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Abstract
Repeated measures data describe multiple measurements taken from the same experimen-
tal unit under the different treatment conditions. In particular, researches with repeated
measures data in various fields such as health and behavioral sciences, education, and
psychology have an important role in applied statistics. There are many methods used to
analyze the results of research designs planned with these measurements. The most impor-
tant difference between these methods is the assumptions on which the models are based.
One of the most important assumptions needed by classical methods is the normality as-
sumption. Many methods are valid under the assumption of normality. However, it is not
always possible to hold this assumption in applications. For this reason, in the analysis
of repeated measures data, different distributions are necessary that can provide flexibil-
ity beyond the normal distribution, especially in cases where the assumption of normality
does not hold. In this study, it is proposed to use Multivariate Laplace distribution (MLD)
which is an alternative distribution in cases where normality assumption does not hold by
examining the multivariate variance analysis model (MANOVA). Under MLD assumption,
the parameter estimates for the Two-way Repeated Measures MANOVA model are carried
out with the maximum likelihood (ML) estimation and ML estimates are obtained via the
EM Algorithm.
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Keywords. MANOVA, repeated measures data, multivariate Laplace distribution, EM
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1. Introduction
In order to build a statistical model, providing data with the default distribution condi-

tions is a very important part of the statistical inferences. Therefore, normal distribution
plays an essential role in statistical data analysis. Many of the inferential statistical meth-
ods for multivariate data have also been developed for data with Multivariate Normal
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distribution as a basic assumption. Taking this assumption into consideration, the Analy-
sis of Variance (ANOVA) model is made with the Ordinary Least Squares (OLS) method,
which is one of the most frequently used methods for estimating parameters [8]. The esti-
mators obtained with these methods are the most effective estimators with the assumption
of normality. In the absence of normality assumption, OLS estimators lose their effective-
ness [8]. Therefore, F test statistics based on OLS estimators are also lose their power.
However, in real-life applications, the majority of data sets dont not exactly follow the
multivariate normal distribution. Accordingly, it will be more useful to develop and use
alternative multivariate distribution methods in cases where the multivariate normality
assumption is not provided in order to overcome similar problems.

For MANOVA, assumption of Multivariate Normal distribution is the fundamental dis-
tribution as the basic principle. In practice, however, numerous multivariate distributions
have been used in the literature to provide solutions to situations where the assumptions
of this distribution are not valid. Many studies have made statistical inferences using
Elliptically Contoured distributions and similar distributions alternative to normal dis-
tribution [1, 22, 29]. Distributions in this context have been found to be more flexible
and adaptable particularly for marginal distribution with longer tails. In the Elliptically
Contoured distributions, linear and quadratic functions of observations have been shown
to be more durable than methods under the assumption of normality [16].

It has been conclusively demonstrated that distributions with heavier tails than the
normal distribution (heavy-tailed) are more sensitive to outliers and errors than statistical
inferences based on the Normal distribution. Thus, the fact that more flexible distributions
are created as an alternative to Normal distribution in order to model data sets containing
errors with heavier tails than the Normal distribuiton has emerged. The heavy-tailed
distributions recommended as an alternative to the normal distribution are the t and
slash distributions [4]. Both distributions can be obtained as a mixture of the non-negative
random variable scale and the random variable with a Normal distribution. In this case,
both distributions belong to the family of distributions consisting of the scale mixture of
the normal distribution.

Another distribution that is very useful in modeling when normality conditions are not
met is the Kotz-type distribution proposed by Kotz in 1975 [27]. This distribution can be
considered as the generalized version of the Normal distribution. It is possible to write the
Kotz-type distribution in terms of scale mixed distribution in order to produce a distri-
bution with heavier tails like the scale mixed distribution of the normal distribution. The
scale mixed Kotz-type distribution to obtain the Generalized Multivariate Slash distribu-
tion has been proposed as another distribution family that gives better results than other
alternative methods in cases where the normal distribution is not followed by data [5]. The
aim of this study is to obtain parameter estimates for the Two-way Repeated Measures
ANOVA with MANOVA approach using the MLD which is an alternative distribution to
Normal distribution in cases where normality assumptions are not met.

The rest of the article is organized as follows: In the following section, brief information
about the Repeated Measures Data and properties of Repeated Measures and Two-way
Repeated Measures MANOVA model are described. In Section 3, the MLD is given in
detail. In the fourth section, estimation of Two-way Repeated Measures MANOVA model
parameters are obtained under the proposed distribution by using the ML estimation
methodology. Using the Euclidian distance criterion, the effectiveness of the parameter
estimates obtained as a result of theoretical inferences examined via a simulation study
in Section 5. A real dataset is analyzed to show the implementation of the proposed
methodologies in Section 6. Concluding remarks are given in the last section.
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Table 1. Repeated Measures Data Layout

Group Subject 1 . . . k . . . t

1

1 y111 . . . y11k . . . y11t
...

...
...

...
...

...
j y1j1 . . . y1jk . . . y1jt
...

...
...

...
...

...
n1 y1n11 . . . y1njk . . . y1n1t

2

1 y211 . . . y21k . . . y21t
...

...
...

...
...

...
j y2j1 . . . y2jk . . . y2jt
...

...
...

...
...

...
n2 y2n11 . . . y2njk . . . y2n1t

...
...

...
...

...
...

...

i

1 yi11 . . . yi1k . . . yi1t
...

...
...

...
...

...
i yij1 . . . yijk . . . yijt
...

...
...

...
...

...
ni y2ni1 . . . y2nik . . . y2nit

...
...

...
...

...
...

...

g

1 yg11 . . . yg1k . . . yg1t
...

...
...

...
...

...
j ygj1 . . . ygjk . . . ygjt
...

...
...

...
...

...
ng ygn11 . . . ygnjk . . . ygn1t

2. Repeated measures data structure
The term "Repeated Measures" includes univariate or multivariate responses obtained

from each experimental unit or subject in multiple cases or under multiple conditions.
The term Longitudinal Data is also frequently used to describe repeatedly measured data.
Although there have been many approaches to the analysis of repeated measures data,
most are limited to situations where the response variables are normally distributed and
the data is balanced and complete.

Table 1 illustrates a data set of repeated measures taken from nith subjects in t th
group at time point (in measurement cases) [9]. Where, n indicates the number of inde-
pendent experimental units or subjects from which repeated measures are obtained; ni,
indicates the number of subjects or experimental units in each group, and t, the number of
situations where repeated measures are taken. Also, yijk denotes the response variable for
the measurement taken at the time point k the ith group and jth subject (experimental

unit) where i = 1, ..., g; j = 1, ...ni; k = 1, ...t; n =
g∑

i=1
ni.

The main advantage of these studies in which repeated measures are obtained from each
subject is that this is the only design type in which it is possible to obtain information
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about individual change models. Such a design is also economical for situations where the
decision regarding how to use subjects is made beforehand. As the sources of variation
between subjects can be excluded from the experimental error, repeated measures designs
often provide more efficient estimators of the relevant parameters than cross-sectional de-
signs in the same number and model. In addition, it is assumed that data can be collected
more reliably in a study where the same subjects are repeatedly followed according to a
cross-sectional study [9].

The Two-way Repeated Measures ANOVA model is considered to analyze the data
structure given in Table 1 as follows,

yijk = µ + γi + (γτ)ik + εijk (2.1)

where, yijk is the response variable corresponding to the jth observation in the ith group
and kth treatment; µ is the overall mean; τk is the effect of kth treatment; yi is the effect
of ith group; (γτ)ik is the interaction effect between kth treatment and ith group and εijk

are the independently and identically distributed (i.i.d.) error terms.
There is a considerable amount of literature examining MANOVA and Multivariate Lin-

ear Models for repeated measures. [9,13,17,20,21,26,28]. Within the scope of MANOVA,
the General Linear Model approach will be used for representation of multivariate repeated
measures. In general, a Multivariate Linear Model is shown as follows,

Y = Xβ + E (2.2)

where, Y is the (gx1) dimensional response variable vector; X , (gx(k + 1)) dimensional
design matrix ; β is the ((k + 1)x1) dimensional parameter vector and E is (gx1) di-
mensional error vector. In the linear model (2.2), the parameters of Two-way Repated
measures ANOVA model (2.1) with will be included in the β coefficients. In this context,
Eq. (2.2) is written with data indices as follows,

Y ij = Xiβ + εij (2.3)

where, Y T
ij = (y111, y112, ..., y1n1t, ..., ygni1, ygni2, ..., ygnit) , Xi is design matrix depending

on the number of groups consisting of zeros and ones and βT = (µ, τ1, τ2, ..., τt, γ1, ..., γg,
(γτ)11, ..., (γτ)tg). In our study, we assume that the distribution of error terms in the linear
model (2.3) follows MLD with εij ∼MLp(0, Σp).

3. Multivariate Laplace distribution
The MLD appears in many applications, especially in the fields of finance and biolog-

ical sciences as well as the modeling of current life data. The advantages of the Laplace
distribution, although having tails thicker than normal, can be listed as the presence
of moments, simple relationships between distribution parameters and moments, and a
simple representation of the characteristic function. The distribution is defined by two
multivariate parameters: one is the scale parameter, and the other is the location param-
eter, which simultaneously controls both the form and the location of the distribution.
The MLD appears in the literature with its use in various forms and in different fields
[2,12,19,23,25,30,31]. The Multivariate Symmetric Laplace distribution has been defined
as the generalized of the MLD [18]. In this study, the Multivariate Symmetric Laplace
distribution is used which is generalization of the Univariate Laplace distribution when
the skewness parameter taken zero in the Multivariate Skewed Laplace distribution pro-
posed by [3]. Probability density function related to Multivariate Symmetrical Laplace
distribution is given as,

fMLD(y; µ, Σ) = |Σ|−1/2

2pπ(p−1)/2Γ(p+1
2 )

e−
√

(y−µ)T Σ−1(y−µ) (3.1)
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where, Y ϵRp, p ≥ 1 and µϵRp denotes the location vector, Σ is a positive definite scatter
matrix. In Eq.(3.1), for p = 1, it can be obtained Univariate Laplace distribution function
and this distribution is considered as a multivariate extension of the Univariate Laplace
distribution [3]. The mean, variance, skewness and kurtosis of this distribution are given
respectively,

E(Y ) = µ, V ar(Y ) = (p + 1)Σ, β1p = 0, β2p = p(p + 2)(p + 3)
(p + 1)

(3.2)

[3, 29]. One of the most important features of the Laplace distribution is that it can be
characterized by other probability distributions [18]. The other feature of the Laplace
distribution is that it can be expressed as a scale mixture of Normal Distribution [15].
Taking advantage of this feature, in order to get the the parameter estimates, the variable
Y is defined as the scale mixture of the normal distribution as follows,

Y = µ +
√

V −1Σ
1
2 Z (3.3)

where, Z ∼ Np(0, Ip) and V follows the Inverse Gamma distribution with V ∼ IG((p +
1)/2, 1/2). Henceforth the Y follows the MLD [3]. Defining the Y variable as the scale
distribution of the normal distribution makes easier to obtain the ML estimates as the
parameters with the EM algorithm. For this purpose, firstly, the combined probability
density functions of variable Y and mixed variable V must be obtained via joint probability
density functions of the variable with the Z Standard Normal distribution and the variable
V with the Inverse Gamma distribution. Thus, we obtain the following joint pdf of Y
and V with the following equation,

f(Y , v) = |Σ|−1/2

2πp/22(p+1)/2Γ(p+1
2 )

v−3/2e− 1
2 [v−1 + v((Y −Xβ)T Σ−1(Y −Xβ)]. (3.4)

At this stage, conditional distribution and conditional expectation are necessary to
reach the ML estimates via the EM algorithm. Therefore, when Y is given, we obtained
the conditional probability distribution of the V variable as follows

f(V |Y ) = 1√
2π

e
√

(Y −Xβ)T Σ−1(Y −Xβ)v−3/2e− 1
2 [v−1+v[(Y −Xβ)T Σ−1(Y −Xβ)]]. (3.5)

Using the conditional density function given in Eq.(3.5) we obtain following conditional
expectation as

E(V |Y , β̂, Σ̂) = 1√
(Y −Xβ̂)T (Y −Xβ̂)

. (3.6)

4. Parameter estimation with ML
The iteratively-reweighted algorithm which can be identified as an EM algorithm can

be used to obtain the ML estimates. In the following paragraph, we will describe the EM
Algorithm to obtain the ML estimates of Repeated Measures MANOVA model parameters.
Let y1, y2, , yn be a p-dimensional random sample from the MLD with the parameters µ
and Σ. For using EM algorithm to compute ML estimates we assume that V is missing
in the scale mixture representation of the MLD given in Eq. (3.3). We can carry out the
EM algorithm as follows [3, 24]. Using the conditional distribution given in Eq. (3.5) we
obtain the complete data log-likelihood function with the following equation,

lnL = −n

2
ln|Σ| − 1

2

n∑
i=1

vi(Y i −Xiβ)T Σ−1(Y i −Xiβ)− 1
2

n∑
i=1

(3ln(vi) + (vi)−1). (4.1)

It is easier to maximize this function than unknown parameters [3,7,10]. However, the
conditional expected value of the log-likelihood function for the given any observed data
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Table 2. Steps of the EM Algorithm for β and Σ estimates

1. Set the iteration number k = 1 and initial values β(0), Σ(0).
2. E-Step: Use β(k), Σ(k) current estimates and for k = 1, 2, 3, ... iteration

the weights w
(k)
ij and also

∑g
i=1

∑ni
j=1 wij for i = 1, ..., g; j = 1, ..., ni.

3. M-Step: Use the new values obtained in E-Step then β(k+1), Σ(k+1)

with following equations:

β(k+1) =
∑g

i=1

∑ni
j=1 w

(k)
ij (XT

i Σ(k)−1
Xi)−1(XT

i Σ(k)−1
Y ij)∑g

i=1

∑ni
j=1 w

(k)
ij

Σ(k+1) =
∑g

i=1
∑ni

j=1 w
(k)
ij (Y ij −Xiβ

(k+1))(Y ij −Xiβ
(k+1))

4. Repeat E and M steps until the convergence rule is obtained.

Y i in Eq. (4.1) must be taken in order to eliminate the missing variable problem in the
function. The conditional expected value of Eq. (4.1) as follows,

E(lnL(β, Σ)|Y i, β̂, Σ̂) = −n

2
ln|Σ| − 1

2

n∑
i=1

E(V i|Y i, β̂, Σ̂)(Y i −Xiβ)T Σ−1(Y i −Xiβ)

(4.2)
where, the conditional expectation E(V i|Y i, β̂, Σ̂) is given in Eq. (3.6). Therefore, the
log-likelihood function of MLD with Repeated Measures MANOVA model in Eq.(2.3) is
given by,

Q((β, Σ)|Y ij , β̂, Σ̂) = −n

2
ln|Σ| −

g∑
i=1

ni∑
i=1

wij(Y ij −Xiβ)T Σ−1(Y ij −Xiβ). (4.3)

where, wij = E(V i|Y i, β̂, Σ̂). To find the ML estimates, the likelihood function is differ-
entiated with respect to the parametres and we obtain the following equations as

∂Q((β, Σ)|Yij , β̂, Σ̂))
∂β

=
g∑

i=1

ni∑
j=1

wij(−2Xi
T Σ−1Y ij + 2XT

i Σ−1Xiβ) = 0, (4.4)

∂Q((β, Σ)|Y ij , β̂, Σ̂))
∂Σ−1 = 2[Σ− 1

n

g∑
i=1

ni∑
j=1

wijΥij ]− diag[Σ− 1
n

g∑
i=1

ni∑
j=1

wijΥij ] = 0 (4.5)

where, Υij = (Y ij − Xiβ)(Y ij − Xiβ)T [6]. The Estimating Equations for β which
include the parameters of the Two-way Repeated Measures ANOVA model in the linear
model expressed in Eq. (2.1) and scatter matrix Σ will be as follows,

β̂ =
∑g

i=1
∑ni

j=1 wij(XT
i Σ−1Xi)−1(XT

i Σ−1Y ij)∑g
i=1

∑ni
j=1 wij

, (4.6)

Σ̂ =
g∑

i=1

ni∑
j=1

wij(Y ij −Xiβ)(Y ij −Xiβ)T (4.7)

[6]. The steps of EM algorithm to compute the Eq. (4.6) and Eq. (4.7) can be given in
Table 2.
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Table 3. Simulation Parameters

1. Sample size n =
g∑

i=1
ni 20,60,100,140,200

2. Number of group (i = 1, ...g) 2,3
3. Number of treatment (k = 1, ...t) 3,4,6
4. Number of subject in each treatment (j = 1, ..., ni) 10,30,50,70,100
5. Replication 1000

5. Simulation study
In this section, a simulation study is performed in R statistical software to estimate the

Two-way Repeated Measures ANOVA model parameters [6]. Numerical values used in the
simulation for repeated measurement data structure are given in Table 3.

In the simulation study, the initial values for β vector to generate the data are chosen so
that they satisfy the restrictions of the fixed-effect Two-way Repeated Measures ANOVA
model given in Eq.(2.1). The initial value for the scatter matrix Σ is chosen according
to the dependency structure among the experiments, providing that the variances of the
variables are homogeneous. The EM algorithm is used to calculate the ML estimates of
the parameters and OLS estimators of the parameters are taken as the initial values in
the algorithm. The Euclidian distance between the estimates and current estimates are
calculated to show the effectiveness of parameter estimates. The value of 10−6 is assigned
as the stopping rule and chosen as the iteration convergence criterion and the Euclidian
distances is calculated by the following formulas [7]:

∥β̂k+1 − β̂
k∥ ≤ ∆ = 10−6, ∥Σ̂k+1 − Σ̂k∥ ≤ ∆ = 10−6 (5.1)

Moreover, the Euclidian distances are calculated over the log-likelihood functions as follows
[10,11],

∥Q̂k+1

Q̂k
− 1∥ ≤ ∆ = 10−6 (5.2)

The following six scenarios are run in simulation with the algorithm given in Table 4
and the steps of the simulation study are specified in below.

Table 4. Algorithm for Generating Multivariate Repeated Measurement Data
with MLD

1. n← set the sampling size (20, 60, 100, 140, 200).
2. µ; Σ; β ← set the initial values.
3. Z ∼ N(0, Ip)← generate data from Multivariate Normal Distribution.
4. V ∼ IG(p+1

2 , 1
2)← generate data Inverse Gamma Distribution.

5. εij ∼ µ +
√

V−1Σ1/2Z ← generate the error terms from MLD.
6. Y ij = Xiβ + εij ← generate the response variable via Eq.(2.3).
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Scenario 1 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2; k = 1, 2, 3; j = 1, ..., ni

Initial values;
βT =

[
1 1 0 −1 −1 0 −1 −1 0 1 1 0

]
Σ =

1.0 0.8 0.7
0.8 1.0 0.6
0.7 0.6 1.0


Scenario 2 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2; k = 1, 2, 3, 4; j = 1, ..., ni

Initial values;
βT =

[
1 1 0 1 1 1 0 1 1 1 0 −1 −1 −1 0

]
Σ =


1.0 0.8 0.7 0.8
0.8 1.0 0.6 0.7
0.7 0.6 1.0 0.8
0.8 0.7 0.8 1.0


Scenario 3 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2; k = 1, 2, 3, 4, 5, 6; j = 1, ..., ni

Initial values;
βT =

[
1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 −1 −1 −1 −1 −1 0

]

Σ =



1.0 0.8 0.7 0.8 0.7 0.8
0.8 1.0 0.6 0.7 0.6 0.7
0.7 0.6 1.0 0.8 0.7 0.6
0.8 0.7 0.8 1.0 0.6 0.7
0.7 0.6 0.7 0.6 1.0 0.7
0.8 0.7 0.6 0.7 0.7 1.0


Scenario 4 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2, 3; k = 1, 2, 3; j = 1, ..., ni

Initial values;
βT =

[
1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0

]
Σ =

1.0 0.8 0.7
0.8 1.0 0.6
0.7 0.6 1.0


Scenario 5 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2, 3; k = 1, 2, 3, 4; j = 1, ..., ni

Initial values;
βT =

[
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

]
Σ =


1.0 0.8 0.7 0.8
0.8 1.0 0.6 0.7
0.7 0.6 1.0 0.8
0.8 0.7 0.8 1.0


Scenario 6 : yijk = µ + γi + (γτ)ik + εijk i = 1, 2, 3; k = 1, 2, 3, 4, 5, 6; j = 1, ..., ni

Initial values;
βT =

[
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0

]

Σ =



1.0 0.8 0.7 0.6 0.8 0.8
0.8 1.0 0.6 0.8 0.7 0.8
0.7 0.6 1.0 0.6 0.8 0.7
0.6 0.8 0.6 1.0 0.6 0.7
0.8 0.7 0.8 0.6 1.0 0.8
0.8 0.8 0.7 0.7 0.8 1.0
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Table 5. Simulation Results for Scenario 1

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
τ̂1
τ̂2
τ̂3

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ21
γ̂τ22
γ̂τ23





0.9343357
0.4242187
−0.4242187
−0.9377539
−0.9471964
1.8849502
−0.4205610
−0.4289108
0.8549618
0.4260510
0.4289108
−0.8549618





0.9420114
0.4328049
−0.4328049
−0.9412424
−0.9401964
1.8814388
−0.4322294
−0.4317248
0.8639542
0.4322294
0.4317248
−0.8639542





0.9384118
0.4312557
−0.4312557
−0.9420785
−0.9447112
1.8867897
−0.4324817
−0.4332632
0.8657449
0.4324817
0.4332632
−0.8639542





0.9454468
0.4317002
−0.4317002
−0.9299563
−0.9350825
1.8650389
−0.4243207
−0.4290144
0.8563351
0.4273207
0.4290144
−0.8563351





0.9450611
0.4343434
−0.4343434
−0.9522405
−0.9473973
1.8996378
−0.4364057
−0.4350103
0.8717160
0.4367057
0.4350103
−0.8717160


n Σ̂

20

1.0044318 0.7984512 0.7035253
0.7984512 0.9958418 0.5990959
0.7035253 0.5990959 1.0645054



60

0.9860640 0.7949169 0.6923261
0.7949169 0.9993185 0.5979830
0.6923261 0.5979830 1.0579719



100

1.0021265 0.7993710 0.6923261
0.7993710 0.9954492 0.6000148
0.7031587 0.6000148 1.0670697



140

0.9972212 0.7970500 0.6989386
0.7970500 0.9964804 0.6009773
0.6989386 0.6009773 1.0646139



200

1.0004959 0.8052401 0.6995259
0.8052401 1.0035122 0.5999236
0.6995259 0.5999236 1.0566948



Tables 5-6-7-8-9-10 illustrate the simulation results, which are the mean values of es-
timates for scenarios, for the sample sizes n = 20, 60, 100, 140 and 200. The simulation
results suggest that the estimates obtained with ML are close to the initial values of pa-
rameter. It can be noted that the total number of parameters to be estimated consists
of treatment effect, group effect and treatment x group effect. Σ̂ is the estimation of the
scatter matrix. Diagonal elements in Σ̂ are expected to be close to 1. Simulation results
show that these values are very close to 1.

Table 11 displays the mean Euclidian distance values of parameter estimates. It is
observed that mean Euclidian distances increase while the sample size increases for some
scenarios. For example, in scenario 1 and 2, simulation results are better for small samples
n = 20. For scenario 4 mean Euclidian measures decrease when the sampling sizes increase.
It is also probable to suggest the same comment for scenario 5. The best result for scenario
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Table 6. Simulation Results for Scenario 2

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
τ̂1
τ̂2
τ̂3
τ̂4

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ14
γ̂τ21
γ̂τ22
γ̂τ23
γ̂τ24





0.9707059
0.4368120
−0.4368120
0.9561633
0.9624877
0.9667250
−2.8853759
0.4320409
0.4337964
0.4354553
−1.3012926
−0.4320409
−0.4337964
−0.4354553
1.3012926





0.9735877
0.4422818
−0.4422818
0.9606236
0.9617752
0.9670008
−2.8893996
0.4383533
0.4389637
0.4405213
−1.3178383
−0.4383533
−0.4389637
−0.4405213
1.3178383





0.9716171
0.4420926
−0.4420926
0.9681081
0.9639575
0.9683273
−2.9003928
0.4409155
0.4395266
0.4407570
−1.3211991
−0.4409155
−0.4395266
−0.4407570
1.3211991





0.9681067
0.4413748
−0.4413748
0.9682239
0.9667943
0.9710899
−2.9061081
0.4411847
0.4407256
0.4419401
−1.3238504
−0.4411847
−0.4407256
−0.4419401
1.3238504





0.9710014
0.4429089
−0.4429089
0.9655546
0.9660954
0.9664175
−2.8980675
0.4410929
0.4413370
0.4414813
−1.3239111
−0.4410929
−0.4413370
−0.4414813
1.3239111


n Σ̂

20


1.1677737 0.9630649 0.8586527 0.8680248
0.9630649 1.1436615 0.7591513 0.7645889
0.8556527 0.7591513 1.1319717 0.8517166
0.8680248 0.7645899 0.8517166 1.0020004



60


1.1720349 0.9702708 0.8729168 0.8848259
0.9702708 1.1759135 0.7732687 0.7882063
0.8729168 0.7732687 1.1685301 0.8866222
0.8848259 0.7882063 0.8866222 1.0399930



100


1.1822758 0.9818122 0.8768365 0.8932789
0.9818122 1.1753388 0.7807061 0.7944599
0.8768365 0.7807061 1.1702555 0.8878969
0.8932789 0.7944559 0.8878969 1.0468401



140


1.1674447 0.9697132 0.8714421 0.8886002
0.9697132 1.1723161 0.7703625 0.7881923
0.8714421 0.7703625 1.1731791 0.8874958
0.8886002 0.7881923 0.8874958 1.0475080



200


1.1727502 0.9707860 0.8732497 0.8858043
0.9707860 1.1664734 0.7724591 0.7845369
0.8732497 0.7724591 1.1716540 0.8850204
0.8858043 0.7845369 0.8850204 1.0403314



6 occurs with sampling size n = 100 and 200 for parameter vector β estimates. Although
parameter estimates generally provide consistent results, in some cases, we have reached
the conclusion that the number of samples and dimensions increases as their mean values
for mean distance distances increase. We attribute some increases in distances with the
number of dimensions in the repeated measures data layout.
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Table 7. Simulation Results for Scenario 3

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
τ̂1
τ̂2
τ̂3
τ̂4
τ̂5
τ̂6

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ14
γ̂τ15
γ̂τ16
γ̂τ21
γ̂τ22
γ̂τ23
γ̂τ24
γ̂τ25
γ̂τ26





0.9836214
0.4672239

−0.4672239
0.9755540
0.9601416
0.9561368
0.9516076
0.9903658

−4.8338057
0.4656464
0.4605553
0.4560595
0.4576254
0.4701088

−2.3129956
−0.4656464
−0.4605553
−0.4590595
−0.4576254
−0.4701088
2.3129956





0.9824309
0.4707801

−0.4707801
0.9784105
0.9829910
0.9569465
0.9621299
0.9682543

−4.8487322
0.4693311
0.4709121
0.4620782
0.4637188
0.4659045

−2.3319447
−0.4693311
−0.4709121
−0.4620782
−0.4637188
−0.4659045
2.3319447





0.9768839
0.4691291

−0.4691291
0.9785333
0.9822740
0.9893693
0.9788247
0.9915044

−4.9205058
0.4693910
0.4706100
0.4730702
0.4695142
0.4737822

−2.3563676
−0.4693910
−0.4706100
−0.4730702
−0.4695142
−0.4737822
2.3563676





0.9739180
0.4684743

−0.4684743
0.9739044
0.9766738
0.9810981
0.9779680
0.9735276

−4.8831719
0.4684673
0.4693490
0.4708738
0.4699015
0.4683366

−2.3469282
−0.4684673
−0.4693490
−0.4708738
−0.4699015
−0.4683366
2.3469282





0.9807626
0.4708221

−0.4708221
0.9783852
0.9746975
0.9803757
0.9788336
0.9867033

−4.8986952
0.4698891
0.4686269
0.4705867
0.4699092
0.4726697

−2.3516816
−0.4698891
−0.4686269
−0.4705867
−0.4699092
−0.4726697
2.3516816


n Σ̂

20


1.0755235 0.8836730 0.7874955 0.8907883 0.7881128 0.8416675
0.8836730 1.0784877 0.6997431 0.7992564 0.6976827 0.7473167
0.7874955 0.6997431 1.0757915 0.8903538 0.7866739 0.6571116
0.8907883 0.7992564 0.8903538 1.0989230 0.6971047 0.7560317
0.7881128 0.6976827 0.7866739 0.6971047 1.0726606 0.7505855
0.8416675 0.7473167 0.6571116 0.7560317 0.7505855 1.0199291



60


1.0923928 0.8902089 0.7901686 0.8878455 0.7928542 0.8393031
0.8902089 1.0845872 0.6891677 0.7862598 0.6874106 0.7354355
0.7901686 0.6891677 1.0820087 0.8842451 0.7882960 0.6405009
0.8878455 0.7862598 0.8842451 1.0781985 0.6878597 0.7351337
0.7928542 0.6874106 0.7882960 0.6878597 1.0933798 0.7415198
0.8393031 0.7354355 0.6405009 0.7351337 0.7415198 1.0111390



100


1.0981987 0.9010671 0.7991361 0.9006872 0.8018276 0.8519262
0.9010671 1.1050489 0.6985855 0.8007166 0.7048192 0.7556434
0.7991361 0.6985855 1.0937092 0.8996331 0.7989834 0.6536867
0.9006872 0.8007166 0.8996331 1.0992524 0.7048266 0.7542599
0.8018276 0.7048192 0.7989834 0.7048266 1.1003228 0.7553096
0.8519262 0.7556434 0.6536867 0.7542599 0.7553096 1.0262999



140


1.0929229 0.8962434 0.7967582 0.8988371 0.7954586 0.8465573
0.8962434 1.0919103 0.6956042 0.7984310 0.6948726 0.7449659
0.7967582 0.6956042 1.0922195 0.8958949 0.7959612 0.6483871
0.8988371 0.7984310 0.8958949 1.0962205 0.6995046 0.7494408
0.7954586 0.6948726 0.7959612 0.6995046 1.0938862 0.7469972
0.8465573 0.7449659 0.6483871 0.7494408 0.7469972 1.0217855



200


1.0999886 0.9030294 0.8001038 0.9014575 0.8019377 0.8522977
0.9030294 1.1028539 0.7021088 0.8026561 0.7030575 0.7550096
0.8001038 0.7021088 1.0981524 0.9009969 0.8004817 0.6523121
0.9014575 0.8026561 0.9009969 1.1044682 0.7009996 0.7538706
0.8019377 0.7030575 0.8004817 0.7009996 1.1004649 0.7520755
0.8522977 0.7550096 0.6523121 0.7538706 0.7520755 1.0267292
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Table 8. Simulation Results for Scenario 4

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
γ̂3
τ̂1
τ̂2
τ̂3

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ21
γ̂τ22
γ̂τ23
γ̂τ31
γ̂τ32
γ̂τ33





0.9366305
0.2766231
0.2763619
−0.5529850
0.9408612
0.9404960
−1.8813572
0.2790280
0.2794410
−0.5584689
0.2786562
0.2791086
−0.5577648
−0.5576841
−0.5585496
1.1162337





0.9346919
0.2784529
0.2786254
−0.5570783
0.9425108
0.9470248
−1.8895356
0.2801211
0.2809977
−0.5611188
0.2802327
0.2811094
−0.5613421
0.5603538
−0.5621071
1.1224609





0.9491782
0.2823623
0.2823541
−0.5647163
0.9302790
0.9336892
−1.8639682
0.2780030
0.2788274
−0.5568305
0.2779960
0.2788190
−0.5568151
−0.5559991
−0.5576465
1.1136455





0.9368637
0.2797428
0.2797428
−0.5594855
0.9342348
0.9283549
−1.8625897
0.2789619
0.2775991
−0.5565610
0.2789619
0.2775991
−0.5565610
−0.5579239
−0.5551981
1.1131220





0.9327677
0.2786060
0.2786060
−0.5572120
0.9387667
0.9370950
−1.8758617
0.2801989
0.2798438
−0.5600427
0.2801989
0.2798438
−0.5600427
−0.5603979
−0.5596876
1.1200855


n Σ̂

20

1.502018 1.303201 0.948636
1.303201 1.498953 0.841603
0.948636 0.841603 1.108061



60

1.5302728 1.3315924 0.9697795
1.3315924 1.5326334 0.8732823
0.9697795 0.8732823 1.1565401



100

1.5338223 1.3330751 0.9629672
1.330751 1.5324607 0.8621925
0.9629672 0.8621925 1.1324817



140

1.5513922 1.3483842 0.9748599
1.3483842 1.5467587 0.8724194
0.9748599 0.8724194 1.1356878



200

1.5410728 1.3400609 0.9716799
1.3400609 1.5388626 0.8731546
0.9716799 0.8731546 1.1337651



6. Numerical example
For illustration purposes, we consider the data set o2cons, which is included in

MANOVA.RM. This data set contains measurements of the oxygen consumption of leuko-
cytes in the presence and absence of inactivated staphylococci at three consecutive time
points. Due to the study design, both time and staphylococci are sub-plot factors while
the treatment (Verum vs. Placebo) is a whole-plot factor [14]. o2cons data do not follow
the Multivariate Normal distribution. It will be attempted to estimate the unknown pa-
rameters under the assumption MLD. First, an OLS estimator for initial values of the β
parameter vector is used. The data structure has two groups and three treatment con-
ditions as repeated measures so we used the same initial value for the scatter matrix Σ
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Table 9. Simulation Results for Scenario 5

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
γ̂3
τ̂1
τ̂2
τ̂3
τ̂4

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ14
γ̂τ21
γ̂τ22
γ̂τ23
γ̂τ24
γ̂τ31
γ̂τ32
γ̂τ33
γ̂τ34





0.9528148
0.2935655
0.2935655
−0.5871310
0.9637361
0.9666743
0.9737147
−2.9041251
0.2961482
0.2969059
0.2987021
−0.8917563
0.2961482
0.2969059
0.2987021
−0.8917563
−0.5922964
−0.5937118
1.1861083
0.0000000





0.9620412
0.2961229
0.2961229
−0.5922458
0.9660156
0.9717128
0.9666702
−2.9043985
0.2968781
0.2982533
0.2971790
−0, 8923104
0.2968781
0.2982533
0.2971790
−0.8923104
−0.5937561
−0.5965067
1.1902628
0.0000000





0.9529497
0.2943405
0.2943405
−0.5886810
0.9616464
0.9638355
0.9591257
−2.8846076
0.2964162
0.2969045
0.2959116
−0.8892323
0.2964162
0.2969045
0.2959116
−0.8892323
−0.5928235
−0.5938090
1.1866414
0.0000000





0.9607353
0.2961980
0.2961980
−0.5923960
0.9549278
0.9524180
0.9584799
−2.8658256
0.2949281
0.2942792
0.2957819
−0.8849893
0.2949281
0.2942792
0.2957819
−0.8849893
−0.5898563
−0.5885585
1.1784148
0.0000000





0.9613022
0.2959758
0.2959758
−0.5919516
0.9594038
0.9612327
0.9521500
−2.8727866
0.2954355
0.2959572
0.2937109
−0.8851036
0.2954355
0.2959572
0.2937109
−0.8851036
−0.5908710
−0.5919143
1.1827853
0.0000000


n Σ̂

20


1.3503705 1.1488777 1.0451444 0.9687985
1.1488777 1.3460327 0.9454135 0.8613623
1.0451444 0.9454135 1.3410667 0.9639137
0.9687985 0.8613623 0.9639137 1.0777680



60


1.3678623 1.1686993 1.0753641 0.9852679
1.1686993 1.3703575 0.9774173 0.8873079
1.0753641 0.9774173 1.3742175 0.9877017
0.9852679 0.8873079 0.9877017 1.0895817)



100


1.1822758 0.9818122 0.8768365 0.8932789
0.9818122 1.1753388 0.7807061 0.7944599
0.8768365 0.7807061 1.1702555 0.8878969
0.8932789 0.7944559 0.8878969 1.0468401



140


1.360908 1.1657800 1.0666762 0.98129902
1.165780 1.3666817 0.9687807 0.8816579
1.066676 0.9687807 1.3690868 0.9857011
0.981299 0.8816579 0.9857011 1.0901947



200


1.3770038 1.1791500 1.0760128 0.9969181
1.1791500 1.3805686 0.9788248 0.8974431
1.0760128 0.9788248 1.3720216 0.9909526
0.9969181 0.8974431 0.9909526 1.1044924
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Table 10. Simulation Results for Scenario 6

β̂ n = 20 n = 60 n = 100 n = 140 n = 200

µ̂
γ̂1
γ̂2
γ̂3
τ̂1
τ̂2
τ̂3
τ̂4
τ̂5
τ̂6

γ̂τ11
γ̂τ12
γ̂τ13
γ̂τ14
γ̂τ15
γ̂τ16
γ̂τ21
γ̂τ22
γ̂τ23
γ̂τ24
γ̂τ25
γ̂τ26
γ̂τ31
γ̂τ32
γ̂τ33
γ̂τ34
γ̂τ35
γ̂τ36





1.0028522
0.3198137
0.3198137

−0.6396273
0.9674864
0.9801503
0.9582406
0.9731756
0.9625207

−4.8415736
0.3108945
0.3140003
0.3089081
0.3123360
0.3100063

−1.5561452
0.3108945
0.3140003
0.3089081
0.3123360
0.3100063

−1.5561452
−0.6217891
−0.6280005
−0.6178163
−0.6246720
−0.6200126
3.1122905





0.9909523
0.3166943
0.3166943

−0.6333887
0.9562702
0.9638313
0.9548903
0.9585004
0.9617886

−4.7952808
0.3080250
0.3099579
0.3077432
0.3086346
0.3094667

−1.5438273
0.3080250
0.3099579
0.3077432
0.3086346
0.3094667

−1.5438273
−0.6160499
−0.6199158
−0.6154863
−0.6172692
−0.6189334
3.0876547





0.9606188
0.3087021
0.3087021

−0.6174042
0.9752554
0.9751886
0.9690924
0.9742503
0.9732970

−4.8670837
0.3125616
0.3125231
0.3110277
0.3123081
0.3120308

−1.5604514
0.3125616
0.3125231
0.3110277
0.3123081
0.3120308

−1.5604514
−0.6251233
−0.6250462
−0.6220553
−0.6246162
−0.6240617
3.1209027





0.9787644
0.3134651
0.3134651

−0.6269302
0.9630041
0.9676519
0.9599203
0.9690610
0.9627918

−4.8224291
0.3094894
0.3106156
0.3086798
0.3109668
0.3093383

−1.5490898
0.3094894
0.3106156
0.3086798
0.3109668
0.3093383

−1.5490898
−0.6189788
−0.6212312
−0.6173596
−0.6219335
−0.6186766
3.0981797





0.9722220
0.3117178
0.3117178

−0.6234356
0.9719804
0.9744905
0.9679900
0.9736910
0.9737203

−4.8618723
0.3116720
0.3123014
0.3106648
0.3121374
0.3121092

−1.5588849
0.3116720
0.3123014
0.3106648
0.3121374
0.3121092

−1.5588849
−0.6233440
−0.6246028
−0.6213297
−0.6242748
−0.6242185
3.1177699


n Σ̂

20


1.1947156 0.9942241 0.9067181 0.7968934 1.0002224 0.8866544
0.9942241 1.1977960 0.8009921 1.0029247 0.9017692 0.8872403
0.9067181 0.8009921 1.2199331 0.8130626 1.0097682 0.7947690
0.7968934 1.0029247 0.8130626 1.2068645 0.8044220 0.7927160
1.0002224 0.9017692 1.0097682 0.8044220 1.2040008 0.8910289
0.8866544 0.8872403 0.79447690 0.7927160 0.8910289 1.0299167



60


1.2340127 1.0344643 0.9324424 0.8341462 1.0340553 0.9171051
1.0344643 1.2335107 0.8338232 1.0331279 0.9352019 0.9168444
0.9324424 0.8338232 1.2297561 0.8344293 1.0312778 0.8175206
0.8341462 1.0331279 0.8344293 1.2300829 0.8363837 0.8158956
1.0340553 0.9352019 1.0312778 0.8363837 1.2345447 0.9159340
0.9171051 0.9168444 0.8175206 0.8158956 0.9159340 1.0546494



100


1.2266789 1.0245507 0.9276357 0.8229728 1.0237623 0.9078702
1.0245507 1.2200658 0.8280308 1.0218404 0.9266147 0.9053670
0.9276357 0.8280308 1.2295837 0.8286881 1.0297146 0.8154763
0.8229728 1.0218404 0.8286881 1.2260541 0.8268354 0.8068379
1.0237623 0.9266147 1.0297146 0.8268354 1.2260066 0.9109103
0.9078702 0.9053670 0.8157563 0.8068379 0.9109103 1.0491001



140


1.2339762 1.0343395 0.9357592 0.8339657 1.0333046 0.9165417
1.0343395 1.2328777 0.8326196 1.0324785 0.9320895 0.9156819
0.9357592 0.8326196 1.2328772 0.8316858 1.0302833 0.8172105
0.8339657 1.0324785 0.8316858 1.2306429 0.8289535 0.8134696
1.0333046 0.9320895 1.0302833 0.8289535 1.2276224 0.9140859
0.9165417 0.9156819 0.8172105 0.8314696 0.9140859 1.0557772



200


1.2274106 1.0265792 0.9297690 0.8247520 1.0303623 0.9146959
1.0265792 1.2236369 0.8305477 1.0229057 0.9295806 0.9121590
0.9297690 0.8305477 1.2256355 0.8262686 1.0291379 0.8156664
0.8247520 1.0229057 0.8262686 1.2218103 0.8276893 0.8095742
1.0303623 0.9295806 1.0291379 0.8276893 1.2323557 0.9174461
0.9146959 0.9121590 0.8156664 0.8095742 0.9174461 1.0587071
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Table 11. Mean Euclidian Distance Values of Estimates

Scenario n ∥β̂
k+1 − β̂

k∥ ∥Σ̂k+1 − Σ̂k∥ ∥Q̂k+1 − Q̂k∥ Mean Iteration Standard Error

1

20 0.0035187 0.0012888 0.0010789 21.464 ±0.201577
60 0.0046643 0.0017062 0.0000962 19.267 ±0.049418
100 0.0056775 0.0019205 0.0001710 18.996 ±0.044112
140 0.0051068 0.0017600 0.0001263 18.989 ±0.080891
200 0.0062360 0.0017531 0.0001795 18.900 ±0.046391

2

20 0.0078829 0.0030974 0.0004803 20.825 ±0.058854
60 0.0100889 0.0024378 0.0003827 20.274 ±0.035639
100 0.0105645 0.0034435 0.0002063 20.120 ±0.037215
140 0.0104771 0.0049707 0.0002650 20.211 ±0.032220
200 0.0107655 0.0031854 0.0002447 20.248 ±0.031296

3

20 0.0103165 0.0037699 0.0002837 21.299 ±0.030141
60 0.0171243 0.0045007 0.0002157 20.858 ±0.032877
100 0.0179484 0.0050036 0.0001985 20.852 ±0.024138
140 0.0144353 0.0054911 0.0002194 20.875 ±0.021536
200 0.0184408 0.0054787 0.0002254 20.883 ±0.015670

4

20 0.0108583 0.0021096 0.0002691 21.090 ±0.159654
60 0.0092014 0.0021501 0.0002542 20.385 ±0.111477
100 0.0085405 0.0037565 0.0002331 20.441 ±0.122046
140 0.0084677 0.0042293 0.0002760 20.247 ±0.035117
200 0.0077615 0.0027882 0.0002747 20.385 ±0.036580

5

20 0.0120570 0.0035496 0.0004953 20.759 ±0.040725
60 0.0115271 0.0035303 0.0002265 20.447 ±0.038867
100 0.0114756 0.0051898 0.0002516 20.500 ±0.030967
140 0.0114183 0.0033263 0.0002137 20.493 ±0.030180
200 0.0122180 0.0036209 0.0002228 20.509 ±0.025230

6

20 0.0217306 0.0066691 0.0001968 21.385 ±0.034145
60 0.0245766 0.0050620 0.0003343 21.188 ±0.034026
100 0.0199006 0.0064145 0.0002507 21.228 ±0.026995
140 0.0226615 0.0052874 0.0002118 21.235 ±0.024132
200 0.0187253 0.0065136 0.0002401 21.284 ±0.018321

because the real data structure is the same as in scenario 1. Initial values is given as
follows,

β̂
T

OLS =
[
2.57 0.12 −0.12 −1.42 −0.70 2.10 −0.80 −0.40 1.06 0.71 0.351 −1.07

]
Σ =

1.0 0.8 0.7
0.8 1.0 0.6
0.7 0.6 1.0

 .

In this example, we compute the parameter estimates of Repeated Measures MANOVA
model under the assumption MLD. Table 12 illustrates the parameter estimates and Eu-
clidian distances are given in Table 13.

It can be said that the mean differences are quite small as of 22nd iteration.

7. Conclusions
In this paper, we have proposed the parameter estimates for Repeated Measures

MANOVA under the MLD as an alternative to normal distribution. We used a different
Multivariate Repeated Measures ANOVA approach, which was a mixed-method in which
Two-way Repeated Measures ANOVA approaches and MANOVA with General Linear
Model are considered together. In general, analyzes are performed on Repeated Mea-
sures ANOVA or MANOVA problems under the assumption that errors follow the normal
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Table 12. Parameter Estimates for Oxygen consumption of leukocytes data

n β̂ Σ̂

48



2.3668735
1.2195407
−1.2195407
−1.4167780
−0.6843779
2.1011559
−0.7186707
−0.3502304
1.0689011
0.7186707
0.3502304
−1.0689011



0.2558516 0.3980161 0.5725207
0.3980161 0.7801784 1.304231
0.5725207 1.0304231 1.4995878



Table 13. Mean Euclidian Distance Values for Parameter Estimates

n ∥β̂k+1 − β̂
k∥ ∥Σ̂k+1 − Σ̂k∥ ∥Q̂k+1 − Q̂k∥ Mean Iteration

48 0.001134304 0.00188000 0.00280359 22

distribution. In this context, we made inferences based on MLD, which is a member of
the Elliptically Contoured distribution family and which has been studied in recent years.
Also, parameter estimates of the Repeated Measures MANOVA model were calculated un-
der the proposed MLD assumption. The simulation study was performed to demonstrate
the effectiveness of the parameter estimation. The effectiveness of the parameter estimates
were indicated by the mean Euclidian distance values and the parameter estimates gen-
erally provided consistent results. In the real data example, we have concluded that the
mean Euclidian distance values for parameter estimates based on the MLD assumption
yield similar results to that of the simulation study. In a conclusion, further studies that
aim to improve multivariate test statistics based on parameter estimates that obtain with
MLD are recommended for future research.
Acknowledgment. The authors are thankfull to referees for their valuable comments
to improve our paper.
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