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The object of the present paper is to study the Riemannian solitons on (LCS)n-
manifolds and we observed in this case the Riemann soliton onM is shrinking, steady or
expanding according to α2−ρ being positive, zero or negative respectively. Here also we
discussed the Riemann solitons in (LCS)n-manifold admitting (i)R ·C = 0,R ·K = 0,
(ii) E ·C = 0, E ·K = 0, (iii)R ·R = 0, R ·P = 0, R ·E = 0, R ·P ∗ = 0, R ·M = 0,
R ·Wi = 0, R ·W∗

i = 0, (iv) E ·R = 0, E ·P = 0, E ·E = 0, E ·P ∗ = 0, E ·M = 0,
E · Wi = 0 and E · W∗

i = 0.( for all i = 1, 2, ....9). We found that the Riemann soli-
ton on M is shrinking, steady or expanding according to the conditions (i) α2− ρ being
positive, zero or negative respectively, (ii) [k(n−1) (n− 2) (1+α2−ρ)−kr−r] being
positive, zero or negative respectively and (iv) α2 − ρ being negative, zero or positive.
But for the condition (iii) the Riemann soliton on M is always steady.

1. Introduction

In 1982, R. S. Hamilton [1] first introduced the notion of Ricci flow. This concept generalized to the idea of
Riemann flow ( [2], [3]). Keeping the tune with Ricci soliton, Hirica and Udriste [4] introduced and discussed
Riemann soliton. Recently various geometer like Venkatesha, Devaraja and Aruna ( [5] and [6]) have studied
Riemann soliton. The Ricci flow is an evolution equation for metrics on a Riemannian manifold defined ( [2], [3])
as follows

∂

∂t
G (t) = −2R (g (t)) , t ∈ [0, I] , (1)

where G = 1
2g ~ g,~ is the Kularni-Nomizu product and R is the Riemann curvature tensor associated to the

metric g. For (0, 2)-tensors α and β, the kKulkarni-Nomizu product (α~ β) is given by

(α~ β)(Y, U, V, Z) = α(Y, V )β(U,Z) + α(U,Z)β(Y, V )

−α(Y,Z)β(U, V )− α(U, V )β(Y,Z). (2)

The authors Stepanov and Tsyganok [7] characterize the Riemann soliton in terms of infinitesimal harmonic
transformation. The Riemann soliton is a smooth manifold M together with Riemannian metric g that satisfies

2R+ λ(g ~ g) + (g ~£W g) = 0, (3)

where W is a potential vector field, £V denotes the Lie-derivative along the vector field W and λ is a constant.
The Riemann soliton also corresponds to the Riemann flow as a fixed point, and on the space of Riemannian
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metric modulo diffeomorphism they can be seen as a dynamic system. A Riemann soliton is called expanding,
steady and shrinking when λ > 0, λ = 0 and λ < 0 respectively.

Throughout our manuscript, we denote by Q, S and r the Ricci operator, the Ricci curvature tensor and the
scalar curvature, respectively.

Definition 1 Let T and D be two tensors of type (0, 4). A Riemannian (or semi-Riemannian) manifold is said to
be D-semisymmetric type if T (X,Y ) ·D = 0 for all X , Y ∈ χ(M ), the set all vector fields of the manifold M
where T (X,Y ) acts on D as derivation of tensor algebra. The above condition is often written as T · D = 0.
Especially, if we consider T = D = R, then the manifold is called semisymmetric [8]. Details about the
semisymmetry and other conditions of semisymmetry type are available in : [9], [10], [11], [12], [13], [14] and
also references therein.

In 2013, Kundu and Shaikh [15] investigated the equivalency of various geometric structures. They have
established the following conditions:

i) R · C = 0 and R ·K = 0 are equivalent and named such a class by C1;
ii) E · C = 0 and E ·K = 0 are equivalent and named such a class by C2,
iii) R · R = 0, R · P = 0, R · E = 0, R · P ∗ = 0, R · M = 0, R · Wi = 0 and R · W∗

i = 0 (for all
i = 1, 2, ..., 9) are equivalent and named such a class by C3;

iv) E · R = 0, E · P = 0, E · E = 0, E · P ∗ = 0, E · M = 0, E · Wi = 0 and E · W∗
i = 0 (for

all i = 1, 2, ..., 9) are equivalent and named such a class by C4; where the concircular curvature tensor E [16],
conformal curvature tensor C [17], conharmonic curvature tensor K [18], projective curvature tensor P [16],
M-projective curvature tensorM [19], Wi-curvature tensor, i = 1, 2, ..., 9( [19], [20], [21]) and W∗

i -curvature
tensor, i = 1, 2, ..., 9 [19] are defined respectively by

E (U1, V1) = R (U1, V1)−
r

n(n− 1)
(U1 ∧g V1) , (4)

C (U1, V1) = R (U1, V1)−
1

n− 2
[(U1 ∧g QV1) + (QU1 ∧g V1)

+
r

(n− 1)
(U1 ∧g V1)], (5)

K (U1, V1) = R (U1, V1)−
1

n− 2
[(U1 ∧g QV1) + (QU1 ∧g V1)] , (6)

P (U1, V1) = R (U1, V1)−
1

n− 1
(U1 ∧S V1) , (7)

M (U1, V1) = R (U1, V1)−
1

2 (n− 1)
[(U1 ∧g QV1) + (QU1 ∧g V1)] , (8)

W0 (U1, V1) = R (U1, V1)−
1

(n− 1)
(U1 ∧g QV1) , (9)

W∗
0 (U1, V1) = R (U1, V1) +

1

(n− 1)
(U1 ∧g QV1) , (10)

W1 (U1, V1) = R (U1, V1)−
1

(n− 1)
(U1 ∧S V1) , (11)

W∗
1 (U1, V1) = R (U1, V1) +

1

(n− 1)
(U1 ∧S V1) , (12)

W2 (U1, V1) = R (U1, V1)−
1

(n− 1)
[(QU1 ∧g V1) (13)

W∗
2 (U1, V1) = R (U1, V1) +

1

(n− 1)
[(QU1 ∧g V1)

+ (U1 ∧g QV1)− (U1 ∧S V1)], (14)
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W3 (U1, V1) = R (U1, V1)−
1

(n− 1)
(V1 ∧g QU1) , (15)

W∗
3 (U1, V1) = R (U1, V1) +

1

(n− 1)
(V1 ∧g QU1) , (16)

W5 (U1, V1) = R (U1, V1)−
1

(n− 1)
[(U1 ∧g QV1)− (U1 ∧S V1)] , (17)

W∗
5 (U1, V1) = R (U1, V1) +

1

(n− 1)
[(U1 ∧g QV1)− (U1 ∧S V1)] , (18)

W7 (U1, V1) = R (U1, V1) +
1

(n− 1)
[(QU1 ∧g V1)− (U1 ∧S V1)] , (19)

W∗
7 (U1, V1) = R (U1, V1)−

1

(n− 1)
[(QU1 ∧g V1)− (U1 ∧S V1)] , (20)

W4 (U1, V1)Z1 = R (U1, V1)Z1 −
1

(n− 1)
[g (U1, Z1)QV1 − g (U1, V1)QZ1], (21)

W∗
4 (U1, V1)Z1 = R (U1, V1)Z1 +

1

(n− 1)
[g (U1, Z1)QV1 − g (U1, V1)QZ1], (22)

W6 (U1, V1)Z1 = R (U1, V1)Z1 −
1

(n− 1)
[S (V1, Z1)U1 − g (U1, V1)QZ1], (23)

where
(U1 ∧B V1)Z1 = B(V1, Z1)U1 −B(U1, Z1)V1. (24)

The present paper is structured as follows. After introduction, in Section 2, we briefly recall some known re-
sults for (LCS)n-manifolds. In section 3, we discussed Riemann solitons in (LCS)n-manifolds and we obtained
in this case the Riemann soliton on M is shrinking, steady or expanding according to α2 − ρ being positive, zero
or negative respectively. Here also we studied the Riemann solitons (LCS)n-manifold admitting R · C = 0,
R ·K = 0, E · C = 0, E ·K = 0, R · R = 0, R · P = 0, R · E = 0, R · P ∗ = 0, R · M = 0, R · Wi = 0,
R · W∗

i = 0, E ·R = 0, E · P = 0, E · E = 0, E · P ∗ = 0, E · M = 0, E · Wi = 0 and E · W∗
i = 0.

2. Properties of (LCS)n-manifold

Let (Mn, g) be a Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic
vector field of the manifold. Then we have

g(ξ, ξ) = −1. (25)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that for

g(U1, ξ) = η(U1), (26)

the equation of the following form holds

(∇U1η)V1 = α [g(U1, V1) + η(U1)η(V1)] , (27)

for all vector fieldsU1, V1, where∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g and α is a non-zero scalar function, which satisfies

∇U1α = (U1α) = dα(U1) = ρη(U1), (28)

ρ being a certain scalar function. If we put

φU1 =
1

α
∇U1ξ, (29)

then from (27) and (29) we get
φU1 = U1 + η(U1)ξ, (30)
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from which it follows that φ is a symmetric (1, 1) tensor field. Thus the Lorentzian manifold Mn together with
the unit timelike concircular vector field ξ, its associated 1-form η and the (1, 1) tensor field φ is said to be a
Lorentzian concircular structure manifold, in brief, (LCS)n-manifold. In an (LCS)n-manifold, the following
relations hold:

η(ξ) = −1, φ ◦ ξ = 0, (31)

η(φU1) = 0, g(φU1, φV1) = g(U1, V1) + η(U1)η(V1), (32)

η(R(U1, V1)Z1) = (α2 − ρ)[g(V1, Z1)η(U1)− g(U1, Z1)η(V1)], (33)

R(U1, V1)ξ = (α2 − ρ)[η(V1)U1 − η(U1)V1], (34)

R(ξ, U1)V1 = (α2 − ρ)[g(U1, V1)ξ − η(V1)U1], (35)

S(U1, ξ) = (n− 1)(α2 − ρ)η(U1), (36)

for any vector fields U1, V1, Z1.
In view of (33), from (4), (5), (6), (7) and (24) one can easily bring out the followings:

g(C(U1, V1)Z1, ξ)

= η(C(U1, V1)Z1)

=

[
r

(n− 1)(n− 2)
+ (α2 − ρ)− (n− 1)

(n− 2)

]
[g(V1, Z1)η(U1)

− g(U1, Z1)η(V1)]−
1

n− 2
[S(V1, Z1)η(U1)− S(U1, Z1)η(V1)] , (37)

g(K(U1, V1)Z1, ξ)

= η(K(U1, V1)Z1))

=

[
(α2 − ρ)− (n− 1)

(n− 2)

]
[g(V1, Z1)η(U1)− g(U1, Z1)η(V1)]

− 1

n− 2
[S(V1, Z1)η(U1)− S(U1, Z1)η(V1)] , (38)

g(E(U1, V1)Z1, ξ)

= η(E(U1, V1)Z1)

=

[
(α2 − ρ)− r

n(n− 1)

]
[g(V1, Z1)η(U1)− g(U1, Z1)η(V1)], (39)

g(P (U1, V1)Z1, ξ)

= η(P (U1, V1)Z1)

= (α2 − ρ)[g(V1, Z1)η(U1)− g(U1, Z1)η(V1)]

− 1

n− 1
[S(V1, Z1)η(U1)− S(U1, Z1)η(V1)]. (40)

Definition 2 An n-dimensional (LCS)n-manifold is said to be an η-Einstein manifold if the Ricci curvature tensor
S is of the form

S = ag + bη ⊗ η,
where a and b are smooth functions on Mn and η is a 1-form.

In particular, if b = 0, then Mn is said to be an Einstein manifold.
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3. Riemann solitons admitting semi-symmetric strucres in (LCS)n-manifolds

In this section we consider a (LCS)n-manifold (Mn, g, φ, ξ, η) admits an Riemann soliton. Then taking account
(2), into (3), we obtain

0

= 2R (Y1, U1, V1, Z1) + 2λ [g (Y1, V1) g (U1, Z1)− g (Y1, Z1) g (U1, V1)]

+ [g (Y1, V1)£ξg (U1, Z1) + g (U1, Z1)£ξg (Y1, V1)− g (Y1, Z1)£ξg (U1, V1)− g (U1, V1)£ξg (Y1, Z1)] .(41)

Now, we express the Lie derivative along ξ on M as follows:

(£ξg) (U1, V1)

= £ξ (g (U1, V1))− g (£ξU1, V1)− g (U1,£ξV1)

= £ξg (U1, V1)− g ([ξ, U1] , V1)− g (U1, [ξ, V1]) . (42)

Now using (29) in the foregoing equation we obtain

(£ξg) (U1, V1) = 2αg (φU1, V1) . (43)

By using (43) into (41), we get

0

= 2R (Y1, U1, V1, Z1) + 2λ [g (Y1, V1) g (U1, Z1)− g (Y1, Z1) g (U1, V1)]

+[2αg (φU1, Z1) g (Y1, V1) + 2αg (φY1, V1) g (U1, Z1)

−2αg (φU1, V1) g (Y1, Z1)− 2αg (φY1, Z1) g (U1, V1)]. (44)

By the suitable contraction of (45), we get

0

= S (U1, V1) + [λ (1− n) + α (2− n)] g (U1, V1) + α (2− n) η (U1) η (V1) . (45)

Taking U1 = V1 = ξ in (45), we obtain
λ = −(α2 − ρ). (46)

Thus we can state

Theorem 1 If (g, φ, ξ, η) is a Riemann soliton on (LCS)n-manifold, then it is shrinking, steady or expanding
according to the condition α2 − ρ being positive, zero or negative respectively.

3.1. Riemann solitons on (LCS)n-manifolds admitting the class C1

Here, we consider (LCS)n-manifolds admitting the condition

(R(U1, V1) · C)(X1, Y1)Z1 = 0,

which implies

g(R(ξ, V1)C(X1, Y1)Z1, ξ)− g(C(R(ξ, V1)X1, Y1)Z1, ξ)

−g(C(X1, R(ξ, V1)Y1)Z1, ξ)− g(C(X1, Y1)R(ξ, V1)Z1, ξ) = 0. (47)

Putting V1 = X1 = ei in (47) and taking the summation over i, 1 ≤ i ≤ n, we get

n∑
i=1

g(R(ξ, ei)C(ei, Y1)Z1, ξ)−
n∑
i=1

g(C(R(ξ, ei)ei, Y1)Z1, ξ)

−
n∑
i=1

g(C(ei, R(ξ, ei)Y1)Z1, ξ)−
n∑
i=1

g(C(ei, Y1)R(ξ, ei)Z1, ξ) = 0. (48)
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In view of (31)-(36) and (37), (48) reduces to

(n+ 1)S(Y1, Z1)

=
[
r + (α2 − ρ)(n− 1)(n− 2)− (n− 1)2

]
g(Y1, Z1)

+[r − (n− 1)(α2 − ρ+ n+ 1)]η(Y1)η(Z1). (49)

In view of (45), (49) takes the form

0

=
[
r + (α2 − ρ)(n− 1)(n− 2)− (n− 1)2 + λ (n+ 1) (1− n) + (n+ 1)α (2− n)

]
g(Y1, Z1)

+[r − (n− 1)(α2 − ρ+ n+ 1) + α (n+ 1) (2− n)]η(Y1)η(Z1). (50)

Replacing Y1, Z1 by ξ in (50), we get

λ(n+ 1) = (α2 − ρ+ n+ 1) + (α2 − ρ)(n− 2)− (n− 1)2, (51)

Thus, we state the following theorem.

Theorem 2 If (g, φ, ξ, η) is a Riemann soliton on (LCS)n-manifold Mn admitting the class C1, then it is
shrinking, steady or expanding according to the condition

[
(α2 − ρ+ n+ 1) + (α2 − ρ)(n− 2)− (n− 1)2

]
being negative, zero or positive respectively.

3.2. Riemann solitons on (LCS)n-manifolds admitting the class C2

Here, we consider (LCS)nmanifolds admitting the condition

(E(U1, V1) ·K)(X1, Y1)Z1 = 0,

which implies

g(E(ξ, V1)K(X1, Y1)Z1, ξ)− g(K(E(ξ, V1)X1, Y1)Z1, ξ)

−g(K(X1, E(ξ, V1)Y1)Z1, ξ)− g(K(X1, Y1)E(ξ, V1)Z1, ξ) = 0. (52)

Putting V1 = X1 = ei in (52) and taking the summation over i, 1 ≤ i ≤ n, we get
n∑
i=1

g(E(ξ, ei)K(ei, Y1)Z1, ξ)−
n∑
i=1

g(K(E(ξ, ei)ei, Y1)Z1, ξ)

−
n∑
i=1

g(K(ei, E(ξ, ei)Y1)Z1, ξ)−
n∑
i=1

g(K(ei, Y1)E(ξ, ei)Z1, ξ) = 0. (53)

Using (31)-(36) and (38), (39), in (53), we obtain

n− 1

(n− 2)
S(Y1, Z1)− [

r

n− 2
+ k2(n− 3)]g(Y1, Z1)

= [k2(n− 3) + k(n− 1)(1 + α2 − ρ)− kr

n− 2
]η(Y1)η(Z1), (54)

where

k = (α2 − ρ)− (n− 1)

(n− 2)
.

In view of (45), (54) takes the form

−
{
[r + k2(n− 3) (n− 2)] + (n− 1) [λ (1− n) + α (2− n)]

}
g(Y1, Z1)

= [k2(n− 3) (n− 2) + k(n− 1) (n− 2) (1 + α2 − ρ)− kr + α (n− 1) (2− n)]η(Y1)η(Z1). (55)

Replacing Y1, Z1 by ξ in (55)

λ (n− 1)2

= −[k(n− 1) (n− 2) (1 + α2 − ρ)− kr − r]. (56)

Thus, we state the following theorem.
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Theorem 3 If (g, φ, ξ, η) is a Riemann soliton on (LCS)n-manifold Mn admitting the class C2, then it is
shrinking, steady or expanding according to the condition [k(n − 1) (n− 2) (1 + α2 − ρ) − kr − r] being
positive, zero or negative respectively.

3.3. Riemann solitons on (LCS)n-manifolds admitting the class C3

Here, we consider (LCS)n-manifolds admitting the condition

(R(U1, V1) ·R)(X1, Y1)Z1 = 0,

which implies

g(R(ξ, V1)R(X1, Y1)Z1, ξ)− g(R(R(ξ, V1)X1, Y1)Z1, ξ)

−g(R(X1, R(ξ, V1)Y1)Z1, ξ)− g(R(X1, Y1)R(ξ, V1)Z1, ξ) = 0. (57)

Setting V1 = X1 = ei in (57), where {e1, e2, e3, ..., en−1, en = ξ} is an orthonormal basis of the tangent space
at each point of the manifold Mn and taking the summation over i, 1 ≤ i ≤ n, we get

n∑
i=1

g(R(ξ, ei)R(ei, Y1)Z1, ξ)−
n∑
i=1

g(R(R(ξ, ei)ei, Y1)Z1, ξ)

−
n∑
i=1

g(R(ei, R(ξ, ei)Y1)Z1, ξ)−
n∑
i=1

g(R(ei, Y1)R(ξ, ei)Z1, ξ) = 0. (58)

Using (31)-(36) in (58), finally we obtain

S(Y1, Z1) = −2(α2 − ρ)[g(Y1, Z1) + η(Y1)η(Z1)]. (59)

In view of (45), (59) takes the form

0

=
[
λ (1− n) + α (2− n)− 2(α2 − ρ)

]
g (Y1, Z1) +

[
α (2− n)− 2(α2 − ρ)

]
η (Y1) η (Z1) . (60)

Setting Y1 = Z1 = ξ in (60), we get
λ = 0. (61)

Thus, we state the following theorem.

Theorem 4 If (g, φ, ξ, η) is a Riemann soliton on (LCS)n-manifoldMn admitting the classC3, then the Riemann
soliton on M is always steady.

3.4. Riemann solitons on (LCS)n-manifolds admitting the class C4

Here, we consider (LCS)n-manifolds admitting the condition

(E(U1, V1) ·R)(X1, Y1)Z1 = 0,

which implies

g(E(ξ, V1)R(X1, Y1)Z1, ξ)− g(R(E(ξ, V1)X1, Y1)Z1, ξ)

−g(R(X1, E(ξ, V1)Y1)Z1, ξ)− g(R(X1, Y1)E(ξ, V1)Z1, ξ) = 0. (62)

Setting V1 = X1 = ei in (62) and taking the summation over i, 1 ≤ i ≤ n, we get

n∑
i=1

g(E(ξ, ei)R(ei, Y1)Z1, ξ)−
n∑
i=1

g(R(E(ξ, ei)ei, Y1)Z1, ξ)

−
n∑
i=1

g(R(ei, E(ξ, ei)Y1)Z1, ξ)−
n∑
i=1

g(R(ei, Y1)E(ξ, ei)Z1, ξ) = 0. (63)
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Using (31)-(36) and (39) in (63), we obtain

S(Y1, Z1) = (n− 1)(α2 − ρ)g(Y1, Z1). (64)

In view of (45), (64) takes the form

0

=
[
λ (1− n) + α (2− n) + (n− 1)(α2 − ρ)

]
g (Y1, Z1) + α (2− n) η (U1) η (V1) . (65)

Replacing Y1, Z1 by ξ in (65)
λ = (α2 − ρ). (66)

Thus, we state the following theorems.

Theorem 5 If (g, φ, ξ, η) is a Riemann soliton on (LCS)n-manifold Mn admitting the class C4, then it is
shrinking, steady or expanding according to the condition α2 − ρ being negative, zero or positive respectively.

4. Conclusion

As the semi-symmetric structures (i) R · C = 0 and R ·K = 0 are equivalent, (ii) E · C = 0 and E ·K = 0 are
equivalent, (iii) R · R = 0, R · P = 0, R · E = 0, R · P ∗ = 0, R · M = 0, R · Wi = 0 and R · W∗

i = 0 (for
all i = 1, 2, ..., 9) are equivalent, (iv) E · R = 0, E · P = 0, E · E = 0, E · P ∗ = 0, E · M = 0, E · Wi = 0
and E · W∗

i = 0 (for all i = 1, 2, ..., 9) are equivalent, so in a single stroke the properties of Riemann solitons
admitting all the semi-symmetric structures have been discussed easily.
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