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Abstract
In this paper, we introduced the infinite continuous mixture of Dirichlet distributions as a
generalization of the infinite mixture of Dirichlet ones, in order to avoid the limitation of
choosing the a priori sample size for the expectation a posteriori estimator. Monte-Carlo
sampling was used in order to obtain the posterior distributions mixture, since this mixture
is difficult to get analytically. A new parametrization of this proposed distribution was
achieved. Then, we suggested a mixture expectation a posteriori estimator of the unknown
parameters. The proposed estimator solves the problem of how to construct a Bayesian
estimation of proportions without specifying particular parameters and sample size of the
prior knowledge. Some asymptotic properties of this estimator were derived, specifically,
its bias and variance. The consistency and asymptotic normality of the estimator were also
established when the sample size tends to infinity and its credible interval was determined.
The performance of the proposed estimator was illustrated theoretically and by means
of a simulation study. Ultimately, a comparative simulation study between the learned
estimates, the proposed mixture expectation a posteriori, standard Bayesian estimator,
maximum likelihood and Jeffreys estimator, was established. According to this simulation,
we were able to conclude that the prior infinite mixture of Dirichlet distributions offers
higher accuracy and flexibility for modeling and learning data.
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1. Introduction
Dirichlet distribution is generally perceived as a family of continuous multivariate prob-

ability distributions, considered as a generalization of the Beta distribution. Reviewing
the literature, the Dirichlet distribution appears in many fields, including the Bayesian
analysis; compositional data modelling; multivariate analysis; statistical genetics; non-
parametric inference; reliability; stochastic processes and so on [13, 18]. In Bayesian sta-
tistics, the Dirichlet distribution is the first choice and the most natural law used to model
proportional data. It is used to describe the prior distributions in the Bayesian inference
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and in other similar problems. This is due to the fact that the Dirichlet distribution is a
conjugate law for counts following a multinomial distribution [12,19].

The mixture of distributions has been in use to model data that have a multi-modal
distribution with complex structure for many years in several areas of knowledge [17,21].
The finite mixture of Dirichlet distributions was shown to be the most efficient and flexible
law for modelling proportional data [2,10,15]. In their article [17], the authors emphasized
the flexibility of finite mixtures considering them as a semiparametric model used to
represent the shapes of unknown distributions. A crucial point for modelling this mixture
is to determine the number of mixture components that best describes the database [9].
Indeed, it is not necessary to limit the components in the mixture models and assume that
it is finite. Actually, the aim was to choose the appropriate distribution that best describes
the data. Gaussian mixture models have been broadly used in various real applications.
However, they can not always considered as the best choice that well fits real data. In
many settings, other distributions are applied, among which we can mention: the finite
Dirichlet mixture model [2,3,5], finite generalized Dirichlet mixture model [4] and infinite
mixture of Dirichlet distributions [9].

Nowadays, mixture models are related to such different fields as medicine, genetics, bio-
metrics, and marketing, among others. Several different features of mixture distributions
make them valuable in data modeling. Actually, statistical models which are based on
mixture distributions capture numerous particular properties in real data analysis as mul-
timodality, skewness, pattern recognition and kurtosis. For further information, we refer
the reader to [7, 17]. Different existing Bayesian methods are used to learn parameters of
mixture models. For instance in [6], the prior distributions of the Bayesian method are
used to estimate parameters of the Gaussian mixture by maximizing the likelihood given
the mixing coefficients. In addition, Gerlach et al. [11] provides a Bayesian analysis of
dynamic mixture models using Markov chain Monte Carlo methods.

In the classical inference, the maximum likelihood (ML) estimator has been a popular
option for proportional data. Assuming a multinomial sampling model: (N1, ..., Nr) ∼
Mult(N, θ1, ..., θr) where N =

∑r
k=1Nk. It means that the multinomial likelihood func-

tion is given by P (N1 = n1, ..., Nr = nr) = N !
∏r

k=1
θ

nk
k

nk! . The maximum likelihood
estimator of the proportion θk is defined as θ̂ML

k = Nk
N . The ML estimator has many

optimal properties in statistics. It was shown that, under some regularity conditions,
the ML estimator of θθθ = (θ1, ..., θr) is strongly consistent, unbiased and with a minimal
variance. On the other hand, the estimation of proportions will be less efficient when
the data is not big enough or the number of some cases in the data are equal to zero.
Then, the need to add a prior knowledge is necessary. Assume that the parameters vec-
tor θθθ = (θ1, .., θr), 0 < θk < 1 for all k ∈ {1, ..., r} and

∑r
k=1 θk = 1, has a Dirichlet

distribution with hyperparameters (α1, .., αr) i.e. θθθ ∼ Dir(α1, .., αr). Since the Dirichlet
distributions are conjugate prior for multinomial distributions, the posterior distribution of
(θ1, .., θr)|N1, .., Nr is also distributed as the Dirichlet with parameters (N1+α1, .., Nr+αr)
i.e. (θ1, .., θr)|N1, .., Nr ∼ Dir(N1 + α1, .., Nr + αr). Thus, the expectation a posteriori
(EAP) estimator of θk is given by

θ̂EAP
k = E(θk|N1, ..., Nr) = Nk + αk

N + α

where α =
∑r

k=1 αk. In this work, the problem to be treated is: Suppose that two experts
gave two different prior parameters αk and α′

k for θk, even if we had the same proportions
αk
α = α′

k
α′ , both estimators would not be equal i.e. Nk+αk

N+α 6= Nk+α′
k

N+α′ . The major contribution
of this work was to assume that the sample size of the prior information α is a random
variable, and to propose a new extension of the infinite mixture of Dirichlet distributions.
As a natural mixing for continuous cases, we suggest taking an integral with respect to
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the probability distribution of the random variable α instead of a sum. The family of
distributions, we introduce, is considered without specifying a particular sample size α of
the prior knowledge. It is called the infinite continuous mixture of Dirichlet distributions.

Therefore, the mixture expectation a posteriori (MEAP) estimator of θθθ = (θ1, .., θr) was
established using the infinite continuous mixture of Dirichlet laws as an alternative prior to
the Dirichlet distribution. The resulting estimator was shown to have suitable properties
such as the bias, variance, asymptotic normality and consistency. The performance of the
proposed estimator is briefly studied through a comparative study between the MEAP and
EAP estimators. This comparison was achieved by calculating the bias and variance of
both estimators, in order to find out in which cases the proposed estimator has performed
better than the other. The findings show that the behaviors of bias and variance are
opposite to each other. According to a numerical simulation, we were able to conclude
that the prior infinite mixture of Dirichlet distributions is the most flexible method for
modelling data.

The rest of the paper is organized as follows. Section 2 provided a comprehensive
background of the Dirichlet distribution, including its basic derivatives, finite and infi-
nite mixtures of Dirichlet distributions. In Section 3, the infinite continuous mixture of
Dirichlet distributions was established as an extension of the usual mixture of Dirichlet
distributions. The mixture expectation a posteriori estimator was proposed in order to
form an unrelated estimator of the prior sample size. Some asymptotic properties of the
proposed estimator like bias, variance, consistency and asymptotic normality were estab-
lished. Section 4 was devoted to the experimental results of the parameters estimation.
The performance of the proposed MEAP estimator and the other classical ones (EAP,
ML and Jeffreys estimators) were compared through a simulation study to illustrate our
findings. Lastly, some conclusions and prospects were revealed in Section 5.

2. Background
2.1. Mixture of Dirichlet distributions

The Dirichlet distribution, which is constructed over multinomial space, is one of the
most widely used multivariate distributions. This distribution is used in a variety of fields
because of its ample flexibility and multidimensionality. In general, Dirichlet distributions
are used as a prior knowledge. Knowing that the Dirichlet distribution is a conjugate prob-
ability distribution, the posterior distribution is also a Dirichlet distribution. A random
vector θθθ = (θ1, ..., θr) is said to have a Dirichlet distribution i.e.θθθ ∼ Dir(α1, α2, ..., αr) if

P (θθθ) = Γ(
r∑

k=1
αk)

r∏
k=1

θαk−1
k

Γ(αk)
, αk > 0 (2.1)

where 0 < θk < 1, for k ∈ {1, ..., r} and
∑r

k=1 θk = 1, (α1, ..., αr) is a vector of the positive
hyperparameters and α =

∑r
k=1 αk. When all αk (k ∈ {1, ..., r}) are zeros, the Dirichlet

distribution becomes noninformative [18]. It allows numerous symmetric and asymmetric
modes [2]. Rather, it can be skewed to the right, skewed to the left or symmetric [5].

A finite mixture of Dirichlet distributions with M components is a convex combination
of Dirichlet distributions; it is defined as

P (θθθ|π, α1, ..., αM ) =
M∑

j=1
πjDir(θθθ|αj), αj = (α1

j , ..., α
r
j),

where αk
j > 0, for all k ∈ {1, ..., r} and πj > 0 are the mixing coefficients or proportions

with
∑M

j=1 πj = 1 and Dir(θθθ|αj) is the Dirichlet distribution for the jth component [2]. An
important challenge in the finite mixture modelling is to decide the number of consistent
mixtures that best describes the data [3]. Recent works have solved this problem using
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several methods and algorithms in order to estimate the parameters and the number of
mixing components. For example, Bouguil and Ziou [2] used an algorithm based on the
Fisher scoring method for solving the issue of learning a finite Dirichlet mixture model. The
infinite Dirichlet mixture model is also one of the best solutions to solve this problem by
tending the number of mixing components M to infinity, see [9]. The model was achieved
using a prior Dirichlet process for the model parameters. The stick-breaking construction is
one of the most explicit and general Dirichlet processes. It is simply formulated as follows:
Let G ∼ DP (s,H) represent a Dirichlet process where s is a concentration parameter and
H is a base distribution. By adding the conditions of

G =
∞∑

j=1
πjδθj

, πj = λj

j−1∏
m=1

(1 − λm), λj ∼ Beta(1, s) and θj ∼ H (2.2)

where δθj
represents the Dirac measure. The mixing coefficients πj are gotten by recur-

sively breaking a unit length stick into an infinite number of pieces [9,16,20]. θθθ is assumed
to be generated from a Dirichlet mixture. As it is also considered as a Dirichlet process
using the stick-breaking construction, then the infinite Dirichlet mixture model (discrete
case) is defined as

P (θθθ|π, α1, ..., αM ) =
∞∑

j=1
πjDir(θθθ|αj). (2.3)

Here, the assumption of
∑∞

j=1 πj = 1 should be achieved. The infinite mixture of Dirichlet
distributions was shown as an extension of the finite mixture of Dirichlet ones. In what
follows, we generalized the infinite Dirichlet mixture model, represented in Equation (2.3),
from a discrete to a continuous case by proposing the new mixing that builds on an integral
mixture.

3. Infinite continuous mixture of Dirichlet distributions
The problem to be treated here is how to choose the sample size α of the prior dataset

in the Bayesian estimation. In what follows, we suggest changing variables αk = τkα.
Noting that τk denotes a prior probability where 0 < τk < 1 and

∑r
k=1 τk = 1. Thus,

α =
∑r

k=1 αk is the prior sample size, which is supposed to be a random variable. The
parameter τk represents the a priori proportion of observing the state k which has been
evaluated from expert knowledge.

Let us define a random vector θθθ = (θ1, ..., θr) such that 0 < θk < 1,∀k = 1, ..., r
and

∑r
k=1 θk = 1. Assume that the conditional probability distribution of θθθ given α is

distributed as the following Dirichlet distribution:

θθθ|α ∼ Dir(τ1α, ..., τrα),

where 0 < τk < 1 and
∑r

k=1 τk = 1. Suppose that α is a positive random variable with
density function π̃(.), rather, π̃ is called the hyper-prior distribution. Then,

P (θθθ|α) = Γ(α)
r∏

k=1

θτkα−1
k

Γ(τkα)
.

It is easy to see that, E(θθθ|α) = τττ = (τ1, ..., τr), Var(θk|α) = τk(1−τk)
α+1 , for all k = 1, ..., r

and Cov(θk, θm|α) = −τkτm

α+1 . Statistically, if θθθ|α ∼ Dir(τ1α, ..., τrα) and α ∼ π̃(.), then, θθθ
follows the infinite continuous mixture of Dirichlet distributions with parameters vector
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τττ , i.e.θθθ ∼ MDir(τ1, ..., τr); its density function is given by

P (θθθ) =
∫ ∞

0
P (θθθ|α)π̃(α) dα

=
∫ ∞

0
Γ(α)

(
r∏

k=1

θτkα−1
k

Γ(τkα)

)
π̃(α) dα. (3.1)

As the integral in expression (3.1) has a complex form, the numerical integration should
be used. In order to approximate this integral, we suggest using Monte-Carlo method.
This method is a powerful technique to approximate solutions to computational mathemat-
ical problems. It deals with approximating integrals which are made up of combinations
between a function and a probability density, see [8]. Hence, the integral appears as a
mathematical expectation of the Dirichlet function with respect to the random variable
having the probability density π̃.

Relying on the Fubini-Tonelli theorem, the expectation of the random variable θθθ is

E(θθθ) =
∫

{
∑r

k=1 θk=1}
θθθP (θθθ) dθθθ

=
∫ ∞

0

∫
{
∑r

k=1 θk=1}
θθθ

(
Γ(α)

r∏
k=1

θτkα−1
k

Γ(τkα)

)
dθθθ π̃(α) dα

=
∫ ∞

0
E(θθθ|α) π̃(α) dα

= (τ1, τ2, ..., τr) = τττ .

In the same way, the variance of the parameter θk is of the form

Var(θk) =
∫ ∞

0

τk(1 − τk)
α+ 1

π̃(α) dα, k = 1, ..., r. (3.2)

Moreover, the covariance of (θk, θm) is given by

Cov(θk, θm) =
∫ ∞

0

−τkτm

α+ 1
π̃(α) dα, k 6= m. (3.3)

For the proof of formulas (3.2) and (3.3), see Lemma 5.1 in the Appendix.
From a theoretical point of view, these last probabilistic properties (the expectation,

variance and covariance of the random vector θθθ = (θ1, ..., θr)) are independent from the
choice of the prior sample size α, since the integration is achieved with respect to the
parameter α. The following theorem provides the proposed estimator of the random vector
θθθ which follows the mixture of Dirichlet distributions MDir(τ1, ..., τr) and its expressions
of bias and variance. We denote by θ̃MEAP

k the mixture expectation a posteriori estimator
of θθθ.

Theorem 3.1. Let V = (N1, ..., Nr) be a random vector following the multinomial distri-
bution, i.e.V ∼ M(N,θθθ) where N =

∑r
k=1Nk and θθθ ∼ MDir(τ1, ..., τr), then

(1) θ̃MEAP
k =

∫ ∞

0
θ̂EAP

k (α) π̃(α) dα, with θ̂EAP
k (α) = Nk + τkα

N + α
.

(2) Bias(θ̃MEAP
k ) = (τk − θk)

{
1 −

∫ ∞

0

N

N + α
π̃(α) dα

}
.

(3) Var(θ̃MEAP
k ) = Nθk(1 − θk)

{∫ ∞

0

1
N + α

π̃(α) dα
}2
.

The proof of Theorem 3.1 is given in the Appendix. In the case of the traditional
approach of the expectation a posteriori estimator with the change of variables αk = τkα,
we denote by α0 a fixed sample size of the prior, then

θ̂EAP
k (α0) = Nk + τkα0

N + α0
and Bias(θ̂EAP

k (α0)) = (τk − θk)
(

1 − N

N + α0

)
.
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3.1. Performance evaluation of the MEAP estimator
In this subsection, we focused on the performance evaluation of the proposed MEAP

and EAP estimators according to their biases and variances. The bias of an estimator is
the difference between the estimator mean and the true value. Recall that, in the sense of
bias, the proposed θ̃MEAP

k estimator is better than θ̂EAP
k when

|Bias(θ̂EAP
k (α0))|

|Bias(θ̃MEAP
k )|

=
1 − N

N+α0

1 −
∫∞

0
N

N+α π̃(α) dα
≥ 1 ⇔

∫+∞
0

N
N+α π̃(α) dα− N

N+α0

1 −
∫∞

0
N

N+α π̃(α) dα
≥ 0

⇔ φ(α0) =
∫ +∞

0

N

N + α
π̃(α) dα− N

N + α0
≥ 0. (3.4)

Since α0 7→ φ(α0) is a strictly increasing function with lim
α0→0

φ(α0) < 0 and lim
α0→+∞

φ(α0) > 0, thus

φ(α0) = 0 ⇔ α̂0(N) = 1∫+∞
0

1
N+α π̃(α) dα

−N. (3.5)

Once α0 ≥ α̂0(N), Equation (3.4) is satisfied. Then, we can say that the estimator θ̃MEAP
k

is better than θ̂EAP
k in terms of minimal bias.

In this proposed model, the a priori sample size α is supposed to be a randoom vari-
able. Observe carefully that we only need to have a suitable support for α, then we assume
that π̃(α) is a non-specific density prior and its support is [ρ,+∞[, where ρ > 0 repre-
sents the lower bound of α. The following theorem establishes the asymptotic properties
of the proposed MEAP estimator of θk for the infinite continuous mixture of Dirichlet
distributions.

Theorem 3.2.
(1) θ̃MEAP

k
a.s.−→

N→∞
θk, almost surely.

(2)
√
N
(
θ̃MEAP

k − θk

)
D−→

N→∞
N (0, θk(1 − θk)) , in distribution.

(3) The credible interval of θk is expressed by θk ∈
[
θ̃MEAP

k ±
z1−λ/2σ̂k√

N

]
, where z1−λ/2

is the percentile with the order 1 − λ/2, λ ∈]0, 1[ and σ̂k =
√
θ̃MEAP

k (1 − θ̃MEAP
k ).

(4) α̂0(N) ≥ ρ.
(5) lim

N→+∞
α̂0(N) = E(α).

Proof.
(1) Since |Nk+τkα

N+α | ≤ 1, then using the dominated convergence theorem, we have almost
surely

lim
N→∞

θ̃MEAP
k =

∫ ∞

0
lim

N→∞

Nk + τkα

N + α
π̃(α) dα = θk.

(2) Performing the following assessment,

√
N
(
θ̃MEAP

k − θk

)
=
∫ ∞

0

√
N(θ̂EAP

k (α) − θk) π̃(α) dα

=
∫ ∞

0

√
N

(
Nk + τkα

N + α
− θk

)
π̃(α) dα.
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If X1, ..., XN is a sample taking values in {1, ..., r} with proportions θ1, ..., θr, re-
spectively, then, Nk =

∑N
i=1 1{Xi=k}. Therefore,

√
N
(
θ̃MEAP

k − θk

)
=
∫ ∞

0

√
N

(
1

N + α

N∑
i=1

1{Xi=k} + τkα

N + α
− θk

)
π̃(α) dα

=
√
N

[
N∑

i=1
1{Xi=k}AN − θk

]
+

√
NτkBN

=
√
N (NANfN − θk) +

√
NτkBN . (3.6)

Where fN = 1
N

∑N
i=1 1{Xi=k} = Nk

N , AN =
∫∞

0
1

N+α π̃(α) dα andBN =
∫∞

0
α

N+α π̃(α) dα.
Beginning with the first term of Equation (3.6),

√
N (NANfN − θk) = NAN

√
N (fN − θk) + θk

√
N (NAN − 1)

= NAN

√
N (fN − θk) − θk

√
NBN .

And using the central limit theorem, it is well known that
√
N (fN − θk) D−→

N→∞
N (0, θk(1 − θk)) . Also, NAN

a.s−→
N→∞

1 and θk

√
NBN

a.s−→
N→∞

0. Then according to

Slutsky’s theorem, we have
√
N (NANfN − θk) D−→

N→∞
N (0, θk(1 − θk)) . The sec-

ond term of (3.6):
√
NτkBN

a.s−→
N→∞

0. Applying Slutsky’s theorem for the second
time, we reach the desired result.

(3) The credible interval of θk is deduced from the asymptotic normality of the pro-
posed MEAP estimator.

(4) Since the support of the prior density function π̃ is [ρ,+∞[, then α ≥ ρ and
consequently

1∫+∞
ρ

1
N+α π̃(α) dα

−N ≥ 1∫+∞
ρ

1
N+ρ π̃(α) dα

−N ⇒ α̂0(N) ≥ ρ.

(5) According to Equation (3.5), lim
N→+∞

α̂0(N) = E(α). In fact,

lim
N→∞

α̂0(N) = lim
N→+∞

{
N∫+∞

ρ
N

N+α π̃(α) dα
−N

}

= lim
N→+∞

{
N

1 −
∫+∞

ρ
α

N+α π̃(α) dα
−N

}

= lim
N→+∞

{
N

1 − UN
−N

}
,where UN =

∫ +∞

ρ

α

N + α
π̃(α) dα

= lim
N→+∞

{N(1 + UN + o(UN )) −N}

=
∫ +∞

ρ
α π̃(α) dα

= E(α).

2

�
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Herein, we focus on the assessment of comparing both variances of θ̃MEAP
k and θ̂EAP

k :

Var(θ̂EAP
k (α0)) = Var(Nk + τkα0

N + α0
)

= 1
(N + α0)2Var(Nk)

= Nθk(1 − θk)
(N + α0)2 .

See Theorem 3.1 for the Var(θ̃MEAP
k ) formula. Then, we have the following equivalence

Var(θ̂EAP
k (α0))

Var(θ̃MEAP
k )

=
1

(N+α0)2(∫∞
0

1
N+α π̃(α) dα

)2 − 1 ≥ 0 ⇔
1

(N+α0)2 −
(∫∞

0
1

N+α π̃(α) dα
)2

(∫∞
0

1
N+α π̃(α) dα

)2 ≥ 0

⇔ ψ(α0) = 1
(N + α0)2 −

(∫ ∞

0

1
N + α

π̃(α) dα
)2

≥ 0. (3.7)

Since α0 7→ ψ(α0) is a strictly decreasing function with lim
α0→0

ψ(α0) > 0 and lim
α0→+∞

ψ(α0) < 0, then

ψ(α0) = 0 ⇔ α̂0(N) = 1∫+∞
0

1
N+α π̃(α) dα

−N. (3.8)

Once α0 ≤ α̂0(N), we can say that the estimator θ̃MEAP
k outperforms the θ̂EAP

k in terms
of minimal variance. Hence, the appropriate choice of the estimator has been shown to
depend heavily on the α̂0(N) value, whether for the bias or the variance.

The expected squared deviation between the true value and the estimate, that is the
mean squared error of both estimators θ̂EAP

k and θ̃MEAP
k are represented, respectively, as

follows:

MSE(θ̂EAP
k ) = Var(θ̂EAP

k ) + Bias2(θ̂EAP
k )

= Nθk(1 − θk)
(N + α0)2 + (τk − θk)2

(
α0

N + α0

)2
. (3.9)

MSE(θ̃MEAP
k ) = Var(θ̃MEAP

k ) + Bias2(θ̃MEAP
k )

= Nθk(1 − θk)
(∫ +∞

0

1
N + α

π̃(α) dα
)2

+ (τk − θk)2
(∫ +∞

0

α

N + α
π̃(α) dα

)2
.

(3.10)
Of course, the MSE provides an effective measure of proximity. We are going to set

a balance between variance and bias for Equations (3.9) and (3.10). We would minimize
the bias in the MSE, remarking that when N → +∞ the bias is neglegeable compared
to the variance as shown in both Equations (3.9) and (3.10). The remaining question
is, therefore, whether we can keep a minimal variance if the estimator is asymptotically
unbiased. In other words, even when the unbiased estimate sets the second term of these
equations to 0, it may still have a very large MSE relative to other biased estimators. In
this case, since the variance enlarges the credible interval, it should be as small as possible.

Before starting the simulation study, it is worth reminding the reader of Jeffreys nonin-
formative prior [14]. The Jeffreys prior for θθθ is defined as P (θθθ) = |I(θθθ)|1/2, where |I(θθθ)| is
the determinant of the r× r Fisher information matrix. For multinomial distribution, the
Jeffreys prior is given by P (θθθ) ∝

∏r
k=1 θ

−1/2
k . Then the Bayesian estimator of θk using the

Jeffreys-rule prior is θ̂Jef
k = Nk+1/2

N+r/2 . Interested readers may refer back for further details
to [1] and [14].
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4. Simulation study
In order to examine the performance of the proposed estimator θ̃MEAP

k , we began by
generating a random variables vector θθθ = (θ1, ..., θ6) which follows the mixture of Dirichlet
distributions. That is to say, θθθ ∼ MDir(τττ), where τττ = (0.08, 0.18, 0.15, 0.27, 0.19, 0.13).
Let (N1, ..., Nr) be a random variable following the multinomial distribution Mult(N,θθθ),
where N = 2000. First, we took α which follows a truncated exponential probability
density π̃(α) = λe−λ(α−ρ)

1[ρ,+∞[(α). In the second time, we considered the truncated
Rayleigh density function π̃(α) =

√
2
π̃e

− 1
2 (α−ρ)2

1[ρ,+∞[(α).
We performed the maximum likelihood estimator θ̂ML

k , the proposed one θ̃MEAP
k with

slightly inappropriate (unfavorable) priors τττ and both Bayesian estimators of θk, θ̂EAP
k

and θ̂Jef
k . Using the Monte-Carlo method, we evaluated the proposed mixed Bayesian

estimator θ̃MEAP
k . Let n be the number of samples, the performance of these estimators

was assessed by means of the mean squared error (MSE(θ̂θθ) = 1
nr

∑n
i=1

∑r
k=1(θ̂i

k − θk)2)
between each of the three estimators and the true value of θθθ. Also, we set the mean
absolute error (MAE(θ̂θθ) = 1

nr

∑n
i=1

∑r
k=1 |θ̂i

k − θk|) of the compared estimators. The
obtained numerical results are summarized in Figure 1 and Figure 2. These Figures show
that the MSE and MAE for the mixture expectation a posterior estimator are clearly
lower than those calculated with the classical EAP , Jef and ML estimators for both
distributions of α (i.e. the truncated exponential and Rayleigh distributions).

Figure 1. The variation of the MSE and MAE of the proposed MEAP, EAP and
ML estimators for π̃(α) = 4e−4(α−400)

1[400,+∞[(α) and α0 = 50.

According to Figures 3 and 4, we are able to highlight the behaviour of both func-
tions φ and ψ (where φ(α0) =

∫+∞
0

N
N+α π̃(α) dα − N

N+α0
and ψ(α0) = 1

(N+α0)2 −(∫∞
0

1
N+α π̃(α) dα

)2
) which represent a comparison between the MEAP and EAP esti-

mators of bias and variance, respectively. When these functions are positive, the bias
absolute value and the variance for the proposed estimator are smaller than those ob-
tained of the other one. These performances depend on the sample size N . The results
shown in Figure 3 and Figure 4 correspond to the theoretical decision about comparing
both absolute value of bias and variance of the MEAP and EAP estimators. Actually, φ
is an increasing function, Equation (3.4), and the proposed estimator is better in terms of
bias when α0 ≥ α̂0(N) ≥ ρ. Indeed, from α0 ≥ ρ = 400, Figure 3, and ρ = 100 in Figure
4, the |Bias(θ̃MEAP

k )| is clearly lower than |Bias(θ̂EAP
k (α0))|. The same interpretation is

used to describe the behaviour of ψ, which is a decreasing function and that the variance
of the proposed estimator is better when α0 ≤ ρ.
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Figure 2. The variation of the MSE and MAE of the proposed MEAP, EAP and
ML estimators for π̃(α) =

√
2
π̃ e

− 1
2 (α−100)2

1[100,+∞[(α) and α0 = 20.

Figure 3. The variation of the functions φ and ψ in terms of α0 with π̃(α) =
4e−4(α−400)

1[400,+∞[(α) for several values of the prior sample size.

Figure 4. The variation of the functions φ and ψ in terms of α0 with π̃(α) =√
2
π̃ e

− 1
2 (α−100)2

1[100,+∞[(α) for several values of the prior sample size.

Now, we fixed the number of repetitions n in order to visualize the behavior of the two
estimators’ MSE according to the variation of the fixed prior sample size α0. Obviously,
the MSE of θ̃MEAP

k is independent from the value of α0. At this stage of analysis, we
could assert that the proposed estimator performance is better than the classical EAP’s,
when α0 is lower than the truncated ρ = 300, see Figure 5.
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Figure 5. The variation of the MSE of both EAP and MEAP in terms of α0 with
π̃(α) = 0.7e−0.7(α−300)

1[300,+∞[(α).

5. Conclusion
The widely used maximum likelihood estimator may suffer from a lack of performance

when the number of discrete observations of some cases is zero and/or the size of data
is small. Another interesting issue, the limitation of the usual Bayesian estimation is the
choice of the prior sample size that changes the effectiveness of the expectation a posteriori
estimator.

In this paper, we were interested in extending the mixture of Dirichlet distributions
by proposing the infinite continuous mixture of Dirichlet distributions which represents
a very crucial class of distributions in probability and statistical theory. We proposed
a Bayesian estimator called the mixture expectation a posteriori estimator for this class
of distributions. It allows us to have a unique estimator which is independent from the
choice of parameters. Noteworthy, the asymptotic properties of this estimator such as
bias, variance and asymptotic convergences were studied. Furthermore, bias and variance
comparisons to the EAP estimator were achieved, confirming that the MEAP estimator
outperforms the EAP one. We illustrated the estimation results by using two examples of
simulation study. A comparative study between the proposed MEAP , the classical EAP ,
Jef and ML estimators based on the true values, was carried out. The results show
a better precision and performance of the proposed MEAP estimator for the infinite
continuous mixture model. In this work we dealt with a simulation study which achieved
similar results as the theoretical findings. It offers different prospects for future research
in an attempt to analyze and predict the data. The prospect of using real data has been
evaluated taking into account this proposed mixture model as prior knowledge.
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Appendix
This appendix contains certain proofs backing our theoretical results:

Lemma 5.1.
(1) The variance of θk is given by

Var(θk) =
∫ ∞

0

τk(1 − τk)
α+ 1

π̃(α) dα , k = 1, ..., r.

(2) The covariance of θk, θm for each k 6= m is

Cov(θk, θm) =
∫ ∞

0

−τkτm

α+ 1
π̃(α) dα , k 6= m.

Proof. (1) Using the density function of θθθ and the Fubini-Tonelli theorem, then

Var(θk) =
∫

{
∑r

k=1 θk=1}
θ2

kP (θθθ) dθθθ − E(θk)2

=
∫ ∞

0

∫
{
∑r

k=1 θk=1}
θ2

k

(
Γ(α)

r∏
k=1

θτkα−1
k

Γ(τkα)

)
dθθθ π̃(α) dα− τ2

k

=
∫ ∞

0

(
E(θ2

k|α) − E(θk|α)2
)
π̃(α) dα

=
∫ ∞

0
Var(θk|α) π̃(α) dα

=
∫ ∞

0

τk(1 − τk)
α+ 1

π̃(α) dα.

(2) By the same way, the covariance of θk and θm where k 6= m is

Cov(θk, θm) =
∫

{
∑r

k=1 θk=1}
θkθmP (θθθ) dθθθ − E(θk)E(θk)

=
∫ ∞

0

∫
{
∑r

k=1 θk=1}
θkθm

(
Γ(α)

r∏
k=1

θτkα−1
k

Γ(τkα)

)
dθθθ π̃(α) dα− τkτm

=
∫ ∞

0
Cov(θk, θm|α) π̃(α) dα

=
∫ ∞

0

−τkτm

α+ 1
π̃(α) dα.

�

Proof of Theorem 3.1. (1) Evaluating the conditional expectation of θk given the
observations V = (N1, ..., Nr),

θ̃MEAP
k =

∫
{
∑ri

k=1 θk=1}
θkP (θθθ|V ) dθθθ

=
∫ ∞

0

∫
{
∑ri

k=1 θk=1}
θkΓ(N + α)

(
ri∏

k=1

θNk+τkα−1
k

Γ(Nk + τkα)

)
dθθθ π̃(α) dα

=
∫ ∞

0

Nk + τkα

N + α
π̃(α) dα

=
∫ ∞

0
θ̂EAP

k (α) π̃(α) dα.

(2) We begin with the bias of the classical estimator θ̂EAP
k (α), with the change of

variables αk = τkα
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Bias(θ̂EAP
k (α)) = E(θ̂EAP

k (α)) − θk

= Nk + τkα

N + α
− θk

= N

N + α
θk + τkα

N + α
− θk

= (τk − θk)
(

α

N + α

)
.

Using Fubini-Tonelli theorem, we get the following bias of θ̃MEAP
k .

Bias(θ̃MEAP
k ) = E(θ̃MEAP

k ) − θk

=
∫ ∞

0
Bias(θ̂EAP

k (α)) π̃(α) dα

= (τk − θk)
∫ ∞

0

(
α

N + α

)
π̃(α) dα

= (τk − θk)
{

1 −
∫ ∞

0

N

N + α
π̃(α) dα

}
.

Observe that in the favourable case, indeed τk = θk, the θ̃MEAP
k is an unbiased

estimator.
(3) We now prove the variance formula of θ̃MEAP

k

Var(θ̃MEAP
k ) = E

((
θ̃MEAP

k

)2
)

− E
(
θ̃MEAP

k

)2

= E
({

Nk

∫ ∞

0

1
N + α

π̃(α) dα+ τk

∫ ∞

0

α

N + α
π̃(α) dα

}2
)

− E
(
θ̃MEAP

k

)2

= E
(
{NkAN + τkBN }2

)
− {θkAN + τkBN }2

= A2
NE(N2

k ) + 2τkANBNE(Nk) − (θkNAN )2 − 2θkτkNANBN

= A2
N

(
Nθk(1 − θk) +N2θ2

k

)
− (θkNAN )2

= Nθk(1 − θk)
{∫ ∞

0

1
N + α

π̃(α) dα
}2

where AN =
∫∞

0
1

N+α π̃(α) dα and BN =
∫∞

0
α

N+α π̃(α) dα. �


