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Abstract
In this paper, we consider an adaptive thresholding procedure to estimate the difference of
association structures in two independent two-way contingency tables of the same order.
Here, we assume that the class of paired association structures have an approximately
sparse difference. Under L1 and L2 loss functions, we establish the corresponding risk’s
upper bounds for our differential association adaptive thresholding estimators. Moreover,
we show that these estimators perform well in a simulated setting. In this line, we carry
out a simulation study and compare two well-known independent social mobility datasets.
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1. Introduction
Association studies in categorical data frequently occur in a wide range of applications.

So far, there has been a great deal of work on association modeling in two-way and multi-
way contingency tables with ordinal categorical variables. Among others, see [2, 3, 9–11].

In the literature, there are several works concentrated on the comparison of two con-
tingency tables with fixed categorical levels, for more details see [4,14,15]. The last paper
assigns some known scores, so-called orthogonal coefficients, to the classification categories
via orthogonal polynomials. We follow this idea by decomposing of the cells’ probabilities
into orthogonal polynomial components.

Although the current methods seem rich to cover the subject, our methodology, estab-
lished based on adaptive thresholding approach, enjoys optimal risk advantage. In Sections
3 and 4, in addition to theoretical support, we numerically illustrate its performance under
different scenarios.

To the best of our knowledge, it is the first work which considers a model-based thresh-
olding approach to compare association structures in two contingency tables, such that
not only it is to compare the class of paired association structures having approximately
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sparse difference (ASD) but also it can be adapted with the levels’ size of the correspond-
ing categorical variables. However, our main idea in choosing this approach is to tolerate
to detect the deference for the components which have a negligible difference in the associ-
ation structures of both tables. Equivalently, in the case when an association component
has two really different measures in both tables, this component can be detected as an
effective component to cause a difference in the association structures. In practice, some
thresholding functions, like the soft, hard, and adaptive lasso thresholding functions, are
used for this purpose.

The main goals of this paper are
• Motivated by several applications, we consider the model-based differential associ-

ation adaptive thresholding estimators (DAATE) with ASD. Since these are new
estimators, their risk properties are obtained under L1 and L2 loss functions.

• Ideally, an adaptive inference should have its upper risk bound automatically ad-
justed to the dimension’s size of the contingency tables. We show that the estab-
lished bounds have this property.

• Although we provide theoretical support for the optimum risk of adaptive thresh-
olding estimators, we also numerically investigate that these estimators outperform
the naive estimators.

The paper is organized as follows. In Section 2, we review some basic concepts and
define necessary notations and definitions. Moreover, we present in detail the adaptive
thresholding procedure for estimating the differential association structure. The main
results of this work are presented in Section 3. We carry out a simulation study to
evaluate the performance of the DAATE in Section 4 and illustrate the theoretical results
to compare two well-known independent social mobility datasets in Section 2. Necessary
technical proofs are given in the appendix.

2. Preliminaries
2.1. Notations and Definitions

Suppose we have two independent I × J contingency tables, labeled with 1 and 2. The
row categorical variable is denoted by X and the column categorical variable by Y. Let
pijt be the probability in (i, j)th cell of table t(= 1, 2). In each table, the row scores µik

and the column scores νjk′ are known orthogonal polynomial contrast coefficients of order
k(= 1, 2, . . . , I − 1) and k′(= 1, . . . , J − 1), respectively. These coefficients satisfy the
constraints

I∑
i=1

µik = 0,
J∑

j=1
νjk′ = 0,

I∑
i=1

µ2
ik = 1,

J∑
j=1

ν2
jk′ = 1,

I∑
i=1

µikµil = 0 (k ̸= l),
J∑

j=1
νjk′νjl′ = 0 (k′ ̸= l′). (2.1)

Definition of these scores is extensively discussed in [9, 15].
Indeed, we may use these scores to decompose the association structure into 2 × 3 = 6

orthogonal polynomial components. Moreover, suppose nijt is the observed frequency in
the (i, j)th cell, and nt is the corresponding total sample size in table t(= 1, 2). Conse-
quently, the naive estimator of pijt is given by p̂ijt = nijt

nt
, see [1].

In table t, we define the intrinsic association parameters ϕkk′t, (k = 1, 2, . . . , I − 1; k′ =
1, 2, . . . , J − 1), based on the logarithmic link as

ϕkk′t :=
I∑

i=1

J∑
j=1

µikνjk′ log(pijt). (2.2)
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From (2.2), if we replace log pijt with usual log-linear model log pijt = λ0t+λX
it +λY

jt+λXY
ijt ,

we see that

ϕkk′t =
I∑

i=1

J∑
j=1

µikνjk′λXY
ijt .

This means that the ϕkk′ts, indeed, are to decompose the association structure, measured
by association factor λXY

ijt .
Using (2.1) and (2.2), it is obvious to see

pijt = αiβje
∑I−1

k=1

∑J−1
k′=1 ϕkk′tµikνjk′ ,

where αi and βj are some positive quantities. Despite different interpretations, the above
model is very similar to the Goodman’s row-column association model of orderM , RC(M).
In a saturated model M = min{I − 1, J − 1}, see [12,13].

Borrowing the idea of detecting various polynomial trends of the factorial effects in
an analysis of variance model, where the treatments have ordinal levels, Equation (2.2)
establishes a similar analysis in contingency tables. Thus breaking down the association
measure into Linear by Linear component (linear trend along the column variable at each
level of the raw variable and vice versa), Linear By Quadratic component (quadratic trend
along the column variable at each level of the raw variable and Linear trend along the raw
variable at each level of the column variable), and so on, will indicate various trends.

2.2. Differential association structure
Let us generalize our discussion by replacing the logarithmic link in (2.2) with a differ-

entiable function ψ : (0, 1) → (−∞,∞) as

ϕkk′t =
I∑

i=1

J∑
j=1

µikνjk′ψ(pijt).

Comparison of association structures in two tables can be achieved by examining the
independent discrepancy parameters

dkk′ = ϕkk′1 − ϕkk′2, k = 1, . . . I − 1; k′ = 1, . . . J − 1. (2.3)

Thus, dkk′ = 0 for all k and k′ implies the equality of association structures in two in-
dependent contingency tables. Any discrepancy between the components of association
structures would result in dkk′ ̸= 0 for some k and k′s. This fact can help interpret the
observed differences between tables in terms of the strength of their association compo-
nents.
A naive approach to estimating the differential association structures dkk′ = ϕkk′1 − ϕkk′2
is to first estimate the various orthogonal components of association separately, and define

d̂kk′ = ϕ̂kk′1 − ϕ̂kk′2 =
∑
i,j

µikνjk′{ψ(p̂ij1) − ψ(p̂ij2)}. (2.4)

Another approach that we propose in this paper is an differential association adaptive
thresholding estimator, d̂DAAT E

kk′ . For the differential association component dkk′ = ϕkk′1 −
ϕkk′2, it is given by

d̂DAAT E
kk′ = Sλ(ϕ̂kk′1 − ϕ̂kk′2),

where Sλ(.) is a class of thresholding function illustrated in Subsection (2.5). Here, we
assume that dkk′ = 0, for many k and k′s, i.e., the ASD property mentioned above.
Theoretical and numerical performance of d̂DAAT E

kk′ are investigated in Sections 3 and 4.
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2.3. Intrinsic association estimator
Given the row and column polynomial scores µik and νjk′ and the continuous and differ-

entiable function ψ : (0, 1) → (−∞,∞), the (k, k′)th association component’s maximum
likelihood estimator in the table t(= 1, 2) is defined as

ϕ̂kk′t =
∑
i,j

µikνjk′ψ(p̂ijt). (2.5)

Using delta-method, we have
ψ(p̂ijt) = ψ(pijt) + ψ′(p∗

ijt)(p̂ijt − pijt)

where p∗
ijt is in between p̂ijt and pijt. Therefore, (2.5) can be rewritten as

ϕ̂kk′t =
∑
i,j

µikνjk′
{
ψ(pijt) + ψ′(p∗

ijt)(p̂ijt − pijt)
}
,

or equivalently,

ϕ̂kk′t − ϕkk′t =
∑
i,j

µikνjk′ψ′(p∗
ijt)(p̂ijt − pijt). (2.6)

Assuming that ψ′ is a bounded function, we define M = supx∈(0,1) ψ
′(x).

2.4. Sub-Gaussian random variables assumption
It is well-known that Zijt = p̂ijt − pijt have asymptotic normal distribution. However

our focus in this work is to prove some theorems which cover any arbitrary sample size.
Therefore, since Zijt are bounded, we assume that

Zijt = p̂ijt − pijt = nijt

nt
− pijt

are sub-Gaussian random variables. For more details on sub-Gaussian random variables
see [6].

2.5. Thresholding functions
In the present setting, we apply the idea of adaptive thresholding to the difference of

association structure using a proper thresholding function Sλ. We assume the following
three conditions for Sλ

i) |Sλ(z)| ≤ c|y| for all z and y such that |z − y| ≤ λ.
ii) |Sλ(z)| = 0 for |z| ≤ λ.
iii) |Sλ(z) − z| ≤ λ for all z ∈ R,

where c > 0 is a constant, see [7, 8]. From a practical point of view, in this work, thresh-
olding function Sλ(dkk′) sets the differential association structure dkk′ to zero which is less
than the thresholding value λ and reserves it when is greater than λ at the same time.

Conditions (i)-(iii) are met by several well-known thresholding functions, which are used
in practice, [16]. They include

• The soft thresholding rule Sλ(z) = sgn(z) max{z − λ, 0}, where sgn(z) is the sign
function.

• The hard thresholding rule Sλ(z) = z.I|z|≥λ(z), where IA(z) is 1 if z ∈ A and 0
otherwise.

• The adaptive lasso rule Sλ(z) = zmax{1 − |λ
z |η, 0} with η ≥ 1.

Here, we propose to estimate the sparse association structure by the soft thresholding
estimator

d̂DAAT E
kk′ = Sλ(ϕ̂kk′1 − ϕ̂kk′2), (2.7)
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with

λ = M
I + J

2
{max

i,j
|p̂ij1 − pij1| + max

i,j
|p̂ij2 − pij2|}. (2.8)

3. Theoretical results
In this section we establish the main results containing two theorems which are im-

portant to evaluate the performance of the differential association estimators including
the regular estimators (d̂kk′) and the thresholding estimators (d̂DAAT E

kk′ ). For establishing
these theorems, the assumption

A) The quantities p̂ijt − pijt are sub-Gaussian random variables.
and the condition

B) The paired differential association structures have approximately sparse differ-
ences,

are required.

3.1. Upper bound for the risk of d̂kk′

The following theorem provides an upper bound for the risk of the estimators d̂kk′ =
ϕ̂kk′1−ϕ̂kk′2, the differential intrinsic association component, based on the I×J contingency
tables 1 and 2.

Theorem 3.1. Under Assumption A and Condition B, the upper bound for the risk of
estimator (2.4) satisfies

i) Under L1 norm loss

sup
µ,ν

E|ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)|

≤ C(I + J)
√

1 + log(2IJ)( 1
n0.5

1
+ 1
n0.5

2
),

ii) Under L2 norm loss

sup
µ,ν

E|ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)|2

≤ C(IJ)( 1
n1

+ 1
n2

),

for some constant C > 0 that does not depend on I, J, n1, and n2, where µ =
{
(µ1k, . . . , µIk)T ,

k = 1, . . . , I−1
}

and ν =
{
(ν1k′ , . . . , νJk′)T k′ = 1, . . . , J−1

}
are orthonormal bases satisfy

in (2.1).

3.2. Upper bound for the risk of d̂DAAT E
kk′

In order to investigate an upper bound for the risk of thresholding estimators (2.7), we
consider the following class of paired association structures in R(I−1)×(J−1) with approxi-
mately sparse difference (ASD)

Uq(Tq(I, J)) = {(ϕkk′1, ϕkk′2); k = 1, . . . , I − 1; k′ = 1, . . . , J − 1;∑
k,k′

|ϕkk′1 − ϕkk′2|q ≤ Tq(I, J)}, (3.1)

for some 0 ≤ q < 1. For all (ϕkk′1, ϕkk′2) ∈ Uq(Tq(I, J)), their differences are approximately
zero in the sense that all intrinsic association differences, in two contingency tables lies
in the Lq ball with radius Tq(I, J). Therefore, the following theorem provides an upper
bound for the total risk of the thresholding estimators (2.7).
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Theorem 3.2. Under the framework of Theorem (3.1), λ given by (2.8), and the class of
paired association differences (3.1), the upper bound for the total risk of the thresholding
estimators (2.7) satisfies

i) under L1 norm loss:

sup
µ,ν,Uq

E
∑
k,k′

|{Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)}|

≤ CTq(I, J)(I + J)1−q(1 + log(2IJ))
1−q

2 { 1
n1

+ 1
n2

}
1−q

2

ii) under L2 norm loss:

sup
µ,ν,Uq

E
∑
k,k′

|{Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)}|2

≤ CTq(I, J)(I + J)2−q(1 + log(2IJ))
2−q

4 { 1
n1

+ 1
n2

}
2−q

4

for some constant C > 0 that does not depend on I, J, n1, and n2. Moreover, µ and ν
are the class of orthonormal bases defined earlier.

Indeed, theorem (3.2) yields a maximum rate of convergence for estimating (ϕkk′1−ϕkk′2)
with (ϕkk′1, ϕkk′2) ∈ Uq(Tq(I, J)), and shows that the thresholding estimators d̂DAAT E

kk′ =
Sλ(ϕ̂kk′1 − ϕ̂kk′2), having its upper risk’s bound automatically adjusted to the dimension’s
size of the contingency tables, have an optimal rate of convergence.

4. Numerical studies
The main purpose of this section is to study the performance of the adaptive thresh-

olding estimator of differential association structure through simulation study. Here, our
serious challenge is how to estimate the thresholding level λ defined in (2.8). Our sugges-
tion, here, is to replace its maximum terms with an upper bound, similar to the upper
bound which is made in confidence intervals for pijt, as follows

λ =M I + J

2
{max

i,j
|p̂ij1 − pij1| + max

i,j
|p̂ij2 − pij2|}

≤ M
I + J

2
{max

i,j
τ0

√
pij1(1 − pij1)

n1
+ max

i,j
τ0

√
pij2(1 − pij2)

n2
}

≤ τ0M
I + J

4
{
√

1
n1

+
√

1
n2

} = τ
I + J

4
{
√

1
n1

+
√

1
n2

},

where τ = τ0M is a positive unknown constant. It seems that the theoretical choice of
τ may not be optimal in finite sample performance. Empirically, we propose to estimate
this quantity by using a data-driven choice based on cross-validation discussed below.
To proceed, for two given contingency tables of the same order I = J(= 4, 6, 8), let ϕkk′1
and ϕkk′2 (k = 1, . . . , I, and k′ = 1, . . . , J ) be intrinsic association parameters according
to the following two scenarios

• Scenario I: we have ϕkk′1 = ϕkk′2 = 0, for k ̸= k′ and ϕkk1 = k( ̸= 0) in mod 3, ϕkk2 =
(−1)kϕkk1,

• Scenario II: we assume ϕkk′2 = k+ k′ and ϕkk′1 = (−1)k+k′
ϕkk′2, for k, k′ ≤ 2. and

ϕkk′2 = 0, otherwise.
Although the matrices {ϕkk′1} and {ϕkk′2} may not be sparse, their difference is more
sparse. Given ϕkk′1 and ϕkk′2, the probability in (i, j)th cell for tth population is obtained
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Table 1. Comparison of Sλ(ϕ̂1 −ϕ̂2) and ϕ̂1 −ϕ̂2, under under L1 and L2 norms,
for Scenarios I and II

n1 = n2 I = J L2 norm L1 norm
Sλ(ϕ̂1 − ϕ̂2) ϕ̂1 − ϕ̂2 Sλ(ϕ̂1 − ϕ̂2) ϕ̂1 − ϕ̂2

500 4 0.02516 0..03097 0.02887 0.03505
500 6 0.15752 0.19767 0.16009 0.20184

Scenario I 500 8 1.39714 1.66039 1.40061 1.66587
5000 4 0.00069 0.00131 0.00196 0.00227
5000 6 0.00136 0.00527 0.00148 0.00638
5000 8 0.00257 0.01597 0.00262 0.01720
500 4 0.80675 0.85076 0.81988 0.86502
500 6 1.46072 1.60797 1.46390 1.61280

Scenario II 500 8 2.68677 3.10026 2.69129 3.10690
5000 4 0.00165 0.00238 0.00192 0.00320
5000 6 0.00338 0.00732 0.00347 0.00830
5000 8 0.00473 0.01861 0.00480 0.01984

as

pijt ∝ exp(
I−1∑
k=1

J−1∑
k′=1

ϕkk′tµikνjk′).

In this numerical study, we use the logarithmic link ψ(x) = log x.
Suppose, we generatem1 = 2K = 100 independent samples from X1 ∼ Multi(n1, {pij1})

and m2 = 2K = 100 independent samples from X2 ∼ Multi(n2, {pij2}), where X1 =
{X1

1,X1
2, . . . ,X1

m1} and X2 = {X2
1,X2

2, . . . ,X2
m2}. Here, we assume n1 = n2(= 500, 5000).

For various values of τ ∈ [0, 3], we implement the proposed method with the soft thresh-
olding and repeat the experiment for 50 times. Moreover, we partition the interval [0, 3]
into T + 1 equi-spaced grid {t 3

T ; t = 0, 1, . . . , T}. In order to empirically choose τ, we
first divide both samples X1 = {X1

1,X1
2, . . . ,X1

m1} and X2 = {X2
1,X2

2, . . . ,X2
m2} ran-

domly into K groups with two samples. Suppose dDAT T E
kk′,l is the thresholding estimator

for given thresholding constant τ ∈ {0, 3
T , . . . , 3}, based on the first sample, and ϕ(1)

kk′,l and
ϕ

(2)
kk′,l are the corresponding association components for the second sample in group l, for

populations 1 and 2. Consequently, our empirical choice of τ is given as

τ̂ = min
τ∈{0, 3

T
,...,3}

A(p) = min
τ∈{0, 3

T
,...,3}

1
K

K∑
l=1

I−1∑
k=1

J−1∑
k′=1

|dDAAT E
kk′,l − (ϕ(1)

kk′,l − ϕ
(2)
kk′,l)|

p,

where p = 1 or 2, corresponding to L1 and L2 norms. The corresponding average loss,
A(1), and A(2), are shown in Figure 1 when I = J = 8 and n1 = n2 = 5000. These plots
help us to determine the empirical value of τ̂ .
Given above assumptions, the adaptive thresholding estimator is easy to implement for
generated data under Scenarios (I) and (II), illustrated previously. For these scenarios, the
numerical results are summarized in Table (1). In this table, we can easily compare the
performance of two estimators of ϕ1 − ϕ2 = [ϕkk′1 − ϕkk′2] including the naive estimator
ϕ̂1 − ϕ̂2 = [ϕ̂kk′1 − ϕ̂kk′2] and the thresholding estimator Sλ(ϕ̂1 − ϕ̂2) = [Sλ(ϕ̂kk′1 − ϕ̂kk′2)],
while their performances are evaluated by L1 and L2 norms for two sample sizes. For
both scenarios, we see that the thresholding estimator Sλ(ϕ̂1 − ϕ̂2) outperforms the naive
estimator ϕ̂1 − ϕ̂2, for all k and k′.
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,
(a) The best choice of τ for Scenario I

,
(b) The best choice of τ for Scenario II

Figure 1. Average loss in L1 and L2 norms for τ ∈ [0, 3], n1 = n2 = 5000, I = J = 8.

5. Application on real data
In this section, we analyze two social mobility datasets in the form of contingency tables

made up of the row categorical variable "Father’s Job" and the column categorical variable
"Son’s Job" each at 5 levels. The observed frequencies are given in Table (2). In each cell,
the upper value belongs to England and the lower value to Denmark, [5]. Without loss of
generality, suppose the row and column categorical variables are ordinal.
The estimates of intrinsic association parameters (ϕkk′t) and their standard errors are
given in Table 2. These results reveal that there are statistically significant "Linear by
Linear" association component of 4.02, "Linear by Quadratic" association component of
-0.85, and "4th by 4th degree" association component of 0.22 between "father’s Job" and
"son’s Job" in England data. Similarly, there are statistically significant "Linear by Lin-
ear" association component of 4.22, "Linear by Cubic" association component of -0.86,
"Quadratic by Quadratic" association component of 1.06, and finally "4th by 4th degree"
association component of 0.37 between "father’s Job" and "son’s Job" in Denmark data.
The significant components are marked with one asterisk for England data and two aster-
isks for Denmark Data. In this analysis, we see a sparse significant association structure
between father’s Job and Son’s Job in each population. To analyze the difference in as-
sociation structure, we apply our adaptive thresholding method with cross-validation to
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Table 2. Observed frequencies of father’s and son’s Job in England(E) and Den-
mark(D)

Son’s Job
1 2 3 4 5

E=50 45 8 18 8
1 D=18 17 16 4 2

28 174 84 154 55
2 24 105 109 59 21

Father’s Job 11 78 110 223 96
3 23 84 289 217 95

14 150 185 714 447
4 8 49 175 348 198

3 42 72 320 411
5 6 8 69 201 246

Table 3. The estimates of intrinsic association parameters and their standard
errors inside the parentheses

Linear Quadratic Cubic 4th − degree
4.02*(0.292) -0.85*(0.279) 0.11(0.195) 0.25(0.206)

Linear 4.22**(0.378) 0.25(0.334) -0.86*(0.322) -0.02(0.250)
-0.50(0.272) 1.00(0.555) 0.03(0.179) -0.20(0.182)

Quadratic -0.46(0.330) 1.06**(0.291) -0.29(0.278) 0.30(0.215)
0.19(0.204) -0.39(0.189) 0.20(0.132) 0.07(0.128)

Cubic -0.20(0.266) 0.06(0.233) 0.00(0.204) 0.00(0.155)
0.03(0.192) 0.05(0.171) -0.14(0.122) 0.22*(0.101)

4th − degree -0.10(0.195) 0.18(0.170) -0.23(0.139) 0.37**(0.102)

Table 4. The estimates of ϕ̂kk′1 − ϕ̂kk′2 (the upper) and Sλ(ϕ̂kk′1 − ϕ̂kk′2)(the under)

Linear Quadratic Cubic 4th − degree
-0.20 -1.10* 0.97* 0.27

Linear 0.00 -1.04** 0.93** 0.00
-0.04 -0.06 0.31 -0.50*

Quadratic 0.00 0.00 0.00 0.00
0.39 -0.45* 0.20 0.07

Cubic 0.00 0.00 0.00 0.00
0.13 -0.13 0.09 -0.15

4th − degree 0.00 0.00 0.00 0.00

estimate differential association components. The results of comparison of differential as-
sociation structure are given in Table (4). These differences are d̂kk′ = ϕ̂kk′1 − ϕ̂kk′2 and
d̂DAAT E

kk′ = Sλ(ϕ̂kk′1 − ϕ̂kk′2). More interestingly, we only find two significant differential
components " Linear by Quadratic" and "Linear by Cubic" between father’s Job and Son’s
Job association structure in two countries.

To illustrate the difference between our method with the log-linear model fit, we com-
pared the differences of the estimates of interaction effects in two populations. The results
are presented in Table (5). As we can see, the comparison of the estimates of interaction
parameters, resulting from the fit of two log-linear models to the two datasets, is a usual
comparison and does not provide any clear interpretation for the differences in the pattern
of variations for two categorical variables.
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Table 5. Comparison table for estimated interaction differences for social mobil-
ity data based on log-linear model fit

Son’s Job
1 2 3 4 5

1 0.91(1.02) -1.36(0.86) -1.42(0.85) 0.24(0.90) -
2 0.33(0.77) -1.54**(0.44) -0.74*(0.35) 0.05(0.32) -

Father’s Job 3 0.41(0.77) -1.18**(0.44) -0.50(0.26) 0.07(0.40) -
4 0.85(0.80) -0.80(0.43) -0.29(0.23) -0.05(0.16) -
5 - - - - -
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Appendix
Here are given the proofs of the theorems. In proving theorems, we frequently use two

inequalities
√
ab ≤ a+b

2 and (
√
a+

√
b)2 ≤ 2(a+ b). Moreover, we carry the argument for

bounding the maximum of (not necessarily independent) normal random variables over
sub-Gaussian random variables through the following proposition.
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Proposition 5.1. Suppose X1, . . . , Xp are (not necessarily independent) sub-Gaussian
with scale factors bounded by a constant σ. Then

E max
1≤i≤p

|Xi| ≤ 3
2
σ

√
1 + log(2p).

Proof. For each t > 0

etE(max1≤i≤p |Xi|) ≤ E( max
1≤i≤p

et|Xi|)) ≤
p∑

i=1
{E(etx) + E(e−tx)} ≤ 2pe

1
2 σ2t2

.

The last inequality follows from the definition of sub-Gaussian random variable. By choos-
ing t = log(2p)

σ , the proof immediately follows. �

Now, we are ready to prove our theorems.

Proof. Proof of Theorem (3.1)
It is easy to see

|ϕ̂kk′t − ϕkk′t| = |
∑
i,j

µikνjk′(ψ(p̂ijt) − ψ(pijt))|

≤
∑
i,j

|µikνjk′ ||ψ′(p∗
ijt)(p̂ijt − pijt)|

≤ M
∑
i,j

|µikνjk′ ||(p̂ijt − pijt)|,

Using Proposition (5.1), we have

E|ϕ̂kk′t − ϕkk′t| ≤ M
I + J

2
.E(max

i,j
|p̂ijt − pijt|)

≤ M
I + J

2
3
2

√
1

4nt

√
1 + log(2IJ). (A.1)

(A.1) implies

E|ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)| ≤ C(I + J)
√

1 + log(2IJ)( 1
n0.5

1
+ 1
n0.5

2
)

Similarly

E|ϕ̂kk′t − ϕkk′t|2 = (
∑
i,j

µikνjk′ψ′(p∗
ijt)(p̂ijt − pijt))2

≤ M2 ∑
i,j

µ2
ikν

2
jk′E{

∑
i,j

(p̂ijt − pijt)2}

≤ M2IJ max
i,j

E(p̂ijt − pijt)2

≤ M2IJ max
i,j

pijt(1 − pijt)
nt

≤ M2IJ
1

4nt
,

which yields

E|ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)|2 ≤ M2IJ

4
( 1
n1

+ 1
n2

),

and the proof is complete �
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Proof. Proof of Theorem (3.2). Similar to Theorem (3.1), We have

|ϕ̂kk′t − ϕkk′t| ≤ M
∑
i,j

|µikνjk′ | max
i,j

|p̂ijt − pijt|)

≤ M
I + J

2
max

i,j
|p̂ijt − pijt.|

Define

λt = M
I + J

2
max

i,j
|p̂ijt − pijt|.

For comparison of given two contingency tables, it is obvious

|ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)| ≤ M
I + J

2
{max

i,j
|p̂ij1 − pij1|

+ max
i,j

|p̂ij2 − pij2|}. (A.2)

We define the thresholding level λ as

λ = λ1 + λ2 = M
I + J

2
{max

i,j
|p̂ij1 − pij1| + max

i,j
|p̂ij2 − pij2|}.

Next, by (A.2) and Conditions (i) and (iii) of Sλ(z),

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)| ≤ |Sλ(ϕ̂kk′1 − ϕ̂kk′2)| + |ϕkk′1 − ϕkk′2|
(1 + C)|ϕkk′1 − ϕkk′2|,

and

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)| ≤ |Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕ̂kk′1 − ϕ̂kk′2)|

+ |ϕ̂kk′1 − ϕ̂kk′2 − (ϕkk′1 − ϕkk′2)| ≤ 2λ.

These two inequalities imply

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)| ≤ (2λ)1−q(1 + C)q|ϕkk′1 − ϕkk′2|q,

and

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)|2 ≤ (2λ)2−q(1 + C)q|ϕkk′1 − ϕkk′2|q,

where 0 ≤ q < 1. Hence, for L1 loss, we have

E
∑
k,k′

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)| ≤21−qE(λ)1−q(1 + C)q

×
∑
k,k′

|ϕkk′1 − ϕkk′2|q

= 21−qE(λ)1−q(1 + C)qTq(I, J)

where

E(λ)1−q =(M I + J

2
)1−qE{max

i,j
|p̂ij1 − pij1| + max

i,j
|p̂ij2 − pij2|}1−q

≤ (M I + J

2
)1−q{Emax

i,j
|p̂ij1 − pij1| + Emax

i,j
|p̂ij2 − pij2|}1−q

≤ (M I + J

2
)1−q(3

2
)1−q2

1−q
2 (1 + log(2IJ))

1−q
2 { 1

n1
+ 1
n2

}
1−q

2 .
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Moreover for L2 loss, we have
E

∑
k,k′

|Sλ(ϕ̂kk′1 − ϕ̂kk′2) − (ϕkk′1 − ϕkk′2)|2 ≤22−qE(λ)2−q(1 + C)q

×
∑
k,k′

|ϕkk′1 − ϕkk′2|q

= 22−qE(λ)2−q(1 + C)qTq(I, J)
where

E(λ)2−q =(M I + J

2
)2−qE{max

i,j
|p̂ij1 − pij1| + max

i,j
|p̂ij2 − pij2|}2−q

≤ (M I + J

2
)2−q22−q{Emax

i,j
|p̂ij1 − pij1|2 + Emax

i,j
|p̂ij2 − pij2|2}1− q

2

≤ (M I + J

2
)2−q22−q{Emax

i,j
|p̂ij1 − pij1| + Emax

i,j
|p̂ij2 − pij2|}1− q

2

≤ (M I + J

2
)2−q22−q(3

2
)1− q

2 (1 + log(2IJ))
2−q

4 { 1
n1

+ 1
n2

}
2−q

4 ,

which finishes the proof of Theorem (3.2). �


