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Abstract: Water level sensors are commonly used in industry. Some of the sensors are of capacitive nature. It is important to predict 

water level accurately. That’s why a good sensor model is needed. The finite difference (FD) method is a simple and commonly used 

numerical method to solve differential equations. In literature, to the best of our knowledge, the finite difference method has not been 

used to design such a capacitive sensor yet. In this study, the FD method is used to solve Laplace equation in two dimensions. The 

variation of the sensor capacitance is obtained as a function of water level. The calculation method given here can be used as a 

starting point for designing such and similar sensors. 

Keywords:  Water level Sensor design, Finite Difference Method, Capacitive sensor. 

Su Seviyesi Sensörünün Sonlu Farklar İle Çözümü 

Özet: Su seviye sensörleri endüstride yaygın olarak kullanılır. Bazı sensörler kapasitif niteliktedir. Su seviyesini doğru tahmin etmek 

önemlidir. Bu yüzden iyi bir sensör modeline ihtiyaç vardır. Sonlu farklar (SF) yöntemi, diferansiyel denklemleri çözmek için yaygın 

olarak kullanılan basit bir sayısal yöntemdir. Literatürde, bildiğimiz kadarıyla, sonlu farklar yöntemi henüz bir kapasitif sensör 

tasarımında kullanılmamıştır. Bu çalışmada, SF yöntemi Laplace denklemini iki boyutta çözmek için kullanılmıştır. Sensör 

kapasitansındaki değişim su seviyesinin bir fonksiyonu olarak elde edilmiştir. Burada verilen hesaplama yöntemi, bu ve benzeri 

sensörleri tasarlamak için bir başlangıç noktası olarak kullanılabilir. 

Anahtar kelimeler: Su seviyesi Sensörü tasarımı, Sonlu Farklar Yöntemi, Kapasitif sensör. 
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1. Introduction 

In engineering, science and agriculture, it is important to 

measure water level and level sensors are used for this 

purpose [1-2]. There are different types of water level 

sensors. A resistive stepped transducer is analyzed and used 

for water level measurement in [3]. An inductive-based 

noncontact water level sensor is suggested in [4]. An active 

mode water level sensor which makes use of Villari effect 

has been made using magnetostrictive materials in [5]. A 

sound sensor is used to predict water (float) level in [6]. A 

fiberoptic cable is used to estimate water level and 

temperature [7]. Expensive methods such as Time-domain 

reflectometry (TDR) can also be used to measure water level 

[8-9].  Some of the sensors are of capacitive nature [1-2,10-

11]. A capacitive sensor is a cheaper solution for water level 

sensing than the other methods mentioned. Accurate 

determination of the capacitance of rectangular parallel‐

plate capacitors is difficult [12]. That’s why numerical 

methods such as Method of moments are used for 3D 

capacitance extraction of parallel plates [13]. Finite 

difference method (FDM) is also commonly used for 

electromagnetic problems [14-15]. A FDM for the numerical 

solution of three-dimensional shallow water flows is given in 

[16] and such methods can also be used to predict water 

levels in ungauged regions [17]. A capacitive sensor is hard 

to model due to its boundary conditions [18]. FDM can be 

used to analyze capacitive sensors as done in [19] for a 

parallel plate capacitor. That’s why numerical solution of 

Laplace equation must be found for its solution. To the best 

of our knowledge, finite difference method has not been used 

to model a capacitive water level sensor yet. In this study, the 

method is used to model a capacitive sensor made of a plastic 

covered aluminum electrode immersed in water with water 

being grounded with another electrode and behaving to be an 

equipotential volume.  

The paper is organized as follows: In the second section, 

sensor topology is introduced. In the third section, the finite 

difference (FD) solution of the system is given.  In the fourth 

section, the simulation results are given. The paper is 

concluded with the last section. 

2. Sensor Topology 

The water level sensor topology examined in this paper is 

shown in Figure 1. The sensor has one electrode covered 

with Polyethylene (PE) nylon, which is a commonly used 

insulator. The other electrode touches water directly 

connected to the ground of the power supply feeding the 

capacitive sensor as shown in Figure 1.b. Since the other 

electrode touches the water, the water becomes an 

equipotential volume. Grounding a metallic box containing 

the water also results in the same phenomenon. The 

dimensions of the sensor system considered in this study is 

shown in Figure 1.a.  

 

(a) 

 

(b) 

Figure 1. a) Sensor’s insulated electrode and b) Sensor 

topology. 

The sensor feeding circuit and its equivalent circuit is shown 

in Figure 2. The sensor can be modeled as a linear time 

invariant capacitor C as shown in Figure 2. However, its 

capacitance is dependent on the submerged depth of the 

sensor electrode. The resistor R shown in Figure 2 is used to 

measure the sensor current. The sensor capacitive reactance 

can be calculated as 

1
cX

C
  (1) 

where C  is the sensor capacitance and  is the angular 

speed of the source voltage. 

Impedance of the sensor circuit is 

2 2

cZ X R   (2) 

 

Figure 2. The sensor feeding circuit and its equivalent 

circuit. 

If a sinusoidal source voltage of ( ) sinS mv t V t  is 

applied to the sensor, the sensor current is given as 
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  1sin tan /m
R c

V
i t X R

Z
    .                         (3) 

Using the equations (1)-(3), the sensor capacitance can be 

measured and from the capacitance, the water level can be 

estimated as told in the following sections.   

3. Difference Method 

FD equations needed to solve the water level sensor are 

derived in this section. The water temperature and, therefore, 

its electrical permittivity is assumed to be constant for the 

solution. The electric field is found using the electrical 

potential’s gradient. The charge of the rectangular prism 

electrode covered by PE region of a homogenous thickness is 

calculated from the displacement vector using Gauss Law. 

By using the applied voltage and the calculated charge, the 

sensor capacitance is calculated. Laplace equation of the 

electrical potential is solved in Cartesian coordinates in two 

dimensions by using FD. In Cartesian coordinates, when 

there is no volumetric charge density, the Laplacian of 

electrical potential in two dimensions is given as  

2 2

2 2
0

V V
V

x y

 
   

 
.  

 (4) 

where the x and y are dimensional components of Cartesian 

coordinates and  ,V x y or V is the electrical potential of 

the point (x,y).  

The sensor is placed in the Cartesian coordinate system as 

shown in Figure 3. Using finite difference, the second order 

partial derivatives of the electrical potential can be 

approximated as 

     2

2 2

, 2 , ,V x x y V x y V x x yV

x x

   


 
 (5) 

and 

     2

2 2

, 2 , ,V x y y V x y V x y yV

y y

   


 
 (6) 

where x  and y are the grid intervals in x and y 

directions respectively.  

 

 

Figure 3. Placement of the sensor’s insulated electrode 

in Cartesian coordinates. 

By submitting Eq. (5) and (6) into Eq. (4): 

     

     

2 2

2 2

2

2

, 2 , ,

, 2 , ,
0

V V
V

x y

V x x y V x y V x x y

x

V x y y V x y V x y y

y

 
  

 

    




    
 



 (7) 

The electrical potential of point (x, y) can be found as 

 
   

 
   

 

2 2 2

2 2 2

, ,
,

2 1/ 1/

, ,

2 1/ 1/

V x x y V x x y
V x y

x x y

V x y y V x y y

y x y

   


   

   


   

 (8) 

If  the grid intervals are chosen the same, x y   , the 

electrical potential of point (x, y) becomes

 
       , , , ,

,
4

V x x y V x x y V x y y V x y y
V x y

      


 (9) 

The electric field is calculated as 

x x y ygrad E e E e   E V   (10) 

The electric field components in Cartesian coordinates are 

given as 

x

V
E

x


 


   and 

y

V
E

y


 


  (11) 

The z component of the electric field is taken to be zero due 

to the fact that the finite difference method is applied in two 

dimensions to solve topology and therefore the electrical 

potential does not depend on z-coordinate: 

0zE   (12) 

The x and y components of the electric field can numerically 

be respectively approximated as 
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   , ,
x

V x x y V x yV
E

x x

 
   

 
 (13) 

and 

   , ,
y

V x y y V x yV
E

y y

 
   

 
 (14) 

Considering different regions, the boundary conditions 

between the different regions for the electric field can be 

written as the follows. The normal component of the 

displacement vector should be the same at both sides of the 

boundaries between plastic and water, between water and air, 

and between air and water: 

1 2 1 1 2 2n n n nD D E E     (15) 

In addition to that, the tangential electrical field should be 

continuous on any boundary: 

1 2t tE E  (16) 

At any boundary, the normal component of the displacement 

vector should be continuous: 

1 2

1 2

V V

n n
 
 


 

 (17) 

On the plastic and air boundary: 

 
   , / ,

,
1 /

plastic air

plastic air

V x x y V x x y
V x y

 

 

   



 (18) 

On the water and air boundary: 

 
   0

0

, / ,
,

1 /

water

water

V x y y V x y y
V x y

 

 

   



 (19) 

On the plastic and water boundary: 

 
   , / ,

,
1 /

water plastic

water plastic

V x x y V x x y
V x y

 

 

   



 (20)

Gauss-Seidel method is used for calculations. Normwise 

forward error is used for stability analysis and the following 

criterion is used to finish the calculations: 

1

max

1

( , ) ( , )

( , )

k k

R R

k

V i j V i j

e e

V i j







   (21) 

where the Re is the relative error, maxRe is the maximum 

relative error, ( , )
k

V i j  is the potential value of point (i,j) at 

the kth iteration, and 
1

( , )
k

V i j


 is the potential value of point 

(i,j) at the k+1th iteration. 

maxRe is taken as 0.001. However, it can be changed if 

desired. 

After calculation of electrical potential and electric field, the 

sensor capacitance can be calculated. To calculate the total 

charge of the electrode or the charge of the sensor, Gauss’s 

law can be used: 

n

S S S

Q DdS EdS E dS       (22) 

where En is the normal component of the electrical field to 

the electrode surface.  

The integral given in Eq. (22) should be solved numerically 

since the normal component of the electrical field is also 

found numerically. Considering Figure 4, the differential 

areas can be approximated as  

yS w x    (23) 

xS w y    (24) 

and 

zS x y     (25) 

where xS  is the differential area normal to x direction, 

yS  is the differential area normal to y direction, and zS

is the differential area normal to z direction. 

 

Figure 4. The differential areas used to calculate the 

electrode charge. 

The integral given in Eq. (22) can numerically be calculated 

as 

6 6

1 1

6

1

.

n n

n n n n n n

n n

n

n n n

n

Q E S E n S n

E S

 



 

 





   

 

 



 (26) 

Since z-component of the electric field is zero and 

considering symmetry of the electric field, Eq. (26) can be 

approximated as  

1 1

2 2
N N

x x x y y y

n n

Q E S E S 
 

      (27) 
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1 1

2 2
y x

N N

x x y y

n n

Q E w y E w x 
 

      (28) 

Where xN is the number of points at which the x-component 

of the electric field are calculated, 
yN   is the number of 

points at which the y-component of the electric field are 

calculated, x  is the permittivity of the differential area 

xS and 
y is the permittivity of the differential area  

yS .  

 

The capacitance of the water level sensor is calculated as 

s

Q
C

V
  (29) 

Where Vs is potential difference between the electrodes or 

the source voltage.  

 

If the source voltage can be taken as 1 V, the system 

capacitance, in this case, becomes 

C Q  (30) 

Dirichlet and Neumann boundary conditions are used on the 

outside boundaries. The number of the points needed to solve 

the electric field with a high accuracy are adjusted by trial 

and error. At the end, a system volume whose value is triple 

of the water volume is used for the calculations to make the 

leaking electric field negligible. 

4. Development of the Simulation Program 

In this section, the system whose electrode made of an 

aluminum foil wrapped with nylon to make it waterproof is 

dipped in water for the submerged height of h within a 

grounded metallic box as shown in Figure 5 is simulated. We 

emphasize the importance of using struct array to make 

definition of the system regions and parameters easier and 

writing of its code simpler. A struct array whose size is 

101x51 is used to calculate the electrical potential within the 

system in this study. The electrode capacitance is calculated 

at 31 different water depths for each step being equal to 

integer times of y . The system topology drawn in Matlab 

for three different submerged heights is shown in Figure 6. 

Matlab allows one to draw and illustrate the system topology 

easily after writing a code making use of the struct array. 

 

Figure 5. System topology when its electrode is at the 

submerged height h. 

 

             (a)                   (b)               (c) 

Figure 6. System topology drawn in Matlab at three different 

submerged heights:a) h y  ,b) 15h y  , and c) 

30h y  . 

The development of the simulation program starts with the 

definition of the struct array that presents the whole system. 

Assigning each point to have several attributes are found to 

be more useful in this research and that’s why Struct data 

type is preferred for this problem. Each point has three 

attributes; the surface (the medium), the potential and the 

permittivity, i.e., the surface identifies type of the medium 

and it is presented by an alphabetic character, V is potential 

of the point and eps ( ) is electrical permittivity of the 

point. The system is named as Mkap and, therefore, it can be 

defined as 

Mkap(101,51) = struct('surface',' ','V',0,'eps',0); 

After the definition of the empty struct array variable with 

attributes, custom written defineField function is used to 

define the point attributes with pre-determined coordinate 

values. Depth value which is an integer ranging from 0 to 30 

is also used to define the location of the submerged electrode 

in this function: 

Mkap = defineField (Mkap,depth); 

The following is true: 

*h depth y   (31) 

In this mentioned defineField function, all of the points in 

struct array firstly defined as Air points; then, Metal(Box), 

Water, Nylon and Metal(Electrode) regions are defined 

aftermath using loops within the code in order to avoid the 

writing of unnecessary or unreadable complicated code. 

Since the Dirichlet boundaries has the known potentials, the 

potential must not be calculated at the points; a nested loop to 
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calculate the points with the unknown potentials is required. 

This code also should be executed multiple times to achieve 

to a good accuracy using Gauss-Seidel method. The needed 

iteration number variable is defined as iter in the code. 

According to the explanations, the skeleton of the Finite 

Difference Code can be written as: 

for it=1:iter %iteration 

for i=2:100 

    for j=2:50 

            %Calculation Functions Should be Implemented Here 

    end 

end 

 

end 

Before examining the implementation of the calculation 

function, it is necessary to remember the rules that is applied 

in the system. 

 The potentials of the submerged (aluminum) 

electrode which are defined as 1V at the beginning must not 

be calculated since they have constant values.  

 Neumann Boundary Rule will be applied to the 

points which is on the outer edges of the air region. Potentials 

of the other air points, which neighbors the Neumann 

Boundaries, are calculated using the Finite Difference 

Formula and, then, the potential of a Neumann boundary 

point is set to be equal to that of the nearest of the air points. 

 Potentials of the points within the same medium are 

calculated using the Finite Difference Formula. 

 The potentials of the points, which are surrounded 

with different mediums or on the inter (interface) boundaries, 

are calculated using the equations (18) -(20).  

For the last rule mentioned above, a function that determines 

the exact location of the different point near the target point 

by comparing nearest points and chooses the potential 

formula applicable to the point is found useful in this work. 

A custom written function called differentNeigh is written 

and implemented for this purpose. The target approach of the 

differentNeigh function is visualized for points having 

different boundaries as shown in Figure 7. 

 

Figure 7. Visualization of the different Neigh Function 

Approach. differentNeigh function is shown below. 

function [formula] = differentNeigh(x,i,j) %Written 

algorithm for formula select feature 

dot = x(i,j); 

left = strcmp(x(i,j-1).surface,dot.surface); 

right = strcmp(x(i,j+1).surface,dot.surface); 

up = strcmp(x(i-1,j).surface,dot.surface); 

down = strcmp(x(i+1,j).surface,dot.surface); 

 

total = left + right + up + down; 

 

if (total == 4) 

    formula = "fdr"; %Finite Difference 

elseif((total == 3 || total == 1)) 

    direction = [left,right,up,down]; 

    if (total == 1) %Will find same one (val=1) 

        index = find(direction); 

    else  %Total == 3, will find different one (val=0) 

        index = find(~direction); 

    end 

    if (index==1||index==2) 

        formula = "lr"; %Left Right 

    else  

        formula = "ud"; %Up Down 

    end 

elseif (total==2) 

    if ((up&&down)||(left&&right)==0) 

        formula ="crb"; %Cross Boundary 

    else                         

        if (left||right) 

            formula = "ud"; 

        else 

            formula ="lr"; 

        end 

    end 

else %Unused part 

    formula = "lr"; %Left Right 

end 

end 

 

After the development of the differentNeigh algorithm, a 

calculation function which makes use of the differentNeigh 

subprogram is written and its code is given below. 

  if (strcmp(Mkap(i,j).surface,"M")) 

            %Const Points 

            continue; 

        else 

            % 40th row is the beginning of the water medium in 

the metal can 

            % At (39,2),(40,2),(39,50) and (40,50), interface 

boundary rule 

            % should be applied 

            % For the rest of the edge points, finite difference 

formula 

            % is implemented 

            boundaryCondition = 

((j==2||j==50)&&(i~=39&&i~=40)); 

            if(boundaryCondition)  

                formula ="fdr"; 

            else 

                formula = differentNeigh(Mkap,i,j); 

            end 
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         if (formula == "ud") 

     Mkap(i,j).V =  iBoundary(Mkap(i-

1,j).eps,Mkap(i+1,j).eps,Mkap(i-1,j).V,Mkap(i+1,j).V); 

         elseif (formula == "lr") 

            Mkap(i,j).V =  iBoundary(Mkap(i,j-

1).eps,Mkap(i,j+1).eps,Mkap(i,j-1).V,Mkap(i,j+1).V); 

         elseif(formula =="crb") 

            Mkap(i,j).V = crossBoundary(Mkap,i,j); 

         else 

            Mkap(i,j).V = fDifference (Mkap(i,j-

1).V,Mkap(i,j+1).V,Mkap(i-1,j).V,Mkap(i+1,j).V); 

        end 

        end 

         

        if ((i>=2&&i<=19)) %Neumann Condition 

           % Metal Can starts from 20th row index 

           % In air medium, Neumann Boundary Condition is 

applied. 

           % Checking row indexes range between 2nd and 20th 

would be 

           % useful in this condition 

           if(j==2) 

                Mkap(i,j-1).V = Mkap(i,j).V; 

           elseif(j==50) 

                Mkap(i,j+1).V = Mkap(i,j).V; 

           end 

           if(i==2) 

               Mkap(i-1,j).V = Mkap(i,j).V; 

           end 

            

        end 

Also the predefined functions that are implemented within 

the calculation block are given below. 

function [Vort] = iBoundary(e1,e2,V1,V2) 

Vort = (e1*V1)/(e1+e2)+(e2*V2)/(e1+e2); 

end 

function [Vort] = fDifference(V1,V2,V3,V4) 

Vort = (V1+V2+V3+V4)/4; 

end 

 

function [Volt] = crossBoundary(x,i,j) 

e1 = x(i-1,j+1).eps; %Upper Right 

e2 = x(i+1,j+1).eps; 

e3 = x(i-1,j-1).eps; 

e4 = x(i+1,j-1).eps; 

Vup = x(i-1,j).V; 

Vdown = x(i+1,j).V; 

Volt = ((e1+e3)*Vup + (e4+e2)*Vdown)/(e1+e2+e3+e4); 

end 

After the implementation of the calculation functions and the 

calculation process of every water depth level or the 

calculation of the capacitance for each desired water depth 

level can be done. The implementation of the capacitance 

calculation function is written within the following block 

given below. 

%Aluminium Coordinates: x:[19,33] y:[9+depth,31+depth] 

function [capacitance,Etotal] = 

calculateCapacitance(x,depth) 

dx = (8^-1)*10^-3;dy = (8^-1)*10^-3;w = 23; 

Eside = 0;Eup = 0;Edown = 0; 

epsN = 4;epsA=1.000536; 

eO = 8.85*10^-12; 

for i=9+depth:31+depth 

Eside = Eside + (abs(x(i,19)-x(i,18))/dx); 

Eside = Eside + (abs(x(i,33)-x(i,34))/dx); 

end 

Qside = Eside*epsN*dy*w; 

 

for i=19:33 

Eup = Eup + (abs(x(9+depth,i)-x(8+depth,i))/dy); 

Edown = Edown + (abs(x(31+depth,i)-x(32+depth,i))/dy); 

end 

 

Qup = epsA*Eup*dx*w; 

Qdown = epsN*Edown*dx*w; 

Etotal = Eup + Edown+ Eside; 

capacitance = (Qside + Qup + Qdown)*eO; 

 

end 

For the stability analysis, the code given below is written 

before the end of the iteration loop. 

%Calculation of the Error Rate Between Per Iteration 

if (it == 1) 

    B = convertStructToArray(Mkap,101,51); 

else 

    A = B; 

    B = convertStructToArray(Mkap,101,51); 

    errorRate = calculateER(A,B); 

end 

 

if (errorRate <= 0.001) 

    disp(it); 

    break; 

end 

 

function [errorRate] = calculateER (A,B) 

D = abs(A-B); 

errorRate = sqrt(sum(D.*D))/ sqrt(sum(B.*B));; 

end 

 

function [array] = convertStructToArray(x,ival,jval) 

array = zeros(ival-1,jval-1); 

for i=1:ival-1 

    for j=1:jval-1 

        array(i,j) = x(i,j).V; 

    end 

end 

5. Simulation Results 

Using the FD method, the sensor system is simulated with 

the programs written in Matlab and given before. The 

physical dimensions and electrical parameters given in Table 

1 is used in all calculations. The electrical capacitance versus 

the submerged height of the sensor is given in Figure 7. The 

capacitance is not linear but it has a curved nature. Using the 
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circuit given in Section 2, the sensor capacitance could be 

measured. However, due to the nonlinearity, the water sensor 

system would need a calibration or a look-up table system to 

estimate the water depth the sensor is submerged. According 

to simulation results, if 5h y  , the sensor cannot be used 

the estimate the submerged height since its capacitance is 

almost constant for 5h y  . 

Table 1. The dimensions and the electrical parameters 

required for the FD analysis. The length y is given in the 

5th section. 

Sensor Parameter Symbol 
Sensor Parameter 

Value 

d, the sensor insulator thickness 8 mm 

L, the electrode height 23 mm 

w, the electrode width 15 mm 

hmax, the maximum height the 

electrode submerged 
30 y  

h, the height the electrode submerged 0 30 y   

0 , the permittivity of space 8.85e-12 F/m 

water , the permittivity of water 7.08e-10 F/m 

plastic , the permittivity of the plastic 

layer covering the electrode 

35.4e-12 F/m 

(Nylon) 

 

Figure 8. Sensor Capacitance versus Submerged Depth. 

6. Conclusions 

FD method is commonly used in examination of 

electromagnetic problems. It is easy to implement. The 

solution of Laplace equation using FD method is well-known 

and can be found in almost every computational 

electromagnetics book.  A capacitive water level sensor is 

also an electrostatic problem. In this study, first the water 

level sensor topology is introduced, its is modeled with FD 

method considering its boundaries and different regions, its 

capacitance is calculated using the potentials, and, then, a 

Matlab code is written using struct arrays and used for the 

FD solution. Forward error is used to guarantee the 

convergence. The sensor capacitance has been found as a 

nonlinear function of submerged length. That’s why it can 

only measure the depth accurately in the depths where its 

capacitance differs measurably, i.e. not in the depths where 

the capacitance is almost constant. The sensor has different 

regions and, in our opinion, the constant capacitance region 

results from the electrod being covered with PE nylon and its 

fringing field. The measurement system of the sensor 

requires some kind of calibration method either as hardware 

or software to suppress its nonlinearity. The FD solution 

given here can be used to examine sensors of similar nature. 

Matlab program also provides a cheap solution for FD 

analysis of such a sensor. 
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