502 

7.768 

0.369 

0.997 

̂  

̂  

̂  
ˆ(0.1)S  

21 30 І 

0.006 

0.556 

0.001 

0.000 

0.445 

34.602 

0.126 

1 

̂  

̂  

̂  
ˆ(0.1)S  

28 40 Π 

 

6. CONCLUDING REMARKS 

 
In this paper, we introduce a three-parameter new model, so called, Topp-Leone inverse Lomax 

distribution. Explicit expressions for its density and distribution functions are proposed. Some of its 

statistical properties are derived. The ML estimators of population parameters are obtained as well as 

reliability estimator is derived in presence of complete and censored samples. The approximate confidence 

intervals of parameters together with interval of reliability estimator are provided. Simulation study is 

implemented to check the behaviour of proposed estimators and recommendations are reported based on 

simulation outcomes. The applicability and importance of the new model is proved empirically using two 

real data sets. Indeed, the TLIL model provides a better fit to these data than some other models.  
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