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Abstract
The sequences which are fixed by the binomial transform are called self-inverse sequences.
In this paper, an identity satisfied by Fibonacci numbers is modified to provide a transform
which maps a specific subset of sequences to self-inverse sequences bijectively. The image
of some classes of sequences under this transform are explicitly found which provides a new
formulation and a class of examples of self-inverse sequences. A criterion for the solutions
of some difference equations to be self-inverse is also given.
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1. Introduction
Let A denote the set of sequences d = {dn}n≥0 over a field of characteristic zero. The

binomial transform, B of a sequence d ∈ A is defined as

B : A → A, B(d)n =
n∑

k=0

(
n

k

)
(−1)kdk, n ≥ 0.

The ordinary generating function of a sequence d = {dn}n≥0 is the formal power series
f(T ) =

∑∞
n=0 dnT n. In this case we simple write

d ∼ f(T ).
The generating function of a sequence d and of its binomial transform are related to each
other; for any sequence d,

d ∼ f(T ) =⇒ B(d) ∼ 1
1 − T

f

( −T

1 − T

)
(See [3] or [4]). It is easy to see that B2(d) = d, so that the eigenvalues of B are ±1. The
eigenspaces of B, i.e. sequences for which B(d) = ± d are of common interest. A sequence
d ∈ A is said to be self-inverse (or invariant under B) if B(d) = d. We denote the subset
of self-inverse sequences by A+. Note that A+ is a subspace of A. Typical examples of
self-inverse sequences are

{1/2n}n≥0, {nFn−1}n≥0, {(−1)nBn}n≥0,

where Fn and Bn denote the n-th Fibonacci and Bernoulli numbers respectively with
F0 = 0. An extensive list of examples of both eigenspaces of B with related recurrence

Email address: alerdogan@gtu.edu.tr
Received: 25.07.2020; Accepted: 04.03.2021

https://orcid.org/0000-0001-5113-1906


1124 A. Erdoğan

relations are proved in [4]. Also some congruences modulo prime powers involving both
eigenspaces are given in [5]. Another interesting result is that A is equal to the direct sum
of eigenspaces of B which can be proved by using the matrix representation of B, [6]. In
this paper, we shall restrict to eigenspace of B corresponding to the eigenvalue 1.

There is another convention for the binomial transform where the term (−1)k in the
summation in B is omitted, but we will adopt the above convention. The reader is referred
to [1] for the alternative convention and also a general exposition on transforms of integer
sequences.

Let A0 denote the subspace of A consisting of sequences d = {dn}n≥0 for which d0 = 0.
We denote the subspace of self-inverse sequences in A0 by A+

0 . Note that for any d ∈ A+
0 ,

we necessarily have d0 = d1 = 0. Let H be the transform on A0 defined as
H : A0 → A0,

H(c)n =
bn/2c∑
k=0

(
n − k − 1

k − 1

)
(−1)kck, n ≥ 2,

where bxc denotes the greatest integer less than or equal to x. Note that the binomial
term corresponding to k = 0 is

(n−1
−1
)

which may be defined in different ways. But we
don’t need to care about this ambiguity since we apply H on sequences for which c0 = 0.
So we actually have that

H(c)0 = H(c)1 = 0, H(c)n =
bn/2c∑
k=1

(
n − k − 1

k − 1

)
(−1)kck, n ≥ 2, c ∈ A0 . (1.1)

The main result of this paper is the following theorem.

Theorem 1.1. For any c ∈ A0, the sequence {nH(c)n}n≥0 is a self-inverse sequence.
Moreover the map

A0 → A+
0 , c 7→ {nH(c)n}n≥0

is a bijection.

This result is a characterization of self-inverse sequences in A+
0 . For example the se-

quence c for which c0 = 0, ck = (−1)k for k ≥ 1 maps to {nFn−1}n≥0 where {Fn} is the
Fibonacci sequence (We take F−1 = F0 = 0). It is possible to recover A+ from A+

0 since
we have the following;

(0, 0, d2, d3, ...) ∈ A+
0 if and only if (d2, d3 − d2, d4 − d3, ....) ∈ A+, (1.2)

This follows by [4, Corollary 3.1-3.2].
The organization of the paper is as follows. In Section 2 we study the ordinary gener-

ating functions and as a result prove above theorem. The idea of the proof is expressing
the difference operator as a conjugation by a differential operator applied on ordinary
generating functions.

Section 3 is devoted to characterization of specific types of self-inverse sequences. We
shall focus on two types of sequences. We find a basis for self-inverse sequences of polyno-
mial type in A+

0 . We also study sequences which satisfy specific recurrence relations.
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2. Main theorem
We define the formal differential operator D on the ring of formal power series as

D = T
d

dT
, explicitly if f(T ) =

∑∞
n=0 dnT n then

Df(T ) =
∞∑

n=1
ndnT n.

By abuse of notation we may also use D to denote the corresponding transform on A and
write D(d) = {ndn}n≥0 for any d ∈ A. Clearly D does not have an inverse. But if we
restrict D to A0, then D is invertible with inverse D−1 where

D−1 : A0 → A0,

D−1(d)0 = 0, D−1(d)n = dn/n for n ≥ 1
In terms of generating functions we have

f(T ) =
∞∑

n=1
dnT n =⇒ D−1f(T ) =

∞∑
n=1

dn

n
T n.

We define another transform B′ on A0 as B′ = D−1 BD, explicitly for any d ∈ A0

B′(d)0 = 0, B′(d)n =
n∑

k=1

(
n − 1
k − 1

)
dk(−1)k for n ≥ 1.

Equivalently, we can define B′ by B′(d)n = B(d)n − B(d)n−1 for n ≥ 1. This differ-
ence operator in relation to self-inverse sequences allows one to obtain formulas involving
harmonic numbers and Stirling numbers, [2].

But we emphasize the relation B′ = D−1 BD on A0 which simply implies that
B′(d) = d if and only if B(D(d)) = D(d) (2.1)

for d ∈ A0. We say that d is invariant under B′ if B′(d) = d. So we shall study the
invariant sequences under B′ and then relate to B. Note that if d ∈ A0 is invariant under
B (or B′) then necessarily d0 = d1 = 0. We have a simple description of B′ in terms of
the ordinary generating functions.

Lemma 2.1. Let d ∈ A0 and d ∼ f(T ). Then

B′(d) ∼ f

( −T

1 − T

)
,

where 1
1 − T

=
∞∑

n=0
T n.

Proof. Recall that for any a ∈ A, if a ∼ f(T ) then

B(a) ∼ 1
1 − T

f

( −T

1 − T

)
.

Since D(d) ∼ Tf ′(T ) we have that

BD(d) ∼ −T

(1 − T )2 f ′
( −T

1 − T

)
.

But by chain rule we also see that

D

[
f

( −T

1 − T

)]
= −T

(1 − T )2 f ′
( −T

1 − T

)
.

Applying D−1 we obtain

B′(d) = D−1 BD(d) ∼ f

( −T

1 − T

)
.
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�
In particular, for any sequence d ∼ f(T ) we have that

B′(d) = (d) ⇐⇒ f(T ) = f

( −T

1 − T

)
.

So we shall investigate the formal power series which are symmetric in T and −T/(1 − T ).
The simplest nonzero power series symmetric in T and −T/(1 − T ) is

T + −T

1 − T
= T

−T

1 − T
= −T 2

1 − T
.

As a consequence any sequence in A0 with an ordinary generating function of the form
f
(
−T 2/(1 − T )

)
for some f(T ) is invariant under B′.

Example 2.2. Let d ∼ f(T ) = ln2(1 − T )/2 where ln(1 − T ) = −
∑∞

n=1
T n

n , so that
d ∈ A0. We may easily verify that

f(T ) = f (−T/(1 − T )) ,

which implies that B′(d) = d. But by computing the square of ln(1 − T ) we can also see
that

f(T ) =
∞∑

k=2

Hk−1
k

T k,

where Hk−1 = 1+1/2+1/3+ ...+1/(k −1) are the harmonic numbers. Then we have that
D(d) = {0, 0, H1, H2, ...}. By (2.1), D(d) is invariant under B, i.e. we have the recurrence

n∑
k=2

(
n

k

)
(−1)kHk−1 = Hn−1, n ≥ 2.

Note that this fact can also be derived by applying (1.2) to the self-inverse sequence
{1, 1/2, 1/3, ...}.

Theorem 2.3. For any c ∈ A0, the sequence {nH(c)n}n≥0 is a self-inverse sequence.
Moreover the map

A0 → A+
0 , c 7→ {nH(c)n}n≥0

is a bijection.

Proof. Let c ∈ A0 and c ∼ g(T ). For the first part of the theorem by (2.1) it is enough to
prove that H(c) is invariant under B′. Let d be the sequence for which d ∼ g(−T 2/(1−T )).
By Lemma 2.1 and the conclusion following it, d is invariant under B′. Now we will show
that indeed d = H(c). Let g(T ) =

∑∞
k=1 ckT k. Then

g

(
−T 2

1 − T

)
=

∞∑
k=1

ck

(
−T 2

1 − T

)k

=
∞∑

k=1
ck(−1)kT 2k 1

(1 − T )k

=
∞∑

k=1
ck(−1)k

∞∑
l=k

(
l − 1
k − 1

)
T l+k.

In the last equality we use that 1/(1 − T )k =
∑∞

l=k

( l−1
k−1
)
T l−k for k ≥ 1 which can be

proven inductively. We set n = l + k and obtain that

g

(
−T 2

1 − T

)
=

∞∑
k=1

ck(−1)k
∞∑

n=2k

(
n − k − 1

k − 1

)
T n.

We interchange the indices k and n and deduce that

g

(
−T 2

1 − T

)
=

∞∑
n=2

bn/2c∑
k=1

(
n − k − 1

k − 1

)
ck(−1)k

T n,
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which completes the proof of the first part of the theorem.
For the second part, first we note that the map c 7→ {nH(c)n}n≥0 on A0 is linear. If

H(c)(n) = 0 for all n ≥ 2 then by induction it follows that ck = 0 for k ≥ 1. So the map
c 7→ {nH(c)n}n≥0 on A0 is injective.

Now we prove the surjectivity. Again by (2.1) it is enough to show that for any sequence
d ∈ A0 which is invariant under B′ there exists c ∈ A0 such that H(c) = d. Let d be
invariant under B′. Note that we necessarily have d0 = d1 = 0. Consider the subsequence
{d2m}m≥1. We can uniquely determine {ck}k≥1 such that

d2m =
m∑

k=1

(
2m − k − 1

k − 1

)
ck(−1)k

recursively. Now we set d′ = H(c), so that d′ is invariant under B′ and d2m = d′
2m for

m ≥ 0. Recall that B′ = D−1 BD, and that D and B are linear. So B′ is also linear which
implies that d′′ = d′ − d is also invariant under B′. Explicitly

d′′
n =

n∑
k=2

(
n − 1
k − 1

)
d′′

k(−1)k, n ≥ 2

where d′′
0 = d′′

1 = d′′
2m = 0 for m ≥ 1. Inductively it follows that d′′

n = 0 also for all odd
n ≥ 0, and so

d = d′ = H(c).
This completes the proof of surjectivity. �

3. Examples and applications
The well-known examples of invariant sequences under B have been given in Section 1.

A convenient reference for other examples is [4]. Here we will focus on two specific type
of self-inverse sequences using results of Section 2.

First we need to recall a difference operator required in this section. We define the
(forward) difference operator ∆ as

(∆ d)(n) = dn+1 − dn, n ≥ 0

for any sequence d = {dn}n≥0. If f is a function on N, we may write (∆f) for (∆ d) where
d = {f(n)}n≥0, i.e. (∆f)(n) = f(n + 1) − f(n) for n ≥ 0.

We say that a sequence d ∈ A0 is of polynomial type if there exists a polynomial f(x)
and N ∈ N such that dn = f(n) for all n ≥ N . In this case we say that d is associated to
f(x). The existence of invariant sequences of polynomial type is already known. Indeed,
if f(x) is a polynomial of degree r then the sequence {dn}n≥0 defined as

dn = (−1)n(∆nf)(0) + f(n), n ≥ 0

is an invariant sequence of polynomial type, [6, Theorem 3.2]. Note that in this case
dn = f(n) for n > r. In particular, for any r ≥ 1 the sequence

dn = (−1)nn!S(r, n) + nr, n ≥ 0 (3.1)

is in A+
0 for which dn = nr if n > r where S(r, n) denotes the Stirling numbers of the

second kind, [6, Example 3.3]. We say that a sequence d = {d0, d1, ...} is finitely supported
if there exists n ∈ N such that dn = 0 for n ≥ N .

Lemma 3.1. The only finitely supported sequence in A+ is the zero sequence.

Proof. For an arbitrary sequence d, if d ∼ f(T ) then

B(d) ∼ 1
1 − T

f

( −T

1 − T

)
.
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If d is finitely supported then f(T ) is a polynomial. Additionally if d ∈ A+ then f(T ) =
1

1 − T
f

( −T

1 − T

)
. But by considering the degree of f(T ) we see that this is possible if

and only if f(T ) = 0. �
Let d and d′ be of polynomial type, with dn = d′

n = f(n) for n ≥ N for some polynomial
f of degree r satisfying f(0) = 0. Then {dn − d′

n}n≥0 is also of polynomial type. But it is
also a finitely supported sequence in A+

0 , so it must be the zero sequence by Lemma 3.1.
Hence there is a unique self-inverse sequence associated to any polynomial. Since {xr}r≥1
is a basis for the space of polynomials with zero constant term we have the following result.

Corollary 3.2. The sequences in (3.1) for r ≥ 1 form a basis for the subspace of self-
inverse sequences of polynomial type in A+

0 .

Now we give another basis using the transform H.

Theorem 3.3. Let l ∈ N with l ≥ 1 and fl be the function on N defined as

fl(n) =
{

0, n < 2l(n−l−1
l−1

)
, n ≥ 2l

Then {nfl(n)}n≥0 ∈ A+
0 . Conversely, let d = {dn}n≥0 ∈ A+

0 be of polynomial type.
Suppose that dn = f(n) for n ≥ N where f is a polynomial of degree r satisfying f(0) = 0.
Then there exist unique α1, α2, ..., αr such that

d =
{

n
r∑

l=1
αlfl(n)

}
n≥0

Proof. Note that for a fixed l ≥ 1, {nfl(n)}n≥0 is of polynomial type. Let c(l) ∈ A0 be
the sequence for which

c(l)
k =

{
0, k 6= l

(−1)l, k = l

Then we have {fl(n)}n≥0 = H(c(l)). So the first part follows by Theorem 2.3.
To prove the converse, take any d and f satisfying the hypothesis of the theorem.

Without loss of generality we may assume that N ≥ 2r. For l ≥ 1, the degree of the
polynomial x

(x−l−1
l−1

)
is l, so in particular, the set{

x

(
x − l − 1

l − 1

)}
l≥1

forms a basis for the space of polynomials with no constant term. Since f(0) = 0 there
exist unique α1, α2, ..., αr such that

f(x) = x
r∑

l=1
αl

(
x − l − 1

l − 1

)
.

Now for n ≥ N , we have dn = f(n) =
∑r

l=1 αl nfl(n). Also both of the sequences

{dn}≥0 and
{

n
r∑

l=1
αl fl(n)

}
n≥0

are invariant under B. So the difference{
dn − n

r∑
l=1

αl fl(n)
}

n≥0

is a finitely supported sequence in A+
0 which is necessarily the zero sequence by Lemma

3.1. �
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So the set
{{nfl(n)}n≥0 | l ≥ 1}

is also a basis for the self-inverse sequences of polynomial type in A0. We also see that H

maps the finitely supported sequence in A0 to self-inverse sequences of polynomial type in
A0 bijectively.

Example 3.4. l = 1 produces the sequence d0 = d1 = 0, dn = n for n ≥ 2. This
elementary case is already known, [4]. Similarly the invariant sequence corresponding to
l = 2 is d0 = d1 = d2 = d3 = 0 and dn = n(n − 3) for n ≥ 4.

Now we consider another type of self-inverse sequences which generalizes the Fibonacci
sequence. First we need to introduce an operator V on A0. For any c ∈ A0 we define
V (c) as

V (c)0 = 0, V (c)n = −cn+1 for n ≥ 1
i.e. if c = (0, c1, c2, ...) then V (c) = (0, −c2, −c3, ...). So the L-th power of V is

V L(c) = (0, (−1)Lc1+L, (−1)Lc2+L, ...)
The images of the sequences c and V (c) under H are related to each other.

Proposition 3.5. For any c ∈ A0 and n ≥ 1 we have that
H(V L(c))n = (∆L H(c))(L + n)

Proof. We use induction on L. We set d = H(c) and d(L) = H(V L(c)) to simplify the
notation. For L = 1 the problem reduces to showing that d

(1)
n = dn+2 − dn+1 for n ≥ 1.

This holds for n = 1 as d is self-inverse and d0 = d1 = 0.
For even n we set n = 2m for m ≥ 2. Then

d2m − d2m−1 =
b2m/2c∑

k=1

(
2m − k − 1

k − 1

)
(−1)kck −

b(2m−1)/2c∑
k=1

(
2m − k − 2

k − 1

)
(−1)kck

= (−1)mcm +
m−1∑
k=2

(
2m − k − 2

k − 2

)
(−1)kck

= (−1)m−1(−cm) +
m−2∑
k=1

(
2m − k − 3

k − 1

)
(−1)k(−ck+1)

=
b(2(m−1)/2c∑

k=1

(
2(m − 1) − k − 1

k − 1

)
(−1)k(−ck+1) = d

(1)
2m−2

In a similar way it also follows that d2m+1 − d2m = d
(1)
2m−1 for m ≥ 2 which completes the

proof of the claim for L = 1.
Now assume that d

(L−1)
n = (∆L−1 d)(L−1+n). Since d(L) = H(V L(c)) = H(V (V L−1(c)))

by using the case L = 1 and the induction hypothesis we obtain that

d(L)
n = H(V L−1(c))n+2 − H(V L−1(c))n+1 = d

(L−1)
n+2 − d

(L−1)
n+1

= (∆L−1 d)(L + 1 + n) − (∆L−1 d)(L + n) = (∆L d)(L + n).
�

Corollary 3.6. Let d ∈ A0 be invariant under B′. Then the sequence d′ = (dn)n≥0
defined as

d′
n =

{
0, n = 0
(∆L d)(L + n), n > 0

is also invariant under B′. Equivalently, if {ndn}n≥0 is a self-inverse sequence in A0 then
so is {n(∆L d)(L + n)}n≥0
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Proof. By Theorem 2.3, there exists c ∈ A0 such that d = H(c). Then the result follows
by Proposition 3.5. �

We may compare this result with [6]; if we set an = ndn in the notation of the above
corollary, it follows by Theorem 3.4 of [6] that {(∆L a)(L+n)}n≥0 is also self-inverse. But
{(∆L a)(L + n)}n≥0 and {n(∆L d)(L + n)}n≥0 are obviously distinct sequences.

A related fact is that a sequence {ndn−1} for which
d0 = 0, d1 = 1 and (∆1 d)(1 + n) = tdn, n ≥ 1

where t is an indeterminate is self-inverse, [4, Example 5 of Section 2]. In other words by
(2.1) the sequence (0, 0, d1, d2, ...) is invariant under B′. It is worthwhile to extend this fact
to higher order difference equations (∆L d)(L + n) = dn for L ≥ 2. Consider a sequence
d ∈ A0 which satisfies the difference equation

(∆L d)(L + n) = dn, n ≥ 1.

Then d is uniquely determined by the initial conditions d1, d2, ..., d2L. It turns out that
if the initial conditions on d0, d1, d2, ..., d2L obey the invariance under B′ then d is itself
invariant under B′.

Theorem 3.7. Let d ∈ A0, L ∈ Z with L ≥ 1 and t be an indeterminate. Suppose that
(∆L d)(L + n) = tdn, n ≥ 1.

If B′(d)n = dn for 0 ≤ n ≤ 2L then B′(d) = d.

Proof. Note that by assumption d0 = d1 = 0. By using all even integers n between 1 and
2L we can recursively find c1, c2, ..., cL such that

dn =
bn/2c∑
k=1

(
n − k − 1

k − 1

)
(−1)kck, 1 ≤ n ≤ 2L, n : even

By hypothesis B′(d)n = dn for all n between 0 and 2L. So it follows that for any extension
of (0, c1, c2, ...cL) to an infinite sequence c = (0, c1, c2, ...cL, ...) we have that H(c)n = dn

for all odd n ∈ [0, 2L]. In particular, we can choose c so that V L(c) = t c. Hence by
Proposition 3.5 and linearity we see that

tH(c)n = H(t c)n = H(V L(c))n = (∆L H(c))(L + n), 1 ≤ n ≤ 2L

Now let d′ = H(c) − d. Since the mapping a 7→ {(∆L a)(L + n)} is linear, we see that d′

satisfies the difference equation
(∆L d′)(L + n) = td′

n, n ≥ 1
with the initial conditions d′

0 = d′
1 = ... = d′

2L = 0. So d′ must be the zero sequence. �
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