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Abstract

By employing the Saigo k-fractional integral operators, some new inequalities for the Chebyshev functional
are formulated for two synchronous functions in this article. Further generalisations of these inequalities,
including three monotonous functions, are also mentioned. In addition, as special cases of our key results,
inequalities for the Chebyshev functional about Saigo fractional integrals are obtained. The main results are
of a general nature and, as a special case, give rise to integral inequalities describing the Saigo's, Riemann-
Liouville and Erdélyi-Kober fractional integral operators referred to the literature.
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1. Introduction and Preliminaries

Fractional integral inequalities become important in determining the validity of solutions for certain par-
tial di�erential fractional equations. They often describe upper and lower limits for the solutions to problems
with fractional boundary value. These implications, involving fractional calculus operators, have directed
numerous studies in the context of integral inequalities to investigate other extensions and generalizations
[12, 18, 19, 20, 22, 26]. For a comprehensive overview of the di�erent applications of fractional integral
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inequalities, attention can be made to [1, 2, 3, 5, 6, 10, 14, 15, 16, 17, 28] as well as the references listed in
it.

Chebyshev [8] introduced and de�ned a functional for two functions F and G, which are synchronous and
integrable on the interval [m, n] as follows:

T(F , G) =
1

n−m

∫ n

m
F(ω)G(ω)dω

−
(

1

n−m

∫ n

m
F(ω)dω

)(
1

n−m

∫ n

m
G(ω)dω

)
, (1)

where, functions F and G are synchronous, if for any ζ, η ∈ [0,∞) the following inequality holds:

{(F(ζ)−F(η)) (G(ζ)− G(η))} ≥ 0. (2)

The Chebyshev functional (1) has been widely used in the theory of fractional integral inequalities, science
and engineering �elds. Therefore, it has attracted the attention of many researchers [7, 13, 23]. Before
describing the main results, we recollect a few de�nitions and results of fractional calculus available in the
literature.

Recently, Gupta and Parihar [11] introduced and de�ned Saigo k-fractional integral involving k-hypergeometric
function for x ∈ R+, ω, ξ, γ ∈ C, <(ω) > 0 and k > 0 as:

(
Iω,ξ,γ0+, kF

)
x =

x
−ω−ξ
k

kΓk(ω)

∫ x

0
(x− t)

ω
k
−1

× 2F1,k

(
(ω + ξ, k), (−γ, k); (ω, k);

(
1− t

x

))
F(t) dt, (3)

and (
Iω,ξ,γ−, k F

)
x =

1

kΓk(ω)

∫ ∞
x

(t− x)
ω
k
−1 t

−ω−ξ
k

× 2F1,k

(
(ω + ξ, k), (−γ, k); (ω, k);

(
1− x

t

))
F(t) dt, (4)

where, the k-hypergeometric function 2F1,k ((ω, k), (ξ, k); (γ, k);x) is de�ned in series as well as in integral
form under the same set of conditions setout in [21] as follows:

2F1,k ((ω, k), (ξ, k); (γ, k);x) =
∞∑
l=0

(ω)l, k(ξ)l, k
(γ)l, k

xl

l!
(5)

=
Γk(γ)

kΓk(ξ)Γk(γ − ξ)

∫ 1

0
t
ξ
k
−1(1− t)

γ−ξ
k
−1(1− kxt)−

ω
k dt, (6)

and k-gamma function [9], Γk(z), is given as:

Γk(z) =

∫ ∞
0
tz−1e−

tk

k dt, z ∈ C. (7)

The generalized k-fractional calculus operators have bene�t that they generalizes Saigo's fractional integral
and derivative operators, therefore number authors labeled this as a general operator. For recent work,
one can see [27]. Further, it is interesting to note that for k = 1, equations (3) to (4) reduce into Saigo's
fractional order integral operators [25], equations (5) to (6) reduce into hypergeometric function and equation
(7) reduces into gamma function.

The below stated Lemma is a well known result [11], it will be utilized in the consequent theorems.
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Lemma 1.1. Let ω, ξ, γ ∈ C and <(ω) > 0, k ∈ R+(0,∞) such that <(ϑ) > max [0,<(ξ − γ)], then(
Iω,ξ,γ0+,k t

ϑ
k
−1
)

=

∞∑
r=0

kr Γk(ϑ− ξ + γ) x
ϑ−ξ
k
−1

Γk(ϑ− ξ)Γk(ϑ+ ω + γ)
. (8)

The purpose of this analysis is to obtain some integral inequalities of the Chebyshev form associated with
the Saigo k-fractional integral operators.

2. Main Results

Here, the Chebyshev type inequalities associated with the Saigo k-fractional integral operator are de�ned.
Throughout the paper we considered F and G as synchronous functions de�ned on the interval [0,∞).

Theorem 2.1. If x > 0, ω > max {0,−ξ}, ξ < k and ξ − k < γ < 0, then(
Iω,ξ,γ0+,k F G

)
(x)Ak(x) ≥

(
Iω,ξ,γ0+,k F

)
(x)
(
Iω,ξ,γ0+,k G

)
(x), (9)

where, Ak(x) =
∞∑
r=0

kr Γk(k − ξ + γ) x−
ξ
k

Γk(k − ξ)Γk(k + ω + γ)
.

Proof. The inequality (2) yields that

F(ζ)G(ζ) + F(η)G(η) ≥ F(ζ)G(η) + F(η)G(ζ). (10)

Consider

F(x, ζ) =
x

−ω−ξ
k (x− ζ)

ω
k
−1

kΓk(ω)
× 2F1,k

(
(ω + ξ, k), (−γ, k); (ω, k);

(
1− ζ

x

))
=

1

kΓk(ω)

(x− ζ)
ω
k
−1

x
ω+ξ
k

+
(ω + ξ)(−γ)

kΓk(ω + k)

(x− ζ)
ω
k

x
ω+ξ
k

+1

+
(ω + ξ)(ω + ξ + k)(−γ)(−γ + k)

kΓk(ω + 2k)

(x− ζ)
ω
k
+1

2! x
ω+ξ
k

+2
+ · · · . (11)

Note that the function F(x, ζ) stays positive, for all ζ ∈ (0, x) (x > 0) considering the conditions stated in
Theorem 2.1.

Now, multiply (10) by F(x, ζ) (given in (11)) and integrating from 0 to x with respect to ζ, with the help
of (3), we get (

Iω,ξ,γ0+,k F G
)

(x) + F(η)G(η)
(
Iω,ξ,γ0+,k 1

)
(x) ≥

G(η)
(
Iω,ξ,γ0+,k F

)
(x) + F(η)

(
Iω,ξ,γ0+,k G

)
(x). (12)

Next, multiply (12) by F(x, η) (η ∈ (0, x), x > 0) and integrating with respect to η from 0 to x, and using
formula (8)(when ϑ = k), we obtain the result (9).

Theorem 2.2. If x > 0, α > max {0,−β}, ω > max {0,−ξ}, β, ξ < k, β − k < η < 0 and ξ − k < γ < 0,
then (

Iω,ξ,γ0+,k F G
)

(x)Bk(x) +
(
Iα,β,η0+,k F G

)
(x)Ak(x) ≥(

Iα,β,η0+,k F
)

(x)
(
Iω,ξ,γ0+,k G

)
(x) +

(
Iω,ξ,γ0+,k F

)
(x)
(
Iα,β,η0+,k G

)
(x), (13)

where, Bk(x) =

∞∑
r=0

kr Γk(k − β + η) x−
β
k

Γk(k − β)Γk(k + α+ η)
and Ak(x) is de�ned in Theorem 2.1.
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Proof. Multiply both sides of (12) by

x
−α−β
k

kΓk(α)
(x− η)

α
k
−1 × 2F1,k

(
(α+ β, k), (−η, k); (α, k);

(
1− η

x

))
. (14)

Function given by above equation (14) stays positive in the light of the above claims in the proof of Theorem
2.1 and stated conditions in Theorem 2.2. Next, integrate the resulting inequality from 0 to x with respect
to η, we get (

Iα,β,η0+,k 1
)

(x)
(
Iω,ξ,γ0+,k F G

)
(x) +

(
Iω,ξ,γ0+,k 1

)
(x)
(
Iα,β,η0+,k F G

)
(x) ≥(

Iω,ξ,γ0+,k F
)

(x)
(
Iα,β,η0+,k G

)
(x) +

(
Iα,β,η0+,k F

)
(x)
(
Iω,ξ,γ0+,k G

)
(x), (15)

which on using the result (8)(when ϑ = k) gives the result (14).

Remark 2.1. By substituting α = ω, β = ξ and η = γ in Theorem 2.2, it reduces into Theorem 2.1.

Theorem 2.3. If x > 0, ω > max {0,−ξ}, ξ < k and ξ − k < γ < 0, then(
Iω,ξ,γ0+,k

n∏
i=1

Fi(t)

)
(x) (Ak(x))n−1 ≥

n∏
i=1

(
Iω,ξ,γ0+,k Fi(t)

)
(x), (16)

where, Ak(x) is de�ned in Theorem 2.1.

Proof. We will prove this with the help of induction. Obviously, we have for n = 1 in (16)(
Iω,ξ,γ0+,k F1(t)

)
(x) ≥

(
Iω,ξ,γ0+,k F1(t)

)
(x) (x > 0, ω > 0).

Next, for n = 2, in (16), we get

∞∑
r=0

kr
Γk(k − ξ + γ)

Γk(k − ξ)Γk(k + ω + γ)
x−

ξ
k

(
Iω,ξ,γ0+,k F1(t)F2(t)

)
(x)

≥
(
Iω,ξ,γ0+,k F1(t)

)
(x)
(
Iω,ξ,γ0+,k F2(t)

)
(x),

that holds the Theorem 2.1 in view of (9).
By the theory of induction we assume the inequality[ ∞∑

r=0

kr
Γk(k − ξ + γ)

Γk(k − ξ)Γk(k + ω + γ)
x−

ξ
k

]n−2(
Iω,ξ,γ0+,k

n−1∏
i=1

Fi(t)

)
(x)

≥
n−1∏
i=1

(
Iω,ξ,γ0+,k Fi(t)

)
(x), (17)

holds true for n ≥ 2.

Now,
n∏
i=1

Fi(t) is an increasing function as Fi (i = 1, · · · , n) are increasing functions. We then add the

Theorem 2.1's inequality (9) to the
n−1∏
i=1

Fi(t) = g and Fn = f functions in order to get

[ ∞∑
r=0

kr
Γk(k − ξ + γ)

Γk(k − ξ)Γk(k + ω + γ)
x−

ξ
k

]n−1(
Iω,ξ,γ0+,k

n∏
i=1

Fi(t)

)
(x)

≥
n−1∏
i=1

(
Iω,ξ,γ0+,k Fi(t)

)
(x)
(
Iω,ξ,γ0+,k Fn(t)

)
(x), (18)
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provided that x > 0, ω > max {0,−ξ}, ξ < k, ξ − k < γ < 0.
Using (17) in (18), we land the inequality (16).

Remark 2.2. If we substitute k = 1 into Theorems 2.1 to 2.3, then theorems reduced into the Chebyshev
type inequalities involving Saigo fractional integral operator (see, Purohit and Raina [23]).

Theorem 2.4. If x > 0, ω > max {0,−ξ}, ξ < k, ξ − k < γ < 0 and H > 0, then(
Iω,ξ,γ0+,k F G H

)
(x)Ak(x) ≥

(
Iω,ξ,γ0+,k F

)
(x)
(
Iω,ξ,γ0+,k G H

)
(x)

+
(
Iω,ξ,γ0+,k G

)
(x)
(
Iω,ξ,γ0+,k F H

)
(x)−

(
Iω,ξ,γ0+,k H

)
(x)
(
Iω,ξ,γ0+,k F G

)
(x), (19)

where, Ak(x) de�ned in Theorem 2.1.

Proof. Given H > 0, for all ζ, η ≥ 0, using (2), we obtain

{(F(ζ)−F(η)) (G(ζ)− G(η)) (H(ζ) +H(η))} ≥ 0,

which refer that

F(ζ)G(ζ)H(ζ) + F(η)G(η)H(η) ≥ F(ζ)G(η)H(η) + F(η)G(ζ)H(ζ)

+G(ζ)F(η)H(η) + G(η)F(ζ)H(ζ)−H(ζ)F(η)G(η)−H(η)F(ζ)G(ζ). (20)

Now, multiply(20) by F(x, ζ) (given in (11)) and integrating from 0 to x with respect to ζ, and using (3),
we get(

Iω,ξ,γ0+,k F G H
)

(x) + F(η)G(η)H(η)
(
Iω,ξ,γ0+,k 1

)
(x) ≥

G(η)H(η)
(
Iω,ξ,γ0+,k F

)
(x) + F(η)

(
Iω,ξ,γ0+,k G H

)
(x)

+F(η)H(η)
(
Iω,ξ,γ0+,k G

)
(x) + G(η)

(
Iω,ξ,γ0+,k F H

)
(x)

−F(η)G(η)
(
Iω,ξ,γ0+,k H

)
(x)−H(η)

(
Iω,ξ,γ0+,k F G

)
(x). (21)

Next, multiply (21) by F(x, η) (η ∈ (0, x), x > 0) (de�ned in (11)) and then integrate with respect to η from
0 to x, and using formula (8)(when ϑ = k), we get the desired result (19).

Theorem 2.5. If x > 0, α > max {0,−β}, ω > max {0,−ξ}, β, ξ < k, β − k < η < 0, ξ − k < γ < 0 and
H > 0, then (

Iω,ξ,γ0+,k F G H
)

(x)Bk(x) +
(
Iα,β,η0+,k F G H

)
(x)Ak(x) ≥(

Iα,β,η0+,k F
)

(x)
(
Iω,ξ,γ0+,k G H

)
(x) +

(
Iω,ξ,γ0+,k F

)
(x)
(
Iα,β,η0+,k G H

)
(x)

+
(
Iα,β,η0+,k G

)
(x)
(
Iω,ξ,γ0+,k F H

)
(x) +

(
Iω,ξ,γ0+,k G

)
(x)
(
Iα,β,η0+,k F H

)
(x)

−
(
Iα,β,η0+,k H

)
(x)
(
Iω,ξ,γ0+,k F G

)
(x)−

(
Iω,ξ,γ0+,k H

)
(x)
(
Iα,β,η0+,k F G

)
(x), (22)

where, Ak(x) and Bk(x) are de�ned in Theorems 2.1 and 2.2, respectively.

Proof. Multiply (21) by (14) which stays positive under the conditions setout in Theorem 2.5. Next, integrate
the derived inequality with respect to η from 0 to x, we obtain(

Iα,β,η0+,k 1
)

(x)
(
Iω,ξ,γ0+,k F G H

)
(x) +

(
Iω,ξ,γ0+,k 1

)
(x)
(
Iα,β,η0+,k F G H

)
(x) ≥(

Iω,ξ,γ0+,k F
)

(x)
(
Iα,β,η0+,k G H

)
(x) +

(
Iα,β,η0+,k F

)
(x)
(
Iω,ξ,γ0+,k G H

)
(x)

+
(
Iω,ξ,γ0+,k G

)
(x)
(
Iα,β,η0+,k F H

)
(x) +

(
Iα,β,η0+,k G

)
(x)
(
Iω,ξ,γ0+,k F H

)
(x)

−
(
Iω,ξ,γ0+,k H

)
(x)
(
Iα,β,η0+,k F G

)
(x)−

(
Iα,β,η0+,k H

)
(x)
(
Iω,ξ,γ0+,k F G

)
(x), (23)
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which on using the result (8)(when ϑ = k) yields the desired result (22).

Theorem 2.6. Let monotonic functions F , G and H de�ned on [0,∞) satisfy the inequality

{(F(ζ)−F(η)) (G(ζ)− G(η)) (H(ζ)−H(η))} ≥ 0, (24)

and if x > 0, α > max {0,−β}, ω > max {0,−ξ}, β, ξ < k, β − k < η < 0, and ξ − k < γ < 0, then(
Iω,ξ,γ0+,k F G H

)
(x)Bk(x)−

(
Iα,β,η0+,k F G H

)
(x)Ak(x) ≥(

Iα,β,η0+,k F
)

(x)
(
Iω,ξ,γ0+,k G H

)
(x)−

(
Iω,ξ,γ0+,k F

)
(x)
(
Iα,β,η0+,k G H

)
(x)

+
(
Iα,β,η0+,k G

)
(x)
(
Iω,ξ,γ0+,k F H

)
(x)−

(
Iω,ξ,γ0+,k G

)
(x)
(
Iα,β,η0+,k F H

)
(x)

+
(
Iα,β,η0+,k H

)
(x)
(
Iω,ξ,γ0+,k F G

)
(x)−

(
Iω,ξ,γ0+,k H

)
(x)
(
Iα,β,η0+,k F G

)
(x), (25)

where, Ak(x) and Bk(x) are de�ned in Theorems 2.1 and 2.2, respectively.

Proof. Equation (24) implies that

F(ζ)G(ζ)H(ζ)−F(η)G(η)H(η) ≥ F(η)G(ζ)H(ζ)−F(ζ)G(η)H(η)

+G(η)F(ζ)H(ζ)− G(ζ)F(η)H(η) +H(η)F(ζ)G(ζ)−H(ζ)F(η)G(η). (26)

Now, Multiply (26) by F(x, ζ) (de�ned in (11)) and then integrate with respect to ζ from 0 to x, and using
(3), we obtain(

Iω,ξ,γ0+,k F G H
)

(x)−F(η)G(η)H(η)
(
Iω,ξ,γ0+,k 1

)
(x) ≥

F(η)
(
Iω,ξ,γ0+,k G H

)
(x)− G(η)H(η)

(
Iω,ξ,γ0+,k F

)
(x)

+G(η)
(
Iω,ξ,γ0+,k F H

)
(x)−F(η)H(η)

(
Iω,ξ,γ0+,k G

)
(x)

+H(η)
(
Iω,ξ,γ0+,k F G

)
(x)−F(η)g(η)

(
Iω,ξ,γ0+,k H

)
(x). (27)

Next, Multiply (27) by (14) which stays positive by virtue of the conditions setout in Theorem 2.6. Integrate
the resulting inequality so obtained with respect to η from 0 to x, we obtain(

Iα,β,η0+,k 1
)

(x)
(
Iω,ξ,γ0+,k F G H

)
(x)−

(
Iω,ξ,γ0+,k 1

)
(x)
(
Iα,β,η0+,k F G H

)
(x) ≥(

Iα,β,η0+,k F
)

(x)
(
Iω,ξ,γ0+,k G H

)
(x)−

(
Iω,ξ,γ0+,k F

)
(x)
(
Iα,β,η0+,k G H

)
(x)

+
(
Iα,β,η0+,k G

)
(x)
(
Iω,ξ,γ0+,k F H

)
(x)−

(
Iω,ξ,γ0+,k G

)
(x)
(
Iα,β,η0+,k F H

)
(x)

+
(
Iα,β,η0+,k H

)
(x)
(
Iω,ξ,γ0+,k F G

)
(x)−

(
Iω,ξ,γ0+,k H

)
(x)
(
Iα,β,η0+,k F G

)
(x), (28)

which on using the result (8)(when ϑ = k) yields the desired result (25).

Remark 2.3. Again, if we substitute k = 1 into Theorems 2.4 to 2.6, then theorems reduced into the
inequalities involving Saigo fractional integral operators (see, Purohit, Ucar and Yadav [24]).
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3. Concluding Remark

Here, we have described some inequalities involving Saigo k-fractional integrals. The inequalities have
been derived by taking account of the Chebyshev functional. Further generalizations of these inequalities
are often mentioned, containing three monotonic functions. We have also �nd the results associated with
the inequalities involve Saigo fractional integral as particular cases. The generalized operators of k-fractional
calculus have the bene�t of generalizing Saigo's, Riemann-Liouville and Erdélyi-Kober fractional integral
and derivative operators, so several researchers term this a general operator. We summarize this study by
stressing that several other fascinating integral inequalities can be obtained from our leading �ndings as the
particular cases.
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