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Abstract. Sleep spindles, which are believed to have important role of re-
inforcing the sleep duration, are the characteristic wave shapes that are seen
in non-REM sleep stage. Detecting and analyzing the wave forms of spin-
dles as well as determining the areas and durations of sleep spindles are quite
important to understand the sleeping process thoroughly. However, the fact
that spindles have temporary regime features and lower amplitudes compared
to the background EEG signals makes resolving and distinguishing between
them diffi cult. Although there have been extensive research on the decompo-
sition of EEG signals and about the general characteristics of the spindles, the
existing studies do not decompose the components in a dynamic fashion. This
study takes this argument as its starting point and comes up with a methodol-
ogy to detect the spindles in the sleep EEG. In particular, this study separates
EEG signals into trend and cycle components via frequency analysis, where
the methodology allows for system parameters and the components to be es-
timated simultaneously. Since the methodology allows for the parameters to
vary over time, observing the time patterns of the estimated parameters have
the potential to reveal further information about the sleep process.

1. Introduction

Gene regulation is one of the most amazing processes taking place in living cells.
From the sequences of hundreds of thousands of genes, cells must decide which genes
to express at a particular time. As the development of the cell evolves, different
conditions and functions require an effi cient mechanism to turn on the required
genes leaving the others behind. Cells may also activate new genes to respond to the
environmental changes effectively and play specific roles. The knowledge of which
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gene triggers a particular genetic condition may help preventing the potentially
harmful effects by turning that gene off. For instance, cancer may be controlled by
deactivating the gene that causes it.
Gene expression is the production of functional gene materials, e.g., mRNA.

The level of gene functionality may be measured using microarrays or gene chips to
produce data on gene expression. Using this data reasonably may help us to have
an understanding of how the genes are interacting in a living organism.
Different genes may cooperate to produce a particular reaction while a gene

may repress other genes as well. The potential benefits of gene regulation may
be obtained if only a complete and accurate picture of gene interactions is avail-
able. A network specifying how different genes are interconnected may go a long
way in helping us to understand the gene regulation mechanism. The control and
interaction of genes may be described through a gene regulatory network.
DNA microarray technology has provided an effi cient way of measuring the ex-

pression levels of thousands of genes in a single experiment on a single â€œchip.â€İ
It enables the monitoring of expression levels of thousands of genes simultaneously.
Measuring gene expression levels in different conditions may prove useful techniques
in medical diagnosis, treatment, and drug design. In order to infer useful biolog-
ical information and determine the relationships between individual genes, many
research efforts have currently focused on clustering.
Recently, there has been an increasing interest of research to reconstruct models

for gene regulatory networks from time series data. Obviously, choosing a good
model that fits gene regulatory networks is essential to make a meaningful analysis
on the expression data.
Many gene expression experiments produce short time series data with only a few

time points due to its high measurement costs. The time series usually represents
the dynamic response of an organism to a change in conditions, e.g., application
of some drug or other treatment. Therefore, it is highly desired to extract the
functional information from the data on the time series of gene expressions, and
the modeling of gene expression time series has become an increasingly interesting
field of research.
Since it is well known that the gene expression is an inherently stochastic phe-

nomenon, the network should be of a â€œstochasticâ€İ nature. Recently, dynamic
modeling of gene regulatory networks from time series data has received more and
more research interest.
The state-space model assumes that the gene expression value depends not only

on the current internal state variables but also on the external inputs, which reflects
the nature of a dynamic network. Unfortunately, most results reported on state-
space models have been focused on linear systems, and therefore, the non-linear
phenomenon of the gene networks may not be taken into account. Most of the
literature available concerning the modeling of the time series of gene expressions
have not explicitly dealt with these two features, and therefore, there is a need
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to seek alternative approaches to identify the parameters of a nonlinear stochastic
gene regulatory network through real-time gene expression time series. In search
of such an approach, EKF approach appears to be an appropriate candidate.
The traditional KF addresses the general problem of estimating the state of a

discrete-time system governed by a linear stochastic difference equation. EKF lin-
earizes about the current mean and covariance, and therefore may handle nonlinear-
ities that may be associated either with the process model or with the observation
model, or with the both. On the other hand, EKF is known as an effective recursive
estimator of process variables, which may be suitable for identifying large number
of parameters using a short time series.
In paper [1], the gene regulatory network is considered as a nonlinear dynamic

stochastic model that consists of the gene measurement equation and the gene
regulation equation. In order to reflect the reality, it is considered that the gene
measurement from microarray was noisy; and it is assumed that the gene regulation
equation was a nonlinear dynamic process which is autoregressively stochastic where
the nonlinearity stems from the inherently non-linear regulatory relationship and
the degree among genes. After specifying the model structure, they applied the
EKF algorithm for identifying both the parameters of the model and the actual
value of the levels of gene expression. Note that the EKF algorithm is an online
estimation algorithm that may identify a large number of parameters (including
parameters of nonlinear functions) through iterative procedure by using a small
number of observations. Four sets of data regarding the real-world gene expression
were processed to demonstrate the effectiveness of the EKF algorithm, and the
obtained models are evaluated from the aspect of bioinformatics.
The EKF is extensively used in nonlinear state estimation problems. As long as

the system characteristics are correctly known, EKF gives the best performance.
However, when the system information is partially known or incorrect, EKF may
diverge or give biased estimates. An extensive number of works has been published
to improve the performance of EKF.
Many researchers have proposed the introduction of a forgetting factor, both into

the KF and EKF, to improve the performance. However, there are two fundamental
problems with this approach: the incorporation of the optimal forgetting factor into
EKF and the selection of the optimal forgetting factor.
In paper [2—5], they proposed a new AEKF with a forgetting factor, and two

methods are analyzed for the selection of the optimal forgetting factor. The stabil-
ity properties of the proposed filter are also investigated. Results of the stability
analysis show that the proposed filter is an exponential observer for nonlinear de-
terministic systems.
In this study, application of the developed model on the gene regulatory networks

has been examined. With the aim of corroborating estimation method, it has been
decided that the AEKF was proper for being used and malaria gene expression has
been applied for the set of data on the time series. A results have been compared
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with the results of the former research [1], and it has been understood that the
estimation results obtained through the developed model were more preferable.

2. GENE MODEL AND PROBLEM FORMULATION

The measured gene expression levels may be modeled as

yi(k) = xi(k) + vi(k) i = 1, 2, . . . , n k = 1, 2, . . . ,m. (1)

where y(k) = [y1(k), y2(k), . . . , yn(k)]
T is the measurement data from microarray

experiments at time k with yi(k) describing the ith gene expression levels at time
k, xi(k) are the actual levels of ith gene expression which stand for mRNA concen-
trations and/or protein concentrations at time k, vi(k) is the measurement noise, n
is the number of the genes, and m is the number of the measurement time points.
Here, v(k) = [v1(k), v2(k), . . . , vn(k)]

T s assumed to be a zero-mean Gaussian white
noise sequence with constant covariance R > 0, i.e., v(k) N(0, R). The gene regula-
tory network containing n genes is described by the following discrete-time nonlinear
stochastic dynamical system ??:

xi(k + 1) =

n∑
j=1

aijxj(k) +

n∑
j=1

bijfij
(
xj(k), µj

)
+ Iai + ξi(k) (2)

i = 1, 2, . . . , n k = 1, 2, . . . ,m− 1.

Where A = (aij)nn is the linear regulatory relationship and the degree among
genes, B = (bij)n×n represents the nonlinear regulatory relationship and degree

among genes; I0 = [I01, I02, . . . , I0n]
T is the constant vector with I0i standing

for the external bias on the ith gene; ξ(k) = [ξ1(k), ξ2(k), . . . , ξn(k)]
T ∼ N (0, Q0) ;

and the nonlinear function fj
(
xj , µj

)
is given by

fj
(
xj , µj

)
=

1

1 + e−µjxj
(3)

with µj being a parameter to be identified. Setting

µ(k) = [µ1, µ2, . . . , µn]
T (4)

and

f(x(k), µ) = [f1 (x1(k), µ1) , f2 (x2(k), µ2) . . . , fn (xn(k), µn)]
T (5)

we can rewrite 1 and 2 in the following vector form:

x(k + 1) = Ax(k) +Bf(x(k), µ) + I0 + ξ(k) (6)

y(k) = x(k) + v(k) (7)

Letting

Ae = [a11, a21, . . . , an1, a12, a22, . . . , an2, a1n, a2n, . . . , ann]
T (8)

Be = [b11, b21, . . . , bn1, b12, b22, . . . , bn2, b1n, b2n, . . . , bm]
T (9)
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µ(k) = [µ1, µ2, . . . , µn]
T (10)

θ =
[
ATe B

T
e µ

T IT0
]T

(11)

all the parameters to be estimated are denoted by θ =
[
ATe B

T
e µ

T IT0
]T
In order

to establish the gene expression model 2, it is necessary to identify the parameter
vector θ. In this paper, we aim at estimating the parameters of the model2 via the
AEKF method from the measurement data.

3. THE ADAPTIVE EKF APPROACH TO PARAMETER ESTIMATION

The data set is from the time series of malaria gene expression [7]. It consists of
530 genes expressed in 48 equally spaced time points. We choose the time series of
expressions of the first six genes given by z = [z1, z2, z3, z4, z5, z6]
In this study, regulatory network models have been examined; and in the frame-

work of the model 6, the AEKF proposed in [2,3] and used in the real data (Figure 7,
Table 1 ) application studies have been conducted. Estimation results were given
in Figure 2- 7 .State estimation results were given in Figure 2- 6.
In order to compare the estimated observation and the squares of actual obser-

vation values, error criterion is used and given in Figure-1. As it may be seen in
Figure 1 adaptive EKF has a value of estimation more accurate than the normal
EKF.

4. Conclusion

In this paper research, application of the developed model on the gene regulatory
networks has been examined. With the aim of corroborating the Kalman Filter
estimation method, it has been decided that the adaptive extended Kalman filter
was proper for being used and malaria gene expression has been applied for the
set of data on the time series. The results have been compared with the results
of the former research [1] and it has been understood that the estimation results
obtained through the developed model were more preferable. AEKF has a value of
estimation more accurate than the normal EKF.

5. Extended Kalman Filter

The optimum linear filtering and prediction methods introduced by Kalman
(1960) have been considered as one of the greatest achievements among the theories
of estimation. The Kalman Filter solves the problem of estimating the instanta-
neous states of a linear dynamic system distorted by Gaussian white noise, using
measurements that are linear functions of the system state and corrupted by addi-
tive white noise. Therefore, it is the appropriate estimation procedure for the state
space systems. However, since the the simultaneous estimation of the parameters
and the state problem has a nonlinear nature, the standard linear KF needs to be
modified to solve such a problem. The EKF is one of the most popular estimation
techniques largely investigated for state estimation of nonlinear systems. It consists
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Table 1. Data Set.

Z=[4,314 2,271 2,789 3,788 4,162 2,208
3,2789 1,8179 2,3653 2,5943 2,9244 2,0724
1,6684 0,7923 1,4219 1,2601 0,9809 0,9977
1,7445 1,2726 1,3902 1,8115 2,1758 1,3763
1,0716 0,7282 1,068 0,9243 0,9998 0,7307
0,9868 0,5669 0,8739 0,8472 0,8891 0,4528
0,99 0,528 0,649 0,831 0,745 0,489
0,778 0,4488 0,7413 0,624 0,5897 0,5092
0,8355 0,5778 0,5219 0,9553 0,9722 0,4854
0,5796 0,3129 0,5056 0,4316 0,3823 0,3545
0,491 0,254 0,368 0,423 0,37 0,258
0,3782 0,2401 0,3691 0,2943 0,3343 0,2504
0,3446 0,2036 0,3232 0,2634 0,3019 0,2264
0,146 0,126 0,173 0,136 0,128 0,117
0,1465 0,1608 0,1002 0,128 0,1482 0,1313
0,2114 0,1577 0,1133 0,1028 0,1168 0,1554
0,2061 0,171 0,1239 0,0811 0,1129 0,1666
0,172 0,211 0,101 0,097 0,118 0,214
0,1678 0,2138 0,0642 0,0518 0,0839 0,2089
0,17 0,262 0,063 0,049 0,081 0,279
0,2155 0,3233 0,0632 0,0427 0,0948 0,2675
0,2226 0,2806 0,0655 0,0524 0,0917 0,3096
0,2101 0,3582 0,0467 0,0496 0,0995 0,3894
0,1976 0,4357 0,028 0,0469 0,1074 0,4691
0,2375 0,3711 0,0608 0,0544 0,1016 0,4062
0,2131 0,4639 0,041 0,0475 0,109 0,5582
0,253 0,641 0,044 0,075 0,128 0,592
0,1947 0,6707 0,0391 0,0707 0,1381 0,7738
0,2148 0,8082 0,085 0,1066 0,1739 0,8656
0,2349 0,9458 0,1309 0,1425 0,2098 0,9574
0,265 1,144 0,205 0,21 0,303 1,251
0,6056 1,3391 0,3874 0,5808 0,5905 1,2578
1,013 1,9144 0,9661 1,0017 0,8967 1,9266
1,4945 2,0826 1,3078 1,7174 1,6631 2,0004
1,991 2,319 1,8535 1,9343 1,7467 2,4258
2,5285 2,5555 2,493 2,2905 2,3982 2,4844
1,7578 2,9656 1,7872 2,0121 1,8186 2,8291
1,8211 2,3457 2,0033 1,9548 1,5144 2,3201
2,5851 3,3361 3,4185 4,0059 3,6226 7,6102
3,884 3,2779 4,6765 4,5845 2,8834 2,9527
3,8805 3,1208 4,7711 5,1805 3,6588 2,7262
6,0726 4,1553 6,6787 6,1378 6,9146 4,197
5,4836 2,2738 4,1907 4,4675 5,1801 2,3114
4,6334 2,0388 4,6189 4,125 4,6347 2,3628
3,2207 1,8348 2,5593 3,2643 3,9337 2,0484
1,0636 1,5575 2,3816 1,9541 2,8011 1,6607
1,561 1,9512 2,9104 2,6247 3,4341 2,0003
1,1717 1,4513 2,3003 1,9389 2,1344 1,3854]
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Figure 1. Squares Error

Figure 2. Estimation of parameters

of using the standard Kalman filter equations to the first-order approximation of
the nonlinear model about the last estimate. It should also be noted that the EKF
is very sensitive to its initialization and filter divergence is inevitable if the arbitrary
matrices have not been chosen appropriately. [2, 8]
A non-linear state space model can be written as

xt = f (xt−1, t− 1) +Gt−1wt−1 (12)
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Figure 3. Estimation of parameters

Figure 4. Estimation of parameters

yt = h (xt, t) + vt (13)

where ft and ht are vector-valued functions, Wt and vt are uncorrelated zero
mean white noise sequences with covariance matrix Qt and Rt respectively. The
EKF algorithm is

P0 = Cov (x0) (14)

x̄0 = E (x0) (15)
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Figure 5. Estimation of parameters

Figure 6. Estimation of parameters

As it is shown in [2] and [8], the updating equations are:

Pt|t−1 = αt

[
∂ft−1
∂xt−1

(x̂t−1)

]
Pt−1

[
∂ft−1
∂xt−1

(x̂t−1)

]
+ αtGt−1Qt−1Gt−1 (16)
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Figure 7. Real data

x̂t|t−1 = ft−1 (x̂t−1) (17)

Kk = Pt|t−1

[
∂ht
∂xt

(
x̂t|t−1

)] [[∂ht
∂xt

(
x̂t|t−1

)]
Pt|t−1

[
∂ht
∂xt

(
x̂t|t−1

)]′
+Rt

]−1
(18)

Pt =

[
I − tt

[
∂ht
∂xt

(
x̂t|t−1

)]
Pt|t−1 (19)

x̂t|t = x̂t|t−1 +Kt

[
yt − ht

(
x̂t|t−1

)]
(20)

t = 1, 2, . . .
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