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Abstract

The aim of this paper is to study the more accurate existence results of positive solution for a nonlinear fourth
order ordinary di�erential equation (for short NLFOODE) using four-point boundary value conditions (for
short BVCs). The upper and lower solution method and Schauder's �xed point theorem have been applied to
demonstrate the obtained existence results. First, the Green's function of the corresponding linear boundary
value problem (for short BVP) has been constructed and then it is used to solve the considered BVP of this
paper. An example has also been included at the end of this paper to support the analytic proof.
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1. Introduction

It is well established that the �xed point technique and upper and lower solution method are most
important techniques for checking the existence of positive solutions of ordinary di�erential equations using
various BVCs. Boundary value problems (for short BVPs) for fourth order ordinary di�erential equations
(for short ODEs) are used to describe a huge number of physical, biological and chemical phenomena,
see for instance [1, 11, 13, 22, 23, 27] and references therein. In the last few decades, positive solution
of two-point, three-point and four-point boundary value problems for second order, third order, fourth
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order as well as higher order has extensively been studied by using various techniques, see for instance
[2, 3, 4, 5, 8, 9, 10, 14, 15, 19, 24, 25, 28] and references therein. Inspiring by the above-mentioned works, we
have interested to check the existence of positive solutions of a four-point BVP for NLFOODE by applying
upper and lower solution method [10] and Schauderâ��s �xed point theorem [20]. For brevity, here we only
described the most recent analogous literature about the existence of positive solutions of four-point BVP
for NLFOODE. Although, literature may contain some more general results on BVPs for nonlinear fourth
order di�erential equation, for instance we may refer [6, 7, 16, 17, 18, 26, 29], but for the better correction
of some previously developed results sometimes we have to reconsider some fewer general results. From this
point of view, here we reconsider a fewer general result of Chen et al. [9].

In 2006, Chen et al. [9] checked the existence of positive solutions of following four-point BVP for
NLFOODE by applying upper and lower solution method and Schauder's �xed point theorem:

u(4)(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = 0,

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,

(1)

where a, b, c, d are nonnegative constants satisfying, ad + bc + ac(ξ2 − ξ1) > 0, 0 ≤ ξ1 < ξ2 ≤ 1 and
f ∈ C([0, 1]×R). They established their main result on basis the following lemma:

Lemma 1.1. (See Lemma 2.2 of Chen et al.[9]). Suppose a, b, c, d, ξ1, ξ2 are nonnegative constants satis-
fying 0 ≤ ξ1 < ξ2 ≤ 1, b − aξ1 ≥ 0, d − c + cξ2 ≥ 0 and δ = ad + bc + ac(ξ2 − ξ1) 6= 0. If u(t) ∈ C4[0, 1]
satis�es 

u(4)(t) ≥ 0, t ∈ (0, 1),

u(0) ≥ 0, u(1) ≥ 0,

au′′(ξ1)− bu′′′(ξ1) ≤ 0, cu′′(ξ2) + du′′′(ξ2) ≤ 0,

then u(t) ≥ 0 and u′′(t) ≤ 0 for t ∈ [0, 1].

Unfortunately, this lemma is incorrect.
Now, we provide a counter example to demonstrate it.

Counter example to the Lemma 1.1(Lemma 2.2 of Chen et al. [9]). Let u(t) = 1
6 t

4 − 1
3 t

3 + 15
196 t

2 +
7
64 , ξ1 =

5
8 , ξ2 =

8
15 and a, b, c, d are four positive constants such that a = b, and c = d. Then we have
u(4)(t) ≥ 0, t ∈ (0, 1),

u(0) = 7
64 ≥ 0, u(1) = 181

9408 ≥ 0,

au′′(ξ1)− bu′′′(ξ1) = −a1279
1568 ≤ 0

and cu′′(ξ2) + du′′′(ξ2) = −c 4661
22050 ≤ 0, implies u(t) ≥ 0 for all t ∈ [0, 1].

But, u′′
(

1
16

)
= 225

6272 > 0, which means that the Lemma 2.2 of Chen et al. [9] is not correct.
Therefore, the results of Chen et al. [9] should be reconsidered. From this ground, here again we

considered the fourth order four-point BVP given by (1) and establish the existence result of positive solutions
of this BVP by applying upper and lower solution method [10] and Schauder's �xed point theorem [20].

The considered BVP of this paper relates to the classical bending theory of �exible elastic beams on a
nonlinear basis. If we put f(t, u(t)) = p(t)g(u(t)) in the considered BVP given by (1), then it will refer as
the beam equation and further physical interpretation of the beam equation can be found in the work of Zill
and Cullen ([27], pp. 237-243).

Rest of this paper has been arranged as follows:
Section 2 is used to introduce some preliminaries facts. In Section 3, we state and prove our main result and
verify it by a particular example. Finally, in Section 4 we conclude this paper.
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2. Preliminaries Notes

In this section, we give some de�nitions, lemmas, and state Schauder's �xed point theorem which are
crucial to establish our main result.

De�nition 2.1. (See [10]) A function α(t) is said to be a lower solution of the BVP given by (1), if it
belongs to C4[0, 1] and satis�es

α(4)(t) ≤ f(t, α(t)), t ∈ (0, 1),

α(0) ≤ 0, α(1) ≤ 0,

aα′′(ξ1)− bα′′′(ξ1) ≥ 0, cα′′(ξ2) + dα′′′(ξ2) ≥ 0.

De�nition 2.2. (See [10]) A function β(t) is said to be an upper solution of the BVP given by (1), if it
belongs to C4[0, 1] and satis�es

β4(t) ≤ f(t, β(t)), t ∈ (0, 1),

β(0) ≥ 0, β(1) ≥ 0,

aβ′′(ξ1)− bβ′′′(ξ1) ≤ 0, cβ′′(ξ2) + dβ′′′(ξ2) ≤ 0.

De�nition 2.3. A function u(t) is said to be a solution of the BVP given by (1), if it is both lower and
upper solutions of that BVP.

Lemma 2.1. Assume a, b, c, d, ξ1, ξ2 are nonnegative constants satisfying 0 ≤ ξ1 < ξ2 ≤ 1, and δ =
ad+ bc+ ac(ξ2 − ξ1) 6= 0. If h(t) ∈ C[ξ1, ξ2], then the BVP{

u′′(t) = h(t), t ∈ [ξ1, ξ2],

au(ξ1)− bu′(ξ1) = 0, cu(ξ2) + du′(ξ2) = 0,
(2)

has a unique solution

u(t) = −
∫ ξ2

ξ1

G(t, s)h(s)ds,

where

G(t, s) =
1

δ

{
(a(t− ξ1) + b)(d+ c(ξ2 − s)), ξ1 ≤ t < s ≤ ξ2,
(a(s− ξ1) + b)(d+ c(ξ2 − t)), ξ1 ≤ s ≤ t ≤ ξ2

is the Green's function of the linear BVP given by{
u′′(t) = 0, t ∈ [0, 1],

au(ξ1)− bu′(ξ1) = 0, cu(ξ2) + du′(ξ2) = 0.
(3)

Proof. Here �rst we solve the BVP (3) by using Green's function.
The general solution of (3) is

u(t) = At+B. (4)

Using the boundary conditions of (3), we obtain A = B = 0. Hence (4) yields only trivial solution
u(t) = 0. Therefore, the unique Greenâ��s function exists for BVP (3) and is given by

G(t, s) =

{
a1t+ a2, ξ1 ≤ t < s ≤ ξ2,
b1t+ b2, ξ1 ≤ s ≤ t ≤ ξ2.

(5)

Now, by the properties of Greenâ��s function, we have

(b1 − a1)s+ (b2 − a2) = 0. (6)
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b1 − a1 = −1⇒ b1 = a1 − 1. (7)

aG(ξ1, s)− bG′(ξ1, s) = 0⇒ (aξ1 − b)a1 + aa2 = 0. (8)

cG(ξ2, s) + dG′(ξ2, s) = 0⇒ (cξ2 + d)b1 + cb2 = 0. (9)

Solving (6),(7), (8) and (9), we obtain

a1 =
(ac(ξ2 − s) + ad)

δ
, a2 = −

(aξ1 − b)(c(ξ2 − s) + d)

δ
,

b1 =
(ac(ξ1 − s)− bc)

δ
and b2 = −

(cξ2 + d)(a(ξ1 − s)− b)
δ

,

where δ = ad+ bc+ ac(ξ2 − ξ1).
Putting the values of a1, a2, b1, and b2 in (5), we obtain the unique Green's function

G(t, s) =
1

δ

{
(a(t− ξ1) + b)(d+ c(ξ2 − s)), ξ1 ≤ t < s ≤ ξ2,
(a(s− ξ1) + b)(d+ c(ξ2 − t)), ξ1 ≤ s ≤ t ≤ ξ2.

Therefore, the unique solution of BVP given by (3) is

u(t) = −
∫ ξ2

ξ1

G(t, s)ds,

where

G(t, s) =
1

δ

{
(a(t− ξ1) + b)(d+ c(ξ2 − s)), ξ1 ≤ t < s ≤ ξ2,
(a(s− ξ1) + b)(d+ c(ξ2 − t)), ξ1 ≤ s ≤ t ≤ ξ2,

and this solution ensure that the BVP given by (2) has a unique solution and which is

u(t) = −
∫ ξ2

ξ1

G(t, s)h(s)ds.

This completes the lemma.

Remark 2.1. Considering

R(t) =
1

δ
((a(t− ξ1) + b)x3 + (c(ξ2 − t) + d)x2), (10)

G1(t, s) =

{
t(1− s), 0 ≤ t < s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1,
(11)

G2(t, s) =
1

δ

{
(a(t− ξ1) + b)(d+ c(ξ2 − s)), ξ1 ≤ t < s ≤ ξ2,
(a(s− ξ1) + b)(d+ c(ξ2 − t)), ξ1 ≤ s ≤ t ≤ ξ2,

(12)

in the Lemma 2.2 of Chen et al. [9], they claimed that

u(t) =tx1 + (1− t)x0 −
∫ 1

0
G1(t, ξ)R(ξ)dξ

+

∫ 1

0
G1(t, ξ)

∫ ξ2

ξ1

G2(ξ, s)h(s)dsdξ,

(13)

is a solution of the following BVP
u(4)(t) = h(t), t ∈ (0, 1),

u(0) = x0, u(1) = x1,

au′′(ξ1)− bu′′′(ξ1) = x2, cu
′′(ξ2) + du′′′(ξ2) = x3,
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where x0 ≥ 0, x1 ≥ 0, x2 ≤ 0, x3 ≤ 0, h(t) ∈ C[0, 1] and h(t) ≥ 0.
But the solution de�ned by (13) is not correct. De�nitely, by our Lemma 2.1, (13) should be replaced as

follows:

u(t) = tx1 + (1− t)x0 −
∫ 1

0
G1(t, ξ)R(ξ)dξ −

∫ 1

0
G1(t, θ)v(θ)dθ,

where,

v(θ) =

∫ θ

ξ1

(θ − s)h(s)ds+ 1

δ

∫ ξ2

ξ1

(a(ξ1 − θ)− b)(c(ξ2 − s) + d)h(s)ds.

Remark 2.2. In Theorem 3.1 of Chen et al. [9], the operator A : C[0, 1]→ C[0, 1] is de�ned as

Au(t) =

∫ 1

0
G1(t, θ)

∫ ξ2

ξ1

G2(θ, s)f(s, u(s))dsdθ,

where, G1(t, θ) and G2(θ, s) are as in Remark 2.1. But, according to our Lemma 2.1 and Remark 2.1, this
de�nition is not accurate. So, according to our Lemma 2.1 and Remark 2.1, the operator A : C[0, 1]→ C[0, 1]
should be de�ned as follows:

Au(t) =

∫ 1

0
G1(t, θ)

∫ θ

ξ1

(s− θ)f(s, u(s))dsdθ,

+
1

δ

∫ 1

0
G1(t, θ)

∫ ξ2

ξ1

(b− a(ξ1 − θ))(c(ξ2 − s) + d)f(s, u(s))dsdθ.

(14)

Remark 2.3. From the discussion of our counter example on the Lemma 2.2 of Chen et al. [9], it is clear
that the Lemma 2.2 of Chen et al. [9] is partially true, i.e., this lemma should be considered in the following
form:

Suppose a, b, c, d, ξ1, ξ2 are nonnegative constants satisfying 0 ≤ ξ1 < ξ2 ≤ 1, b−aξ1 ≥ 0, d−c+cξ2 ≥ 0
and δ = ad+ bc+ ac(ξ2 − ξ1) 6= 0. If u(t) ∈ C4[0, 1] satis�es

u(4)(t) ≥ 0, t ∈ (0, 1),

u(0) ≥ 0, u(1) ≥ 0,

au′′(ξ1)− bu′′′(ξ1) ≤ 0, cu′′(ξ2) + du′′′(ξ2) ≤ 0,

then u(t) ≥ 0 for all t ∈ [0, 1].

Now, we state a lemma of Chen et al. [9], which will be needed to establish our main result.

Lemma 2.2. (See Lemma 2.3 of Chen et al. [9]). If u(t) ∈ C2[0, 1], u(0) = u(1) = 0 and u′′(t) ≤ 0 for t ∈
[0, 1], then p1t(1− t) ≤ u(t) ≤ p2t(1− t), where p1 = 1

2mint∈[0, 1][−u
′′(t)], p2 =

1
2maxt∈[0, 1][−u

′′(t)].

We end this section by stating the Schauder's �xed point theorem [20], which will be needed to establish
our main result.

Theorem 2.3. (See Theorem 2.1 of [20]). Let B be a Banach space and C be a nonempty closed convex
subset of B. If T : C → C is a compact operator, then T has a �xed point in B.

3. Main Results

In this section, we state and prove our main result and justify it by a suitable example of NLFOODE
with four-point BVCs.
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Theorem 3.1. If the following assumptions are satis�ed:
(A1) Let a, b, c, d, ξ1, ξ2 are nonnegative constants satisfying

0 ≤ ξ1 < ξ2 ≤ 1, b− aξ1 ≥ 0, d− c+ cξ2 ≥ 0, and

δ = ad+ bc+ ac(ξ2 − ξ1) 6= 0;

(A2) Let f(t, u(t)) ∈ C([0, 1]× [0, +∞), R+) be non-decreasing relative to

u, f(t, t(1− t)) 6= 0 for t ∈ (ξ1, ξ2) and there exists a positive

constant λ < 1 such thatmλf(t, u(t)) ≤ f(t, mu(t)) for any
0 ≤ m ≤ 1;

then the BVP given by (1) has a positive solution u ∈ C2[0, 1].

Proof. We will prove our theorem by three major steps.
Step 1.

In this step, we will prove that the functions α(t) = m1p(t) and β(t) = m2p(t) are lower and upper
solutions of BVP given by (1) respectively, where

0 < m1 ≤ min
{

1

c2
, (c1)

λ
1−λ

}
,

m2 ≥ max
{

1

c1
, (c2)

λ
1−λ

}
and

c1 = min

{
1,

1

2
· 1
δ

∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − s) + d)f(s, s(1− s))ds
}
> 0,

c2 = max

{
1,

1

2
maxt∈[0,1]

1

δ

∫ ξ2

ξ1

(b− a(ξ1 − t))(c(ξ2 − s) + d)f(s, s(1− s))ds
}
,

p(t) =

∫ 1

0
G1(t, θ)

∫ θ

ξ1

(s− θ)f(s, u(s))dsdθ,

+
1

δ

∫ 1

0
G1(t, θ)

∫ ξ2

ξ1

(b− a(ξ1 − θ))(c(ξ2 − s) + d)f(s, u(s))dsdθ.

(15)

By Lemma 2.1, we have

p′′(t) = −
∫ s

ξ1

(s− s)f(s, s(1− s))ds

− 1

δ

∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − s) + d)f(s, s(1− s))ds

= −1

δ

∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − s) + d)f(s, s(1− s))ds.

(16)


p(4)(t) = f(t, t(1− t)),
p(0) = p(1) = 0,

ap′′(ξ1)− bp′′′(ξ2) = 0, cp′′(ξ2) + dp′′′(ξ2) = 0.

(17)

Now, we noting that

mint∈[0, 1]
1

δ

∫ ξ2

ξ1

(b− a(ξ1 − t))(c(ξ2 − s) + d)f(s, s(1− s))ds

=
1

δ

∫ ξ2

ξ1

(b− a(ξ1 − s))(c(ξ2 − s) + d)f(s, s(1− s))ds > 0.

(18)
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Combining the conclusion of Lemma 2.2 and (18), we get

c1t(1− t) ≤ p(t) ≤ c2t(1− t), t ∈ [0, 1]. (19)

According to the assumption and from (19), we obtain

m1c1t(1− t) ≤ α(t) ≤ m1c2t(1− t)

⇒ m1c1 ≤
α(t)

t(1− t)
≤ m1c2 ≤ 1,

(20)

m2c1t(1− t) ≤ β(t) ≤ m2c2t(1− t)

⇒ m2c1 ≤
β(t)

t(1− t)
≤ m2c2

⇒ 1

m2c2
≤ t(1− t)

β(t)
≤ 1

m2c1
≤ 1,

(21)

and
(m1c1)

λ ≥ m1, and (m2c2)
λ ≤ m2. (22)

Thus, from assumption (A2) and (19) to (22), we have

f(t, α(t)) = f

(
t,

α(t)

t(1− t)
· t(1− t)

)
≥
(

α(t)

t(1− t)

)λ
f(t, t(1− t))

≥ (m1c1)
λf(t, t(1− t)) ≥ m1f(t, t(1− t)),

(23)

and

m2f(t, t(1− t)) = m2f

(
t,
t(1− t)
β(t)

· β(t)
)

≥ m2

(
t(1− t)
β(t)

)λ
f(t, β(t))

≥ m2(m2c2)
−λf(t, β(t)) ≥ f(t, β(t)).

(24)

The inequalities (23) and (24), lead to{
α(4)(t) = m1f(t, t(1− t)) ≤ f(t, α(t)),
β(4)(t) = m2f(t, t(1− t)) ≥ f(t, β(t)), t ∈ (0, 1)).

(25)

Hence, α(t) = m1p(t) and β(t) = m2p(t) satis�es the BVP given by (1). Therefore, α(t) = m1p(t) and
β(t) = m2p(t) are lower and upper solutions of BVP given by (1), respectively.
Step 2.

In this step, we will prove that the fourth order four-point BVP
u(4)(t) = p(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = 0,

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,

(26)

has a solution, where

p(t, u(t)) =


f(t, α(t)), when u(t) < α(t),

f(t, u(t)), when α(t) ≤ u(t) ≤ β(t),
f(t, β(t)), when u(t) > β(t).

(27)
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Now, we consider the operator T : C[0, 1]→ C[0, 1] de�ned by

Tu(t) =

∫ 1

0
G1(t, r)

∫ r

ξ1

(s− r)p(s, u(s))dsdr,

+
1

δ

∫ 1

0
G1(t, r)

∫ ξ2

ξ1

(b− a(ξ1 − r))(c(ξ2 − s) + d)p(s, u(s))dsdr,

(28)

where G1(t, r) is as in (11). It is clear that the operator T is continuous in C[0, 1]. Since, according to the
assumption the function f(t, u(t)) is non-decreasing in u, and we know that, for any u(t) ∈ C[0, 1],

f(t, α(t)) ≤ p(t, u(t)) ≤ f(t, β(t)), for t ∈ [0, 1].

Hence, there exists a positive constantM such that | p(t, u(t)) |≤M for any u(t) ∈ C[0, 1], which implies
that the operator T is uniformly bounded. Moreover, for all u(t) ∈ C[0, 1] and 0 ≤ t1 < t2 ≤ 1, we have

|Tu(t1)− Tu(t2)| ≤
∫ 1

0
G1(t1, r)−G1(t2, r) |

∫ r

ξ1

(s− r)p(s, u(s))dsdr,

+
1

δ

[∫ 1

0
| G1(t1, r)−G1(t2, r) |∫ ξ2

ξ1

(b− a(ξ1 − r))(c(ξ2 − s) + d)p(s, u(s))dsdr

]
≤ 2 | t1 − t2 |

[∫ 1

0

∫ r

ξ1

(s− r)p(s, u(s))dsdr

+
1

δ

∫ 1

0

∫ ξ2

ξ1

(b− a(ξ1 − r))(c(ξ2 − s) + d)p(s, u(s))dsdr

]
≤ 2 | t1 − t2 |

[∫ 1

0

∫ r

ξ1

(s− r)f(s, β(s))dsdr

+
1

δ

∫ 1

0

∫ ξ2

ξ1

(b− a(ξ1 − r))(c(ξ2 − s) + d)f(s, β(s))dsdr

]
,

which implies that the operator T is equicontinuous. So, by the well-known Arzela-Ascoli theorem [12, 21],
we can say that the operator T is compact. Consequently, by Theorem 2.3 (Schauder's �xed point theorem
[20]), the operator T must have a �xed point and this ensure that the BVP given by (26) has a solution.
This completes the step-2.
Step-3.

In this step, we will prove that BVP given by (1) has a positive solution. Let u+(t) be a solution of the
BVP given by (26). Since, according to assumption the function f(t, u(t)) is non-decreasing in u and we
know that,

f(t, α(t)) ≤ p(t, u+(t)) ≤ f(t, β(t)), for t ∈ [0, 1].

Hence, if we apply Remark 2.1 and Remark 2.3 in the following BVP
v(4)(t) = f(t, β(t))− p(t, u+(t)),
v(0) = v(1) = 0,

av′′(ξ1)− bv′′′(ξ1) = 0, cv′′(ξ2) + dv′′(ξ2) = 0,

then we have, β(t) − u+(t) = v(t) ≥ 0, but v′′(t) 
 0, i.e., u+(t) ≤ β(t) for all t ∈ [0, 1]. Similarly, we can
prove that α(t) ≤ u+(t) for t ∈ [0, 1]. Therefore u+(t) is a positive solution of the BVP given by (1).

This completes the proof.
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The Theorem 3.1 leads the following corollary:

Corollary 3.1. If the assumption (A2) of Theorem 3.1 is satis�ed and we replace the BVCs of BVP given
by (1) by the Lidstone BVCs

u(0) = u(1) = u′′(0) = u′′(1) = 0,

then the BVP given by (1) has at least one positive solution.

Now we give an example to justify our Theorem 3.1.

Example 3.1. Consider a NLFOODE with four-point BVCs as follows:
u(4)(t) = ecos t(

√
u+ 1), t ∈ (0, 1),

u(0) = u(1) = 0,

u′′
(
1
3

)
− u′′′

(
1
3

)
= 0, u′′

(
2
3

)
+ u′′′

(
2
3

)
= 0.

(29)

For proving that the BVP given by (29) has a positive solution, we apply our Theorem 3.1 with

f(t, u) = ecos t(
√
u+ 1), p(t) = ecost, g(u) =

√
u+ 1, a = b = c = d = 1,

ξ1 =
1

3
, ξ2 =

2

3
, m = .85 ∈ [0, 1], t = .5 ∈ (0, 1) andλ = .5 < 1.

Clearly, assumption (A1) of Theorem 3.1 is satis�ed with δ = 7
3 6= 0.

It is also clear that the function f(t, u) is non-decreasing and f(t, t(1− t)) 6= 0 for t ∈ (ξ1, ξ2).
Now, we have

mλf(t, u) = mλecos t(
√
u+ 1)

= (.85).5ecos(.5)(
√
u+ 1)

= 2.506
√
u+ 2.506 > 0 for all positive u,

(30)

f(t, mu) = ecos t(
√
mu+ 1)

= ecos(.5)
√
.85

(√
u+

1√
.85

)
= 2.506

√
u+ 2.718 > 0 for all positive u.

(31)

Thus, from (30) and (31), we yield

mλf(t, u) ≤ f(t, mu).

Hence, assumption (A2) of Theorem 3.1 is satis�ed. Therefore, Theorem 3.1 assure that the BVP given
by (29) has at least one positive solution u ∈ C2[0, 1].

4. Conclusion

In this study, we established the existence result of positive solution for a NLFOODE with four-point
BVCs by the help of Upper and Lower solution method and Schauder's �xed point theorem (Theorem 2.3).
Here we improved the result of Chen et al. [9] by correcting their key lemma (Lemma 2.2 of Chen et al.
[9]) and we made this correction by using Remark 2.1, Remark 2.2 and Remark 2.3. As the considered
NLFOODE with four-point BVCs of this paper represents a beam equation, so we can conclude that the
result of this paper will play a vital role to check the existence of positive solution of this type of beam
equations. A justifying example also discussed here.
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