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Abstract
Let n > 1 be a fixed positive integer and S be a subset of a ring R. A mapping ζ of a ring R
into itself is called n-skew-commuting on S if ζ(x)xn +xnζ(x) = 0, ∀ x ∈ S. The main aim
of this paper is to describe n-skew-commuting mappings on appropriate subsets of R. With
this, many known results can be either generalized or deduced. In particular, this solves
the conjecture in [M. Nadeem, M. Aslam and M.A. Javed, On 2-skew commuting additive
mappings of prime rings, Gen. Math. Notes, 2015]. The second main result of this paper
is concerned with a pair of linear mappings of C∗-algebras. We show that here, if C∗-
Algebra admits a pair of linear mappings f and g such that f(x)x∗ +x∗g(x) ∈ Z(A) for all
x ∈ A, then both f and g must be zero. As the applications of first main result (Theorem
2.1) and apart from proving some other results, we characterize the linear mappings on
primitive C∗-algebras. Furthermore, we provide an example to show that the assumed
restrictions cannot be relaxed.
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1. Introduction
We will employ the following notations in the study. We let R denote an associative

ring, Z(R) denote the center of R and A represent a C∗-algebra. Recall that a ring R
is prime if for a, b ∈ R, aRb = (0) implies either a = 0 or b = 0, and is semiprime if
for a ∈ R, aRa = (0) implies a = 0. For x, y ∈ R, the symbol [x, y] will denote the Lie
product xy − yx and the symbol x ◦ y will denote the Jordan product xy + yx.

This research has been motivated by the recent work of S. Ali et al. [2]. An additive
map d from R to R is called a derivation of R if d(xy) = d(x)y + xd(y) holds, ∀ x, y ∈ R
and called a Jordan derivation if d(x2) = d(x)x + xd(x) holds, ∀ x ∈ R. Let S be a
nonempty subset of R. An additive mapping T : R −→ R is called a left centralizer (resp.
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Jordan left centralizer) if T (xy) = T (x)y (resp. T (x2) = T (x)x) holds, ∀ x, y ∈ R. A
mapping ζ : R → R is called centralizing (resp. commuting) on S if [ζ(x), x] ∈ Z(R),
∀ x ∈ S (resp. [ζ(x), x] = 0, ∀ x ∈ S). In [22], Deng and Bell extended the above
notions as follows: For a positive integer n, the mapping ζ is called n-centralizing (resp.
n-commuting) on S, if [ζ(x), xn] ∈ Z(R), ∀ x ∈ S (resp. [ζ(x), xn] = 0, ∀ x ∈ S). The
study of centralizing and commuting mapping goes back to Posner [36]. A classical result
of Posner (Posner’s second theorem) states that the existence of a nonzero centralizing
derivation on a prime ring forces the ring to be commutative. Mayne [31] proved the
analogous result for centralizing automorphisms. In [11], Bell and Martindale proved that
if a semiprime ring R admits a derivation d centralizing on a nonzero left ideal I of R, then
R contains a nonzero central ideal, provided d(I) ̸= 0. A variety of results on centralizing
and commuting mappings and their applications have been obtained by a number of au-
thors (see [3,5–7,13,15,16,21,23,25,26,30,32,37,39] where further references can be found).

Following [14], a mapping ζ of a ring R into itself is called skew-centralizing (resp. skew-
commuting) on a subset S of R if ζ(x)x+xζ(x) ∈ Z(R), ∀ x ∈ S (resp. ζ(x)x+xζ(x) = 0,
∀ x ∈ S). A mapping ζ of a ring R into itself is called semi-commuting on a subset S
of R if either ζ(x)x + xζ(x) = 0, ∀ x ∈ S or ζ(x)x − xζ(x) = 0, ∀ x ∈ S. Motivated
by the definition of n-commuting mapping, Bell and Lucier [10] called a mapping ζ of a
ring R into itself n-skew-commuting on a subset S of R if ζ(x)xn + xnζ(x) = 0, ∀ x ∈ S.
In particular, for n = 1, 2, we call them 1-skew-commuting and 2-skew commuting. In
[14], Brešar studied 1-skew-commuting mappings and proved that if R is 2-torsion free
semiprime ring and ζ : R → R an additive mapping such that ζ(x)x + xζ(x) = 0, ∀
x ∈ R, then ζ = 0. Recently, Fošner [24] studied the above mentioned result in the case of
2-skew commuting mappings. For results concerning skew-commuting mappings and their
generalizations (such as semi-commuting, skew-centralizing, semi-centralizing mappings)
we refer the reader to ([15,17–19,27–29,35,38]) where further references can be found. In
[34], Nadeem et al. proved that if R is a prime ring with char(R) ̸= 2, 3, I is an ideal of
R and ζ : R → R an additive mapping such that ζ(x)x2 + x2ζ(x) = 0, ∀ x ∈ I, then ζ = 0
on I. Moreover, they concluded the paper with following conjecture.

Conjecture 1.1. [34, Conjecture] Let n ≥ 2 be a fixed integer and R be a prime ring with
suitable torsion restrictions. Suppose that an additive mapping ζ : R → R satisfies the
functional identity

ζ(x)xn + xnζ(x) = 0, ∀x ∈ R.

Then, ζ = 0.

The principal aim of the present paper is to prove Conjecture 1.1 just mentioned above.
With this, many known results can be either generalized or deduced (see for example, [2],
[14] and [34]). As the applications of the first main result, we established the following
result: let n be a fixed positive integer, and R be a prime ring such that char(R) = 0
or char(R) ≥ n. Suppose there exists a Jordan left ∗-centralizer T : R → R such that
T (x)xn ± xnT (x) = 0, ∀ x ∈ R. Then T = 0. Moreover, we characterizes a pair of linear
mappings on C∗-algebras. In fact, we prove that under mild conditions, if C∗-algebra A
admits a pair of linear mappings f and g such that f(x)x∗ + x∗g(x) ∈ Z(A), ∀ x ∈ A,
then f = 0 and g = 0. Furthermore, we provide an example to show that the assumed
restrictions cannot be relaxed. Finally, we conclude our paper with some open problems.

2. Results on rings
The main goal of this paper is to prove the following theorem.

Theorem 2.1. Let n be a fixed positive integer, R be a prime ring such that char(R) = 0
or char(R) ≥ n and I be a nonzero ideal of R. Suppose that an additive mapping ζ : R → R
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satisfies the relation
ζ(x)xn + xnζ(x) = 0, ∀x ∈ I.

In this case ζ = 0.

Proof. Here we use some ideas similar to [14]. By the hypothesis, we have
ζ(x)xn + xnζ(x) = 0, ∀x ∈ I. (2.1)

For n = 1, 2, result follows by Theorem 1 of [14] and Lemma 4 of [24]. Now we assume
that n > 2. Left multiplication by xn to (1.1) yields that

xnζ(x)xn + x2nζ(x) = 0, ∀x ∈ I. (2.2)

Also, right multiplication by xn to (1.1) yields that

ζ(x)x2n + xnζ(x)xn = 0, ∀x ∈ I. (2.3)

Calculating (2.3) − (2.2) gives

ζ(x)x2n − x2nζ(x) = 0, ∀x ∈ I. (2.4)

This can be rewritten as [ζ(x), x2n] = 0, ∀x ∈ I. By Theorem 1.1 of [8], we conclude that
[ζ(x), x] = 0, ∀x ∈ I. (2.5)

Application of relation (2.5) gives
ζ(x)xn = xnζ(x) = 0, ∀x ∈ I. (2.6)

Therefore, expression (2.1) forces that 2xnζ(x) = 0, ∀ x ∈ I. Since char(R) ≥ n, so
xnζ(x) = 0, ∀x ∈ I. (2.7)

Also, we have
ζ(x)xn = 0, ∀x ∈ I. (2.8)

For any positive integer k, replace x by x + ky in (2.8) to get
ζ(x + ky)(x + ky)n = 0, ∀x, y ∈ I. (2.9)

The above relation can be written as

k(ζ(x)
n−1∑
i=0

xiyxn−i−1 + ζ(y)xn) + ... + kn(ζ(y)
n−1∑
i=0

yixyn−i−1 + ζ(x)yn) = 0, ∀x, y ∈ I.

By Lemma 1 of [20], we get

ζ(y)
n−1∑
i=0

yixyn−i−1 + ζ(x)yn = 0, ∀x, y ∈ I. (2.10)

Linearization of equation (2.5) gives
ζ(x)y + ζ(y)x − xζ(y) − yζ(x) = 0, ∀x, y ∈ I. (2.11)

Replacing y by yn in (2.11)
ζ(x)yn + ζ(yn)x − xζ(yn) − ynζ(x) = 0, ∀x, y ∈ I. (2.12)

This can be written as
ζ(x)y2n + ζ(yn)xyn − xζ(yn)yn − ynζ(x)yn = 0, ∀x, y ∈ I. (2.13)

Left multiplication by yn to (2.10) yields

ynζ(y)
n∑

i=0
yixyn−i−1 + ynζ(x)yn = 0, ∀x, y ∈ I. (2.14)
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From (2.7) and (2.14), we obtain
ynζ(x)yn = 0, ∀x, y ∈ I. (2.15)

Interchanging the role of x and y, we find that
xnζ(y)xn = 0, ∀x, y ∈ I. (2.16)

Replace y by yn in (2.16) to get
xnζ(yn)xn = 0, ∀x, y ∈ I. (2.17)

Then,
x2nζ(yn)xn = 0, ∀x, y ∈ I. (2.18)

Taking y = x in (2.16), it follows that
xnζ(x)xn = 0, ∀x ∈ I. (2.19)

By (2.15), relation (2.13) reduces to

ζ(x)y2n + ζ(yn)xyn − xζ(yn)yn = 0, ∀x, y ∈ I. (2.20)

By (2.6), expression (2.19) can be written as

x2nζ(x) = 0, ∀x ∈ I. (2.21)

Putting xn for x in (2.20), we obtain

ζ(xn)y2n + ζ(yn)xnyn − xnζ(yn)yn = 0, ∀x, y ∈ I. (2.22)

Multiplying by x2n to (2.20) from left side, we get

x2nζ(x)y2n + x2nζ(yn)xyn − x3nζ(yn)yn = 0, ∀x, y ∈ I. (2.23)

Application of (2.17) and (2.21) yields that

x3nζ(yn)yn = 0, ∀x, y ∈ I. (2.24)

Application of [14, Lemma 1] yields
ζ(yn)yn = 0, ∀y ∈ I. (2.25)

From relation (2.20) and (2.25), we get

ζ(x)y2n + ζ(yn)xyn = 0, ∀x, y ∈ I. (2.26)

Replacing x by xyn in (2.26), we find

ζ(xyn)y2n + ζ(yn)xy2n = 0, ∀x, y ∈ I. (2.27)

Right multiplication by yn to (2.26) yields

ζ(x)y3n + ζ(yn)xy2n = 0, ∀x, y ∈ I. (2.28)

Calculating (2.28)−(2.27) gives

ζ(x)y3n − ζ(xyn)y2n = 0, ∀x, y ∈ I. (2.29)

Left multiplication by yn to (2.12) gives

ynζ(x)yn + ynζ(yn)x − ynxζ(yn) − y2nζ(x) = 0, ∀x, y ∈ I. (2.30)

Application of (2.15) and (2.25) yields that

ynxζ(yn) + y2nζ(x) = 0, ∀x, y ∈ I. (2.31)

Replacing x by xyn in (2.31), we find

ynxynζ(yn) + y2nζ(xyn) = 0, ∀x, y ∈ I. (2.32)
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From the equation (2.25), (2.32) becomes
y2nζ(xyn) = 0, ∀x, y ∈ I. (2.33)

Putting sy3nζ(t) for y in equation (2.11), we obtain
ζ(x)sy3nζ(t) + ζ(sy3nζ(t))x − xζ(sy3nζ(t)) − sy3nζ(t)ζ(x) = 0 (2.34)

∀ s, t, x, y ∈ I. Right multiplication by y3n to (2.34) yields
ζ(x)sy3nζ(t)y3n + ζ(sy3nζ(t))xy3n − xζ(sy3nζ(t))y3n − sy3nζ(t)ζ(x)y3n = 0 (2.35)

∀ s, t, x, y ∈ I. Replace y by syn in equation (2.11), we obtain
ζ(x)syn + ζ(syn)x − xζ(syn) − synζ(x) = 0, ∀s, x, y ∈ R. (2.36)

Multiplying by y2n to (2.36) from left as well as from right, we find that
y2nζ(x)sy3n + y2nζ(syn)xy2n − y2nxζ(sy2n)y2n − y2nsynζ(x)y2n = 0 (2.37)

∀ s, x, y ∈ I. Application of (2.15) and (2.33) yields that
y2nζ(x)sy3n − y2nxζ(sy2n) = 0, ∀s, x, y ∈ I. (2.38)

From the equation (2.29), (2.38) reduces to
y2nζ(x)sy7n − y2nxζ(s)y6n = 0, ∀s, x, y ∈ I. (2.39)

Then,
(y2nζ(x)sy4n − y2nxζ(s)y3n)y3n = 0, ∀s, x, y ∈ I.

Application of [14, Lemma 1] yields that
y2nζ(x)sy4n − y2nxζ(s)y3n = 0, ∀s, x, y ∈ I.

This can be written as
y3nζ(x)sy4n − y3nxζ(s)y3n = 0, ∀s, x, y ∈ I. (2.40)

Replacing s by sy3nζ(t) in expression (2.40), we find that
y3nζ(x)sy3nζ(t)y4n − y3nxζ(sy3nζ(t))y3n = 0, ∀s, t, x, y ∈ I.

Application of (2.15) gives
y3nxζ(sy3nζ(t))y3n = 0, ∀s, t, x, y ∈ I. (2.41)

This implies y3nIRζ(sy3nζ(t))y3n = (0), ∀ s, t, y ∈ I. The primeness of R yields either
y3nI = (0) or ζ(sy3nζ(t))y3n = 0, ∀ s, t, y ∈ I. There is nothing to prove if y3n = 0, ∀
y ∈ I, and henceforth we conclude that

ζ(sy3nζ(t))y3n = 0, ∀s, t, y ∈ I. (2.42)
By (2.15) and (2.42), the relation (2.35) reduces to

ζ(sy3nζ(t))xy3n − sy3nζ(t)ζ(x)y3n = 0, ∀s, t, x, y ∈ I. (2.43)
Replace s by rs in equation (2.43) to get

ζ(rsy3nζ(t))xy3n − rsy3nζ(t)ζ(x)y3n = 0, ∀r, s, t, x, y ∈ I. (2.44)
Left multiplication by r to (2.43) gives

rζ(sy3nζ(t))xy3n − rsy3nζ(t)ζ(x)y3n = 0, ∀r, s, t, x, y ∈ I. (2.45)
Calculating (2.45)−(2.44) gives

ζ(rsy3nζ(t))xy3n − rsy3nζ(t)ζ(x)y3n = 0, ∀r, s, t, x, y ∈ I.

This can be written as
ζ(rsy3nζ(t))xy3n − rζ(sy3nζ(t))xy3n = 0, ∀r, s, t, x, y ∈ I. (2.46)
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Left multiplication by zn to relation (2.46) yields

znζ(rsy3nζ(t))xy3n − znrζ(sy3nζ(t))xy3n = 0, ∀r, s, t, x, y, z ∈ I. (2.47)

Replace x by znx in (2.47) to get

znζ(rsy3nζ(t))znxy3n − znrζ(sy3nζ(t))znxy3n = 0, ∀r, s, t, x, y, z ∈ I. (2.48)

Application of (2.15) gives

znrζ(sy3nζ(t))znxy3n = 0, ∀r, s, t, x, y, z ∈ I. (2.49)

This implies znIRζ(sy3nζ(t))znxy3n = (0), ∀ s, t, x, y, z ∈ I. Since R is prime, the last
expression forces that

ζ(sy3nζ(t))zn = 0, ∀s, t, y, z ∈ I. (2.50)

Application of [14, Lemma 1] gives that ζ(sy3nζ(t)) = 0, ∀ s, t, y ∈ I. The last relation is
similar to equation (13) of [14], and henceforth the rest of the proof runs on similar lines as
in [14]. We present the proof for the reader’s convenience. Now we assume that ζ(t) = 0
for some t ∈ I. Therefore, we have 0 ̸= a = y3nζ(t) for some t ∈ I. Then, L = Ra is a
nonzero left ideal of R. Thus from the last relation, we conclude that ζ(L) = (0). Replace
y by l in (2.11), where l ∈ L and using the fact that ζ(l) = 0, we obtain ζ(x)l − lζ(x) = 0,
∀ x ∈ R and l ∈ L. Replacing l by rl, where r ∈ R and l ∈ L, we get ζ(x)rl − rlζ(x) = 0,
∀ x, r ∈ R and l ∈ L. Then,

(ζ(x)r − rζ(x))l = 0, ∀x, r ∈ R; l ∈ L. (2.51)

Now, replace r by xnr in (2.51) to get (ζ(x)xnr − xnrζ(x))l = 0, ∀ x, r ∈ R and l ∈ L .
By the relation (2.8), we conclude that xnrζ(x)l = 0, ∀ r, x ∈ R and l ∈ L. Hence, we
have xnRlζ(x) = (0), ∀ x ∈ R and l ∈ L. The primeness of R gives lζ(x) = 0, ∀ x ∈ R and
l ∈ L. Then, we have lrζ(x) = 0 i.e., LRζ(x) = (0), ∀ x ∈ R. From the last relation we
get ζ(x) = 0, ∀ x ∈ R, since L ̸= 0 and R is prime. Thereby the proof is completed. □

The following corollaries recaptures some knows results (viz.; [2], [14] and [34]).

Corollary 2.2. [14, Theorem 1] Let R be a prime ring with char(R) ̸= 2. Suppose that
an additive mapping ζ : R → R satisfies the relation ζ(x)x + xζ(x) = 0, ∀x ∈ I. In this
case ζ = 0.

Corollary 2.3. [34, Theorem 3.1] Let R be a prime ring with char(R) ̸= 2 and I be a
non-zero ideal of R. Suppose that an additive mapping ζ : R → R satisfies the relation
ζ(x)x2 + x2ζ(x) = 0, ∀x ∈ I. In this case ζ = 0 .

Corollary 2.4. Let n be a fixed positive integer, R be a prime ring such that char(R) = 0
or char(R) ≥ n. Suppose that an additive mapping ζ : R → R satisfies the relation

ζ(x)xn + xnζ(x) = 0, ∀x ∈ R.

In this case ζ = 0.

Notice that in case of prime rings with characteristic two, skew-commuting mappings
behave like commuting mappings. The following result justifies this fact.

Theorem 2.5. Let R be a prime ring with char(R) = 2. Suppose that an additive mapping
ζ : R → R satisfies the relation ζ(x)x + xζ(x) = 0, ∀ x ∈ R. Then, ζ has the form
ζ(x) = λx + µ(x) where λ is an element in C, the extended centroid of R (see [9] for
details) and µ : R → C is an additive mapping.
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Proof. By the assumption, we have ζ(x)x+xζ(x) = 0, ∀ x ∈ R. Since char(R) = 2, so we
have x = −x, ∀ x ∈ R. Thus, the last relation can be rewritten as ζ(x)x − (−x)ζ(x) = 0,
∀ x ∈ R. Then, ζ(x)x − xζ(x) = 0, ∀ x ∈ R. This implies that [ζ(x), x] = 0, ∀ x ∈ R.
Thus, ζ is commuting on R. By Theorem 3.6 of [16], we can write that ζ(x) = λx + µ(x)
where λ is an element in C, the extended centroid of R and µ : R → C is an additive
mapping. □
Corollary 2.6. Let R be a prime ring with char(R) = 2. Then every semi-commuting
mappings ζ of a ring R into itself must have the form ζ(x) = λx + µ(x) where λ is an
element in C, the extended centroid of R and µ : R → C is an additive mapping.

Proof. As consequences of Theorem 2.5 above and Theorem 3.6 of [16]. □
Let R be a ring with involution ′∗′. An additive mapping d : R −→ R is called a

∗-derivation if d(xy) = d(x)y∗ +xd(y) holds, ∀ x, y ∈ R, and is called a Jordan ∗-derivation
if d(x2) = d(x)x∗ +xd(x) holds, ∀ x ∈ R. An additive mapping T : R −→ R is called a left
∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗)
holds, ∀ x, y ∈ R (see [1] and [4] for details). In [13], Brešar considered a pair of additive
mappings (derivations) and proved the following result: If a noncommutative prime ring
R admits a pair of derivations d and g such that d(x)x − xg(x) ∈ Z(R), ∀ x ∈ U or
d(x)x + xg(x) ∈ Z(R), ∀ x ∈ U , where U is a nonzero left ideal of R, then d = g = 0.
Further, Chaudhary and Thaheem [18] extended the above mentioned results for semiprime
rings and showed that if R is a semiprime ring and f, g a pair of derivations of R such
that f(x)x + xg(x) ∈ Z(R), ∀ x ∈ R, then f and g are central. Inspired by these work’s,
Ali et al. [1] established the following result.

Theorem 2.7. [1, Theorem 4.4] Let m, n be fixed positive integers, and R be a (m + n)!-
torsion free noncommutative prime ring with involution ′∗′ of the second kind having the
identity element e. Suppose there exist Jordan ∗-derivations d, g : R → R such that
d(xm)xn ± xng(xm) = 0, ∀ x ∈ R. Then d = g = 0.

Our next theorem is motivated by the above mentioned result.

Theorem 2.8. Let n be a fixed positive integer, and let R be a prime ring with involution
′∗′ such that char(R) = 0 or char(R) ≥ n. Suppose there exists a Jordan left ∗-centralizer
T : R → R such that T (x)xn ± xnT (x) = 0, ∀ x ∈ R. Then T = 0.

Proof. First we consider the situation, T (x)xn+xnT (x) = 0, ∀ x ∈ R. Since every Jordan
left ∗-centralizer T : R → R is an additive map, so application of Corollary 2.4 yields the
required result. □

The similar arguments can be adapted in the case T (x)xn − xnT (x) = 0, ∀x ∈ R.
This proves the result.

3. Results on C∗-algebras
In this section, we present the applications of Theorem 2.1 to certain special classes

of algebras, some of which are related to C∗-algebras. Further, we characterizes a linear
mapping f : A → A which satisfies the following relation

f(xy) = f(y)x∗ + y∗f(x), ∀x, y ∈ A (where ′∗′ : A → A is an involution). (3.1)
In fact, these mappings appeared first time in the recent paper due to Ali et al. [1].

A Banach algebra is a linear associative algebra which, as a vector space, is a Banach
space with norm ∥ · ∥ satisfying the multiplicative inequality; ∥xy∥ ≤ ∥x∥∥y∥, ∀ x and
y in A. The Jacobson radical of A is the intersection of all primitive ideals of A and
is denoted by rad(A). An additive mapping ∗ : A → A mapping x to x∗ is called an
involution if the following conditions are satisfied: (i) (xy)∗ = y∗x∗, (ii) (x∗)∗ = x, and
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(iii) (λx)∗ = λ̄x∗, ∀ x, y ∈ A and λ ∈ C the field of complex numbers, where λ̄ is the
conjugate of λ. An algebra equipped with an involution is called a ∗-algebra or algebra
with involution. A C∗-algebra A is a Banach ∗-algebra with the additional norm condition
∥x∗x∥ = ∥x∥2, ∀ x ∈ A. A C∗-algebra A is primitive if its zero ideal is primitive, that is, if
A has a faithful nonzero irreducible representation (see [33] for details). Throughout the
present section, C∗-algebras are assumed to be nonunital unless indicated otherwise.

Theorem 3.1. Let n be a fixed positive integer. Next, let A be a primitive C∗-algebra.
Suppose that a linear mapping ζ : R → R satisfies the relation

ζ(x)xn + xnζ(x) = 0, ∀x ∈ A.

In this case ζ = 0.

Proof. It is well known that every primitive C∗-algebra is prime (viz., [33, Theorem
5.4.5]). Thus, A is a prime C∗-algebra and so a prime ring. Therefore by Theorem 2.1,
we get the required result. □
Corollary 3.2. Let A be a primitive C∗-algebra. Then, zero is only linear mapping which
is skew-commuting on A.

In [18], Chaudhary and Thaheem studied the situation regarding a pair of derivations
of semiprime rings. Especially, they proved that if R is a semiprime ring and f, g a pair of
derivations of R such that f(x)x + xg(x) ∈ Z(R), ∀ x ∈ R, then f and g must be central.
So, our next theorem is related to a pair of linear mappings of C∗-algebras. Precisely, we
prove the following result.

Theorem 3.3. Let A be a C∗-algebra. Next, let f and g be a pair of linear mappings of
A which satisfies (3.1) and the relation

f(x)x∗ + x∗g(x) ∈ Z(A), ∀x ∈ A.

In this case f = 0 and g = 0.

Proof. We are given that f, g : A → A a pair of additive mappings of A which satisfies
(3.1) and f(x)x∗ + x∗g(x) ∈ Z(A), ∀ x ∈ A. Replacing x by x∗ in the last relation,
we get f(x∗)x + xg(x∗) ∈ Z(A), ∀ x ∈ A. Since an involution ′∗′, f and g are additive
mappings, so we can define the maps f1 : A → A by f1(x) = f(x∗) and g1(x) = g(x∗),
∀ x ∈ A. Thus, the last expression yields that f1(x)x + xg1(x) ∈ Z(A), ∀ x ∈ A. It
is easy to verify that f1, g1 are derivations of A and notice that A is a C∗-algebra and
every C∗-algebra is semiprime ring, application of [18, Theorem 2.2] yields that f1 and g1
are central. Consequently, f1 and g1 are commuting as well as centralizing on A. From
[12, Corollary 3.7], we obtain f1 and g1 maps A into Z(A) ∩ rad(A). Hereafter, we have
f1 = 0 and g1 = 0, since A is C∗-algebra and it is well know that every C∗-algebra is
semisimple (i.e., rad(A) = 0) (see [33] for details). Thus f = 0 and g = 0. □
Corollary 3.4. Let A be a C∗-algebra. Next, let f be a linear mapping of A which satisfies
(3.1) and the relation

f(x)x∗ + x∗f(x) ∈ Z(A), ∀x ∈ A.

In this case f = 0.

Using similar approach with necessary variations as we have used in Theorem 3.3, we
can prove the following result.

Theorem 3.5. Let n be a fixed positive integer. Next, let A be a primitive C∗-algebra.
Suppose that a linear mapping ζ : R → R satisfies the relation

ζ(x)x∗n + x∗nζ(x) = 0, ∀x ∈ A.

In this case ζ = 0.
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The following example shows that the above results are not true in the case of arbi-
trary Banach ∗-algebras.

Example 3.6. Let A =


0 x12 x13

0 0 x23
0 0 0

 x12, x13, x23 ∈ C

, where C is the field of

complex numbers. Clearly, A is a Banach algebra under the norm ∥X∥ = max
1≤j≤3

3∑
i=1

|xij |,

∀ X = (xij) ∈ A. Define the mappings f, g and involution ′∗′ on A such that

f

0 x12 x13
0 0 x23
0 0 0

 =

0 0 x12
0 0 0
0 0 0

 , g

0 x12 x13
0 0 x23
0 0 0

 =

0 0 x23
0 0 0
0 0 0


and

0 x12 x13
0 0 x23
0 0 0

∗

=

0 −x12 x13
0 0 −x23
0 0 0

.

Then it can be easily check that A is a Banach ∗-algebra and (for f = ζ) ζ satisfies the
conditions ζ(X)Xn + Xnζ(X) = 0 and ζ(X)(X∗)n + (X∗)nζ(X) = 0, ∀ X ∈ A, but ζ ̸= 0.
Further, it is straightforward to check that the mappings f, g satisfies the relation (3.1)
and f(x)x∗ + x∗g(x) ∈ Z(A), ∀ x ∈ A. However, f ̸= 0 and g ̸= 0. Hence, in Theorems
3.1, 3.3 and 3.5, the hypothesis of C∗-algebra is crucial.

We conclude the paper with the following open problems for further studies.

Problem 3.7. Let n be a fixed positive integer and A be a C∗-algebra. Next, let f and
g be a pair of additive mappings of A such that

f(x)xn + xng(x) = 0 or ∈ Z(A), ∀x ∈ A.

Then what we can say about the behavior of f and g?

Problem 3.8. Let m, n be fixed positive integers and A be a C∗-algebra. Next, let f and
g be a pair of additive mappings of A such that

f(xm)xn + xng(xm) = 0 or ∈ Z(A), ∀x ∈ A.

Then what we can say about the behavior f and g?

Problem 3.9. Let m, n be fixed positive integers and A be a C∗-algebra. Next, let f and
g be a pair of additive mappings of A such that

f(xm)x∗n + x∗ng(xm) = 0 or ∈ Z(A), ∀x ∈ A.

Then what we can say about the behavior of f and g?
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