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Abstract 

This paper presents the potential for soil moisture (SM) retrieval using Sentinel-1 C-band Synthetic Aperture Radar (SAR) data 

acquired in Interferometric Wide Swath (IW) mode along with Land Surface Temperature (LST) estimated from analysis of 

LANDSAT-8 digital thermal data. In this study Sentinel-1 data acquired on 27 February 2020 was downloaded from Copernicus 

website and LANDSAT-8 OLI data acquired on 24 February 2020 from the website https://earthexplorer.usgs.gov/.The soil samples 

were collected from 70 test fields in different villages of three talukas for estimating soil moisture content using the gravimetric 

method. The Sentinel-1 SAR microwave data was analysed using open source tools of Sentinel Application Platform (SNAP) 

software for estimation of backscattering coefficient. Land surface temperature estimated using Landsat-8 thermal data. The Landsat-

8, Thermal infrared sensor Band-10 data and operational land imager Band-4 and Band-5 data were used in estimating LST. The Soil 

Moisture Index (SMI) for all field test sites was computed using the LST values. The regression analysis using σ0VV and σ0VH 

polarization with soil moisture indicated that σ0VV polarization was more sensitive to soil moisture content as compared to σ0VH 

polarization. The multiple regression analysis using field measured soil moisture (MS %) as dependent variable, and σ0VV and SMI 

as independent variable was carried which resulted in the coefficient of determination (R2) of 0.788, 0.777 and 0.778 for Godhra, 

Goghamba and Kalol talukas, respectively. These linear regression equations were used to compute the predicted soil moisture in 

three talukas.  

Keywords: Analysis Soil Moisture, Sentinel-1 SAR data, LST, SMI, Backscattering coefficient, LANDSAT 8 OLI, TIRS data 

Introduction 

The Sentinel-1, a polar orbiting satellite system mission 

is a part of the Global Monitoring for Environment and 

Security (GMES) program of the European Space 

Agency (ESA) and the European Commission (EC) and 

is intended to provide continuous global all weather, day 

and night radar imaging in support of GMES 

applications (Drusch et al., 2012). Soil moisture content 

plays a key role in the crop production as it acts as a 

nutrient and serves as a solvent for other nutrients such 

as sodium, potassium, carbon, and nitrogen. It makes a 

significant impact on plant growth, percolation, and 

evaporation, microbiological decomposition of the soil 

organic matter. For many applications in hydrology, 

horticulture, geotechnical, agriculture and meteorology 

moisture content on surface of the soil is an important 

parameter (Ansari and Deshmukh, 2017). In agriculture 

point of view, soil moisture information is essential for 

many applications like plant stress, plant turgidity, 

irrigation scheduling and improving crop yield. The soil 

moisture affects the amount of water available for 

vegetation growth (Bezerra, et al., 2013). Soil moisture 

has a vigorous structure and thus, monitoring spatial and 

temporal variations in soil moisture is great importance 

for ecological balance. 

Microwave Remote Sensing for Soil Moisture 

estimation 

Microwave remote sensing, both active and passive, has 

already revealed its potential in soil moisture retrieval 

independent of weather conditions. This capacity is due 

to the fact that microwave signals are influenced by 

dielectric properties (and thus the water content) of the 

soils (Wang, 1980). There are many studies on 

estimating soil moisture using both passive and active 

remote sensing satellites. Active microwave remote 

sensing systems have been recently preferred in soil 

moisture studies because of the remarkable penetrating 

capabilities of radar signal into the surface. In SAR 

images, the sigma naught (σ0) which is considered as 

backscattering coefficient, presents the amplitude of the 

signal returned from target to SAR antenna that is 

influenced by the soil surface characteristics which is 

linked to the soil moisture and soil surface roughness 

(Mirsoleimani, et al., 2019). Retrieval of soil surface 

parameters from SAR data normally can be realized 

using the backscattering model that presents the relation 

between the target parameters (soil moisture and 

 International Journal of Environment and Geoinformatics 8(1):065-077 (2021)

Research Article 

How to cite: Sutariya et al., (2021 Soil Moisture Estimation using Sentinel-1 SAR data and Land Surface Temperature in Panchmahal 

district, Gujarat State, International Journal of Environment and Geoinformatics (IJEGEO), 8(1):065-077. doi: 10.30897/ijegeo.777434

https://earthexplorer.usgs.gov/
https://doi.org/10.30897/ijegeo.701241
https://orcid.org/0000-0001-7912-9824
https://orcid.org/0000-0002-1963-7197
https://orcid.org/0000-0002-0011-8565
https://orcid.org/0000-0003-0385-4426
https://orcid.org/0000-0002-0977-7671
https://orcid.org/0000-0002-7675-0698


Sutariya et al.,  / IJEGEO 8(1):65-77 (2021) 

66 

roughness) and the SAR sensor configurations such as 

incidence angle, polarization, and frequency (Sahebi et 

al., 2002). The backscattered SAR signal is affected 

strongly from soil moisture and surface roughness on 

bare soil (Ulaby, Moore, and Fung, 1986; Zribi et al., 

2007). For bare soils, different theoretical and empirical 

approaches have been developed and many approaches 

assumed that there is a linear behaviour between surface 

soil moisture and SAR backscattering coefficient (sigma-

nought:σ0) (Esetlili and Kurucu, 2016; Esetlili et al., 

2018; Gao, Zribi, Escorihuela, and Baghdadi, 2017; 

Zribi, Baghdadi, Holah, and Fafin, 2005). The relative 

SMC ranges from zero in dry soil to unity (or 100%) in a 

completely saturated soil. Wagner et al., 1999a, b, 

developed a SMC retrieval algorithm for the ERS 

scatterometer. ERS backscattering is described in terms 

of empirical backscatter parameters and the relative 

surface SMC according to σ0 (θ, t) = σ0dry (θ, t) + 

S(t)ms(t), where θ is the local incidence angle, t is the 

time, σ0 dry is the backscattering coefficient observed 

under completely dry soil conditions in decibels, and S is 

the sensitivity in decibels of the σ0 to changes in soil 

moisture. 

Water Cloud Model (WCM) to estimate the soil 

moisture 

A semi-empirical model i.e. water cloud model (WCM) 

was used to estimate the SM in the area of Varanasi 

district, India using C- band Sentinel -1A SAR data. The 

potential of inversion scheme was checked using three 

types of vegetation descriptors (LWAI, LAI and fveg). 

WCM parameterization was done using non-linear least 

square optimization algorithm and the results indicated 

high correlation between the estimated SM with the in-

situ observation (R2 = 0.847, RMSE = 3.23).  Landsat-8 

derived vegetation descriptor was found better in WCM 

for the estimation of SM more accurately (Yadav, et al., 

2019; Küçükmatçı and Avdan, 2019). The prospects of 

semi-empirical Water Cloud Model (WCM) to estimate 

the soil moisture content was tested in a fragmented 

agricultural region for different time periods. The 

concurrent satellite data obtained from Sentinel-1A and 

Landsat 8 were utilized to supply the inputs for inversion 

modelling based on the Levenberg-Marquardt approach. 

The current research introduced ‘virtual Normalized 

Difference Vegetation Index’ concept to refine the 

WCM and yielded reliable soil moisture output for 

supplementing the anchor pixel selection process. The 

research results indicated that the anchor pixel selection 

with and without soil moisture criterion has a significant 

impact on actual evapotranspiration estimation. The 

research also explores the scope of the synergetic use of 

optical and Synthetic Aperture Radar (SAR) inputs in 

SEBAL (Prakash Mohan et al, 2019).  

Sentinel-1 and Landsat-8 data were used to retrieve soil 

moisture from top soil surface (0–5 cm depth) at 

agricultural land (area under wheat crop). Water Cloud 

Model (WCM) was used for removal of vegetation 

influence (r-veg), total backscattering coefficient (r total) 

and Normalized Difference Vegetation Index (NDVI) 

were used to simulate backscattering from soil (r soil. 

Further, modelled soil moisture was evaluated using in 

situ soil moisture measurements and a Time Domain 

Reflectometer during Sentinel-1 overpass (24 January, 

25 February and 13 March 2018). Statistical tests 

showed that an integrated approach has potential to 

improve soil moisture estimates over the 

vegetated/cropped area for agricultural and hydrological 

studies (Rawat et al. 2019).  

Multi-sensor fusion for soil moisture retrieval 

In recent few years, there has been growing interest in 

multi-sensor fusion for retrieving soil moisture. 

Synthetic aperture radar (SAR) and optic data fusion is 

one of the most foremost used approaches (Gao et al., 

2017 and Prakash et al., 2012). An approach for retrieval 

of soil moisture content (SMC) by coupling single 

polarization C band synthetic aperture radar (SAR) and 

optical data at the plot scale in vegetated areas was 

presented by Reza Attarzadeh, 2018.The study was 

carried out at five different sites with dominant 

vegetation cover located in Kenya. Within the initial 

state of the study, different features are extracted from 

single polarization mode (VV polarization) SAR and 

optical data. A complicated advance state of the art 

machine learning regression approach, the support vector 

regression (SVR) technique, is used to retrieve soil 

moisture. This paper takes a new look at soil moisture 

retrieval in vegetated areas considering the needs of 

practical applications. Using optical, thermal infrared 

(TIR), and microwave (MW) sensors different retrieval 

of soil moisture approaches have been developed 

(Barrett et al., 2013). Optical sensors in the thermal 

spectrum are able to identify temperature differences, 

which can be related to surface soil moisture. Microwave 

soil moisture estimations are based on the strong contrast 

between the dielectric properties of water (≈80) and dry 

soil (<5) (Zhuo and Han, 2016). Surface SMC can be 

estimated based on Normalized Difference Vegetation 

Index (NDVI) and LST. Petropoulos et al., (2009) 

described this LST/NDVI relationship as a linear 

relationship with the SMC. Zeng et al., 2004 proposed a 

method to retrieve SMC based on the integration of LST 

and NDVI called Triangle method. LST is determined 

from thermal emission, and NDVI is estimated based on 

surface reflectance of red and the near infrared portions 

of the electromagnetic spectrum, so these methods 

sometimes are termed as optical, thermal infrared remote 

sensing (Amato et al., 2015; Rahimzadeh-Bajgiran et al., 

2013; Traore et al., 2020). 

Thermal Remote Sensing for Soil Moisture 

Estimation 

For alternatively use to microwave remote sensing 

approaches, thermal remote sensing has also been 

extensively used to monitor soil moisture and its related 

variables (Amazirh et al., 2018). The land surface 

temperature (LST) derived from (Avdan and 

Jovanovska, 2016; Şekertekin et al., 2016; İncekara et 

al., 2017; Çelik et al., 2019; Sekertekin, and Bonafoni, S. 

2020) the use of the LANDSAT 8 thermal infrared 

sensor Band 10 data and operational land imager Band 4 

and Band 5 data. To understand the interaction between 

SAR signals and the surface many models have been 

developed. Different theoretical and empirical 
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approaches have been developed for estimating soil 

moisture and many approaches assumed that there is a 

linear correlation between surface soil moisture and SAR 

backscattering coefficient (σ0) (Amazirh et al., 2018; 

Mirsoleimani et al., 2019; Şekertekin et al., 2018; 

Paloscia et al., 2013 and Esetlili and Kurucu, 2016).  

The soil moisture distribution was estimated using C-

band Synthetic Aperture Radar (SAR) data in an 

agricultural region in Bergama, a district of İzmir city 

(Şekertekin et al, 2016). In-situ soil moisture 

measurements were carried out in 20 test fields 

simultaneously with SAR data acquisition. The effects of 

soil moisture and local incidence angle on backscattering 

coefficient were analysed using these acquisition data, 

and then a multiple regression analysis was performed to 

generate an empirical model. The proposed model was 

evaluated using statistical metrics namely coefficient of 

determination (R2) and Root Mean Square Error 

(RMSE), and the results were 0.84 and 2.46 %, 

respectively. Mohamed et al, 2019, carried out a study 

was in the east of Nile Delta of Egypt to predict soil 

moisture content using optical remote sensing data and 

Synthetic Aperture Radar (SAR) Sentinel-1 data. A 

number of 100 surface soil samples were collected to 

represent different soil types in the study area. Soil 

Moisture Index (SMI) is assessed based on thermal 

remote sensing data as Land Surface Temperature (LST) 

besides, Sentinel-1 data. The results showed a high 

correlation between SMC and SMI, coefficient of 

determination (R2) reached 0.81 between actual soil 

moisture and SMI. Furthermore, a significant correlation 

was also shown by Sentinel-1 data, with R2 of 0.83 

between actual soil moisture content and backscattering 

coefficient (dB).  

The main objective of this study is to estimate and map 

soil moisture distribution using Sentinel-1 C-band SAR 

data in combination with LST estimated from Landsat-8 

OLI data.  

Materials and Methods 

Study Area 

Panchmahal District is situated in the Northern side of 

Gujarat. It lies between the parallels of latitude 20.34˚ 

and 23.30˚ N and the meridians of longitude 73.15˚ and 

74.03˚ E. The districts rich in water resources and is 

drained by seven important rivers, viz., the Mahi, the 

Goma, the Kun, the Panam, the Karad, the Kali and the 

Meshri. It is further divided into seven talukas such as 

Godhra, Halol, Kalol, Jambughoda, Shahera, Morva 

Hadaf and Ghoghamba. From this seven talukas Godhra, 

Ghoghamba and Kalol were selected for this study 

(Figure 1). 

Figure-1: Location map of Study Area in Panchmahal District, Gujarat State 

Remote Sensing Satellite Data Used 

The LANDSAT-8 OLI digital data was downloaded 

from the United States Geological survey official 

website, NASA, website of USGS. The Sentinel-1 SAR 

data was downloaded from the Copernicus website. 

Landsat-8 is an American Earth observation satellite 

launched on February 11, 2013. It ensures the continued 
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acquisition and availability of Landsat data utilizing a 

two-sensor payload, the Operational Land Imager (OLI) 

and the Thermal Infrared Sensor (TIRS).  These two 

instruments collect data for nine shortwave bands and 

two long wave thermal bands (Department of the Interior 

U.S. Geological Survey, 2016). In this study, Landsat-8 

satellite imagery acquired on 24-Feb-2020 (Path/Row: 

148/44) was downloaded from USGS website (Figure-

2). Sentinel-1 satellite provides C-band images in both 

singular and dual polarization within 12 days of repeat 

cycle. It can acquire images in three acquisition modes 

as Strip map (SM), Interferometric Wide Swath (IW), 

Extra Wide Swath (EW) and Wave (WV) with different 

processing levels (Drusch et al., 2012). In this study, 

Level-1, GRD product with VV and VH polarization 

with the acquisition mode of IW was acquired for 

analysis. The details of Landsat-8 OLI and Sentinel-1 

SAR digital data are given in Table-1. 

Figure-2: Landsat-8 OLI image covering study area with Taluka boundaries. 

Table-1: Specifications of Satellite Data used 

Satellite/Sensor Specifications 

Landsat-8 OLI & 

TIRS 

Acquisition 

date 
24-FEB-2020 

Spatial 

Resolution (m) 

30 m (OLI) & 

100 m (TIRS) 

Path / Row 148 / 44 

Data Product 
Collection-1 

Level-1 

Sentinel-1 SAR 

Acquisition 

date 
27-FEB-2020 

Acquisition 

orbit 
Descending 

Imaging 

frequency 

C-band (5.4 

GHz) 

Spatial 

Resolution (m) 
10 

Imaging Mode IW 

Polarization VV-VH 

Data product Level-1 GRD 

Soil Sample Collection in the Field 

Five villages were selected randomly in each taluka and in 

each village five soil sample collection sites were 

identified on the maps created in GIS. The soil samples 

were collected near synchronous with respect to the 

Sentinel-1 acquisition date. It was observed that there was 

no crop or vegetation cover in the test fields. The surface 

roughness, which is another important variable which 

affecting backscattering coefficient, was ignored because 

it was not so high for the test sites. Also, the selected 

fields for soil sample collection were not irrigated or there 

were no rains in the study area. The soil samples were 

collected using the soil auger from the depth of 10 cm and 

these soil samples were packed in air tight polythene bags. 

These collected soil samples were brought to laboratory 

and put into the aluminium containers. A total number of 

70-soil samples were collected from the identified sample 

points in different villages of Godhra, Ghoghamba and 

Kalol talukas (Figure-3). The collected soil samples were 

oven-dried in the laboratory. The process of soil sample 

collection in the field and drying them in the hot-air oven 

is given in Figure-4. 
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Figure-3: Locations of Soil Sample points in different villages. 

Figure-4: Soil Samples collection in the field and Oven drying of soil samples. 

Soil Moisture Determination using Field Data 

In recent decades, many different methods are available 

to determine soil moisture content. Determining soil 

moisture is generally considered in two groups, namely 

direct and indirect methods. In direct methods, the soil 

moisture is calculated relating to the difference 

between the weights of the soil sample before and after 

drying. In indirect methods, soil moisture content is 

determined by sensors and using other variables which 

affect the moisture content and it depends upon the 

device accuracy. So, the gravimetric method (direct 

method) is more authentic and provides accurate soil 

moisture than the indirect method such as dielectric 

method, tensiometric method etc. In this study, a 

gravimetric soil moisture determination method was 

used (Myhre and Shih, 1990; Bittelli, 2011). In the 

gravimetric method firstly the soil samples are 

collected from the field and weighted, then placed in 

the hot-air oven and dried at 105°C temperature for 24 

hours (Almaw et. al., 2018).   

After complete drying the samples are weighted again 

to obtain dry weights, and soil moisture is estimated 

using the following equation (1): 
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Soil Moisture (%) = (Mw / Ms) ×100              …… 

1 

Where, Mw is mass of water and Ms is the mass of dry 

soil. 

Mw = (weight of wet soil + can) – (weight of oven dry 

soil + can)  

Ms = (weight of oven dry soil + can) – weight of can 

The average mean values for each plot were computed 

from all the soil samples within each plot. The range of 

the soil moisture values are between 5 to 15, 5 to 17 

and 3 to 13 vol. %, for Godhra, Goghamba and Kalol 

Talukas, respectively. 

Land Surface Temperature (LST) Estimation 

The Landsat-8 OLI and TIRS digital data was analyzed 

for estimation of Land Surface Temperature (LST) of 

the study area. Thermal infrared sensor Band-10 data 

and operational land imager Band-4 and Band-5 data 

were used in estimating LST and characteristic of these 

bands (Department of the Interior U.S. Geological 

Survey, 2016) shown in Table-2. 

From the Landsat-8 digital data; Red, NIR and TIRS 

bands were used for calculation of LST and steps 

described by Avdan and Jovanovska, 2016 were 

followed in this study. The major steps are: 

i) Converting digital numbers (DN) to top-of-the-

atmosphere (TOA) radiance values

ii) Conversion of radiance to at-sensor brightness

temperature,

iii) Calculation of Normalized Difference Vegetation

Index (NDVI),

iv) Computation of Proportion of Vegetation (PV),

v) Estimating the surface emissivity using an

empirical relationship based on the NDVI,

vi) Calculating LST using the simplified Plank’s law.

The flow chart of LST estimation is given in

Figure-5. The details of each step are described in

following sections:

Table-2: Spectral Band characteristics of LANDSAT-8 

Band Resolution (m) Spectral Band Wavelength(μm) 
Solar irradiance 

(W/(m
2
μm) 

4 30 Red 0.630-0.680 1574 

5 30 Near Infrared 0.845-0.885 955 

10 100 Longwave Infrared 10.60 – 11.19 -- 

Figure-5: Flow chart for LST estimation using Landsat-

8 data 

i) Top of atmospheric spectral radiance

In the first step of LST estimation, band 10 from 

Landsat-8 OLI data has been used for estimation of top 

of atmospheric (TOA) spectral radiance (Lλ): 

𝑳𝝀 =  𝑴𝒍 × 𝑸𝒄𝒂𝒍 + 𝑨𝒍 − 𝑸𝒊

Where, Lλ=Top of atmospheric spectral radiance, 

Ml=Band-specific multiplicative rescaling factor, Qcal = 

Band 10 image, Al =and-specific additive rescaling 

factor, Qi =correction for Band 10. 

ii) Conversion of Radiance to at Sensor Temperature

Conversion of radiance to at-sensor temperature is 

carried out to estimate the brightness temperature using 

the thermal constants which are given in Landsat-8 

metadata file: 

𝑩𝑻 =
𝑲𝟐

𝒍𝒏(𝑲𝟏 𝑳𝝀⁄ ) + 𝟏
− 𝟐𝟕𝟑. 𝟏𝟓 

Where, BT= Brightness temperature, K1 and K2 

=Band-specific thermal constants, Lλ=Top of 

atmospheric spectral radiance 

iii) Calculation of Normalized Difference Vegetation

Index (NDVI) for Emissivity Correction 

The amount of vegetation present can be estimated 

using NDVI and it can also be used to infer general 

vegetation condition (Weng et al., 2004). The NDVI is 

required for computing the Proportion of Vegetation 

(PV) which is highly related with NDVI, and emissivity 

(𝜀) should be calculated, which is related to the PV:  

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹(𝒃𝒂𝒏𝒅 𝟓) − 𝑹(𝒃𝒂𝒏𝒅 𝟒)

𝑵𝑰𝑹(𝒃𝒂𝒏𝒅𝟓) + 𝑹(𝒃𝒂𝒏𝒅 𝟒)

Where, NDVI=Normalized Difference Vegetation 

Index, NIR = Near-infrared band (Band-5), 𝑅 = Red 

band (Band-4) 

iv) Computation of Proportion of Vegetation (PV)

𝑷𝒗 = (
𝑵𝑫𝑽𝑰 − 𝑵𝑫𝑽𝑰𝑺

𝑵𝑫𝑽𝑰𝒗 − 𝑵𝑫𝑽𝑰𝒔

)
𝟐

Where, Pv= Proportion of Vegetation, NDVI=Normal 

Difference Vegetation Index, NDVIV=0.5, NDVIS=0.2. 

v) Estimating the surface emissivity (LSE) using an

empirical relationship based on the NDVI 
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For calculating LSE in the model when the NDVI 

value is less than 0, it is classified as water, and the 

emissivity value 0.991 is considered. For NDVI values 

between 0 to 0.2, it is classified as the land is covered 

with soil and there is no vegetation, and the emissivity 

value 0.996 is considered and the NDVI value is 

greater than 0.5, it is classified as land covered with 

vegetation and the emissivity value of 0.973 is 

considered. The NDVI values between 0.2 and 0.5 are 

classified as mixtures of soil and vegetation and the 

emissivity can be calculated follows,  

𝜺𝝀 = 𝜺𝒗𝝀𝑷𝒗 + 𝜺𝒔𝝀(𝟏 − 𝑷𝒗) + 𝑪𝝀

Where, ελ= Land Surface Emissivity, Pv= Proportion of 

Vegetation, εvλ=0.973, εsλ=0.996, Cλ=Surface 

roughness (0.005) 

vi) Land surface temperature Computation

Land surface temperature (LST) is computed using the 

following equation: 

𝑻𝒔 =
𝑩𝑻

{𝟏 + [
𝝀𝑩𝑻
𝝆

] 𝐥𝐧 𝜺𝝀}

Where, Ts=land surface temperature (℃), 

BT=Brightness temperature, ελ= Land Surface 

Emissivity, λ= limiting wave length (10.895), ρ = 

1.438 ×10
-2

 m 

Soil Moisture Index (SMI) Computation using LST 

The soil moisture index (SMI) is defined as the 

proportion of the difference between the current soil 

moisture and the permanent wilting point to the field 

capacity and the residual soil moisture. The index 

values range from 0 to 1 with 0 indicating extreme dry 

conditions and 1 indicating extreme wet conditions 

(Chandrasekar, 2016). The SMI has been retrieved 

directly according to (Moawad, 2012) using LST as 

follows:  

SMI = (LSTmax - LST) / (LSTmax –LSTmin) 

Where:  SMI is Soil Moisture Index, LST max, LST min, 

LST are the maximum, minimum and value of the 

retrieved LST respectively. The SMI for all the sample 

plots in three talukas was computed and the range of 

SMI values were between 0.148 to 0.868; 0.167 to 

0.857; and 0.115 to 0.889 for Godhra, Goghamba and 

Kalol Talukas, respectively 

Sentinel-1 Image Pre-processing 

Sentinel-1 provides data with a spatial resolution of 10 

m and a temporal resolution of 12 days, in both VV 

and VH polarizations. In this present study, VV 

polarization data were used to estimate the soil 

moisture. Previous studies have shown that VH data 

has only a limited potential for the estimation of soil 

moisture, in particular as a consequence of its high 

sensitivity to volume scattering, which depends 

strongly on the geometrical alignment and 

characteristics of the vegetation (Karjalainen, et l., 

2004; Chauhan, and Srivastava, 2016). ESA announced 

some steps to be performed with open source tools of 

Sentinel Application Platform (SNAP) software for 

determining backscattering coefficient (σ
0
). The steps 

of this analysis included: apply orbit file, thermal noise 

removal, border noise removal, radiometric calibration, 

speckle filtering, range doppler terrain correction and 

Conversion to dB (Filipponi, 2019). After applying all 

these steps, final backscattering coefficient image was 

generated from the high-resolution Level-1 Ground 

Range Detected (GRD) product with a spatial 

resolution of 10 m x 10 m.  

For Sentinel-1 SAR data preprocessing the Sentinel 

Application Platform (SNAP) software was utilized to 

perform radiometric and geometric corrections. The 

DN values of raw Sentinel-1 data were first converted 

to σ0 using radiometric calibration. Then, the 

calibrated Sentinel-1 data was georeferenced using the 

terrain correction algorithm. In the second step, the 

mean values of σ0 are extracted for each field sample. 

For this, the selected fields were identified on image 

based on their geographic coordinate. Then the boarder 

of each field was determined and the average of σ0 for 

internal pixels was calculated (Mirsoleimani, et al., 

2019). The methodology flow-chart adopted for data 

analysis is given in Figure-6. 

Figure-6: Methodology flow chart of Sentinel-1 SAR 

data analysis 

Pre- processing (Calibration) of Sentinel-1 Product 

The main task of calibration is to derive the calibration 

constant by measurements of targets with exactly 

known backscatter coefficients. The methodology for 

performing the data analysis of backscatter data 

(Filipponi, 2019) as is follows:   

i) Apply Orbit File

The orbit state vectors provided in the metadata of a 

SAR product are generally not completely accurate and 

can be refined with the precise orbit files which are 

available days-to-weeks after the generation of the 

product. Based on accurate satellite position and 

velocity information, the orbit state vectors in the 

abstract metadata of the product are updated. For 
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Sentinel-1, resituated orbit files and precise orbit files 

may be applied. Precise orbits are produced a few 

weeks after acquisition. 

ii) Thermal Noise Removal

Thermal noise removal reduces noise effects in the 

inter-sub-swath texture, in particular, normalizing the 

backscatter signal within the entire Sentinel-1 scene 

and resulting in reduced discontinuities between sub-

swaths for scenes in multi-swath acquisition modes. It 

can be applied to Sentinel-1 Level-1 SLC products as 

well as Level-1 GRD products which have not already 

been corrected. The operator can also remove this 

correction based on the product annotations (i.e. to 

reintroduce the noise signal that was removed). 

Accordingly, to allow for re-application of the 

correction product annotations will be updated. The 

Level-1 products provide a noise LUT for each data.  

iii) Border Noise Removal

While generating level-1 products, it is necessary to 

correct the sampling start time in order to compensate 

for the change of the Earth’s curvature. At the same 

time, azimuth and range compression leads to 

radiometric artefacts at the image borders. The border 

noise removal algorithm, available as an operator in 

SNAP, was designed in order to remove low intensity 

noise and invalid data on scene edges. 

iv) Calibration

Calibration is the procedure that converts digital pixel 

values to radio metrically calibrated SAR backscatter. 

The information required to apply the calibration 

equation is included within the Sentinel-1 GRD 

product; specifically, a calibration vector included as 

an annotation in the product allows simple conversion 

of image intensity values into sigma nought values. 

The calibration reverses the scaling factor applied 

during level-1 product generation, and applies a 

constant offset and a range-dependent gain, including 

the absolute calibration constant.  

v) Conversion to dB

As a last step of the pre-processing workflow, the unit 

less backscatter coefficient is converted to dB using a 

logarithmic transformation, to dB as 10*log10 σ0. The 

scattering behaviour depends on the physical 

characteristics of the terrain, primarily the geometry of 

the terrain elements and their electromagnetic 

characteristics. 

Landsat-8 and Sentinel-1 Satellite data analysis 

In this study, back scattering coefficient σ
0
vv (dB) and 

soil moisture index (SMI) is considered as a function of 

soil moisture as given in Equation -9. 

MC (%) = X1* SMI + X2 * σ
0
vv (dB) + c

Where σ
0
 (dB) is backscattering coefficient, and SMI is 

the Soil Moisture Index. In this multiple regression 

analysis, MC (%) is considered as a dependent 

variable, whereas σ
0
 (dB) and SMI are independent 

variables. 

Validation of Soil Moisture 

For the validation of the predicted soil moisture, 

performance indices namely coefficient of 

determination (R
2
) and standard deviation (S) were 

utilized. The equation of these performance indices is 

presented in Equation 10 and 11. 

𝑹𝟐 =

[
 
 
 

∑ (𝑶𝒊 − 𝑶̅)(𝑷𝒊 − 𝑷̅)𝒏
𝒊=𝟏

√∑ (𝑶𝒊 − 𝑶̅)𝟐𝒏
𝒊=𝟏 ∑ (𝑷𝒊 − 𝑷̅)𝟐𝒏

𝒊=𝟏 ]
 
 
 
𝟐

Where Oi and Pi are the observed soil moisture and 

predicated soil moisture respectively, O̅ and P̅ are the 

mean values of the observed soil moisture and 

predicated soil moisture respectively and n is the 

number of data sets. 

S = √
∑ (𝒙𝒊−𝒙 )𝟐𝒏

𝒊=𝟏

(𝒏−𝟏)

Where, S is the standard deviation of data set, xi is each 

value in the data set, x̄ is the mean of all values in data 

set and n is the total number of data sets. 

The shape files were created for each test site, and 

mean LST and mean σ
0
 (dB) values of each sample test 

site in three talukas were extracted using the shape files 

in ArcGIS software. The Soil Moisture Index (SMI) 

values for each sample plots were computed using the 

LST data. The multiple regression analysis was carried 

out between back scattering coefficient σ
0
 (dB) & and 

Soil Moisture Index (SMI) with field measured soil 

moisture values.  

Results and Discussion 

Estimation of Land Surface Temperature from 

Landsat-8 Satellite Data 

The algorithm was created in ArcGIS for estimating land 

surface temperature using Landsat-8 OLI and TIRS data. 

For estimating LST, the TIRS band-10 was used to 

estimate brightness temperature and bands-4 (Red) and 5 

(NIR) were used for calculating the NDVI. Land surface 

temperature of Godhra, Goghamba and Kalol talukas of 

Panchmahal district was estimated using the LANDSAT-8 

data of 24-FEB-2020 and the results of one of the talukas 

i.e. Godhra Taluka is presented in Figure-7 and LST 

values of major land use classes are given in Table-3. 

Table-3: Land surface temperature of different land use classes in Godhra taluka 

Sr. No. Class Area (ha) Mean Temp (
0
C) Std. Dev 

1 Agriculture 22263.6 25.76 1.59 

2 Water-body 1853.8 23.77 1.93 

3 Built-up 43262.8 27.33 1.72 

4 Waste Land 9071.5 26.91 1.91 
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Figure-7: Land Surface Temperature (LST) map of Godhra Taluka 

Estimation of Backscattering Coefficient σ
0

VV (dB) 

from Sentinel-1 Satellite Data 

The open source tools of Sentinel Application Platform 

(SNAP) software was used for determining 

backscattering coefficient values from Sentinel-1 data.  

All the steps were described in this software from 

applying orbit file to conversion to dB were applied 

and the backscatter image of VV and VH polarization 

was generated for each 10 cm × 10 cm grid. The 

efficiency of single polarization (VV) is better than the

cross polarization (VH) of backscatter data for soil 

moisture estimation. Backscattering coefficient images 

of Godhra, Goghamba and Kalol talukas were 

generated using the Sentinel-1 data for the date of 27-

Feb-2020. The Backscatter Coefficient, σ
0
VV (dB)

values of major land use classes in Godhra Taluka are 

given in Table-4. 

Table-4: Backscattering coefficient σ
0

VV (dB) VV of different land use classes for Godhra

Sr. No. Class Area (ha) Mean σ
0
VV (dB) Std. Dev 

1 Agriculture 22263.6 -10.21 1.81 

2 Water body 1853.8 -12.98 1.76 

3 Built-up 43262.4 -11.00 1.66 

4 Waste Land 9071.5 -10.93 1.85 

Linear Regression Analysis 

For estimate the soil moisture content of sample fields in 

three talukas, the shape files of each field were created 

and mean LST and mean σ
0

 (dB) values of each test site 

were extracted using the shape files in ArcGIS software. 

The datasets of field measured soil moisture (%) of 

sample test sites in each village, σ
0

VV (dB), and Soil

Moisture Index (SMI) generated using LST data were 

created for three talukas separately. These datasets were 

used in the multiple regression analysis to estimate and 

map soil moisture content.  

The field measured soil moisture (MS %) was 

considered as dependent variable, and σ
0

VV and SMI

were chosen as independent variables. While all test sites 

were utilized in order to generate model for each taluka 

separately, while 5 test sites in taluka were used for the 

accuracy assessment. As a result of multiple regression 

analysis, mathematical models for soil moisture 

estimation from σ
0

VV and SMI were generated for three

taluka and these regression equations are as follows:   

Godhra Taluka: 

Soil Moisture (MS %) = 0.949*X1 – 3.029*X2 + 20.065 

R
2
 = 0.788, Adj. R

2
 = 0.769, Std. Error = 1.376, N = 25 

Goghamba Taluka: 

Soil Moisture (MS %) = 1.577*X1 – 2.514*X2 + 24.940 

R
2
 = 0.777, Adj. R

2
 = 0.755, Std. Error = 1.371, N = 24 

Kalol Taluka: 

Soil Moisture (MS%) = 1.076*X1 + 2.893*X2 + 17.909 

R
2
 = 0.778, Adj. R

2
 = 0.754, Std. Error = 1.090, N = 21 

Where; X1 = Soil Moisture Index (SMI) and X2 = dB 

σ
0
VV
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These linear regression equations were used to compute 

the predicted soil moisture and observed and predicted 

soil moisture in three talukas are given Figure-8. 

Figure-8: Linear regression analysis between observed 

and predicted soil moisture in Godhra, Goghamba and 

Kalol Talukas 

Comparison of VV and VH Polarization for Soil 

Moisture Estimation  

All polarizations of Sentinel-1A data (VV, VH) were 

analyzed in order to determine which polarization is 

more sensitive to soil moisture content. The datasets of 

field measured soil moisture (%) of sample test sites in 

each village, σ
0
VV (dB), and σ

0
VH (dB) were generated

and used in regression analysis to estimate soil moisture 

content. The field measured soil moisture (MS%) was 

considered as dependent variable, and σ
0
VV and σ

0
VH

(dB) were chosen as independent variables. The results 

presented in Figure-9 indicated that VV polarization was 

more sensitive to soil moisture content than the VH 

polarization and the coefficient of determination (R
2
) 

values for VV and VH polarizations were determined as 

0.72 and 0.276, respectively in Godhra Taluka.  

Figure-9: Soil Moisture Estimation Using σ
0
VV and σ

0
VH

(dB) Polarization in Godhra 

Spatial Distribution of Soil Moisture 

In order to map soil moisture distribution, the proposed 

model was implemented to the images using band math 

operation in SNAP software developed by ESA. The 

spatial distribution of soil moisture maps of Godhra and 

Kalol Talukas are given in Figure-10. 

Conclusions 

In this study, Sentinel-1 C-band SAR and Landsat-8 OLI 

data was analyzed for soil moisture estimation in three 

talukas of Panchmahal district, Gujarat State. A total 

number of 70-soil samples were collected near 

synchronous with respect to the Sentinel-1 acquisition 

date from the identified sample points in different 

villages of Godhra, Ghoghamba and Kalol talukas. The 

in-situ soil moisture content was determined using the 

gravimetric method. The Sentinel-1 SAR microwave 

data was analyzed using Open source tools of Sentinel 

Application Platform (SNAP) software for estimation of 

backscattering coefficient. The Land Surface 

Temperature (LST) estimated using Landsat-8 thermal 
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data. The Landsat-8, Thermal infrared sensor Band-10 

data and operational land imager Band-4 and Band-5 

data were used in estimating LST. The Soil Moisture 

Index (SMI) for all field test sites was computed using 

the LST values.  

Figure-10: Spatial Distribution of Soil Moisture (%) Maps of Godhra and Kalol Talukas 

The σ
0
VV (dB), and σ

0
VH (dB) was generated and used in

regression analysis to estimate soil moisture content. The 

field measured soil moisture (MS %) was considered as 

dependent variable, and σ
0

VV and σ
0

VH (dB) were chosen

as independent variables. The regression analysis using 

σ
0

VV and σ
0
VH polarization with soil moisture indicated

that σ
0
VV polarization was more sensitive to soil moisture

content as compared to σ
0

VH polarization and the

coefficient of determination (R
2
) values for σ

0
VV and

σ
0

VH polarizations were 0.72 and 0.276, respectively in

Godhra Taluka. The multiple regression analysis using 

field measured soil moisture (MS %) as dependent 

variable, and σ
0
VV and SMI as independent variables was

carried which resulted in the coefficient of determination 

(R
2
) of 0.788, 0.777 and 0.778 for Godhra, Goghamba 

and Kalol talukas, respectively. These linear regression 

equations were used to compute the predicted soil 

moisture in three talukas. The regression model 

predicted soil moistures in three talukas were very close 

to the in-situ measured soil moisture with SEE of 1.376, 

1.371 and 1.090 for Godhra, Goghamba and Kalol 

talukas, respectively. The results of this study indicated 

that the Sentinel- 1A C-band SAR data is very useful in 

soil moisture estimation at regional scale.  
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