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Abstract: In this paper, we deal with a nonlinear Timoshenko equation with delay term and variable exponents. Under suitable
conditions, we prove the blow-up of solutions in a finite time. Our results are more general than the earlier results. Time delays
arise in many applications, for instance, it appears in physical, chemical, biological, thermal and economic phenomena. Also, delay
is source of instability, a small delay can destabilize a system which is uniformly asymptotically stable. Several physical phenom-
ena such as flows of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear viscoelasticity, filtration
processes through a porous media and image processing are modelled by equations with variable exponents.
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1 Introduction

In this work, we study the following nonlinear Timoshenko equation with variable exponents and delay term

utt + ∆2u−M
(
‖∇u‖2

)
∆u+ µ1ut (x, t) |ut|m(x)−2 (x, t)

+µ2ut (x, t− τ) |ut|m(x)−2 (x, t− τ)

= bu |u|p(x)−2 in Ω×R+,
u (x, t) = 0 in ∂Ω× [0,∞) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω,
ut (x, t− τ) = f0 (x, t− τ) in Ω× (0, τ) ,

(1)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary ∂Ω . τ > 0 is a time delay term, µ1 is a positive constant, µ2 is a real
number and b ≥ 0 is a constant. M (s) is a positive C1-function like M (s) = 1 + sγ , γ > 0. The functions u0, u1, f0 are the initial data to
be specified later.
p (·) and m (·) are the variable exponents which given as measurable functions on Ω such that:

2 ≤ p− ≤ p (x) ≤ p+ ≤ p∗,

2 ≤ m− ≤ m (x) ≤ m+ ≤ m∗
(2)

where

p− = ess inf p (x)
x∈Ω

, p+ = ess sup p (x)
x∈Ω

,

m− = ess inf m (x)
x∈Ω

, m+ = ess supm (x)
x∈Ω

and

p∗,m∗ =
2 (n− 1)

n− 2
if n ≥ 3.

• The Timoshenko equation is an approximate model describing the transversal motion of a rod [11].
• The problems with variable exponents arises in many branches in sciences such as nonlinear elasticity theory, electrorheological fluids and
image processing [3], [4].
• Time delays often appear in many practical problems such as thermal, economic phenomena, biological, chemical and physical. Also, time
delay can be a source of instability [6].
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In the absence of ∆2u term and when M (s) ≡ 1, the equation (1) becomes

utt −∆u+ µ1ut (x, t) |ut|m(x)−2 (x, t) + µ2ut (x, t− τ) |ut|m(x)−2 (x, t− τ) = bu |u|p(x)−2 . (3)

Messaoudi and Kafini [8], obtained the decay estimates and global nonexistence of the equation (3).
The outline of this paper is as follows: In Sect. 2, the definition of the variable exponent Sobolev and Lebesgue spaces are stated. In Sect. 3,

we establish the blow up of solutions.

2 Preliminaries

In this part, we denote some preliminary facts about Lebesgue Lp(·) (Ω) and Sobolev W 1,p(·) (Ω) spaces with variable exponents (see [2], [4],
[5], [7], [10]).

Let p : Ω→ [1,∞) be a measurable function. We define the variable exponent Lebesgue space with a variable exponent p (·) by

Lp(·) (Ω) =

{
u : Ω→ R; measurable in Ω :

∫
Ω
|u|p(·) dx <∞

}
.

We next, define the variable-exponent Sobolev space W 1,p(·) (Ω) as follows

W 1,p(·) (Ω) =
{
u ∈ Lp(·) (Ω) : ∇u exists and |∇u| ∈ Lp(·) (Ω)

}
.

We also assume that:

|p (x)− p (y)| ≤ − A

log |x− y| and |m (x)−m (y)| ≤ − B

log |x− y| for all x, y ∈ Ω, (4)

A,B > 0 and 0 < δ < 1 with |x− y| < δ (log-Hölder condition).

Lemma 1. [2] (Poincare inequality) Assume that p (·) satisfies (4) and let Ω be a bounded domain of Rn. Then,

‖u‖p(·) ≤ c ‖∇u‖p(·) for all u ∈W 1,p(·)
0 (Ω) ,

where c = c
(
p−, p+, |Ω|

)
> 0.

Lemma 2. [2] If p : Ω→ [1,∞) is continuous,

2 ≤ p− ≤ p (x) ≤ p+ ≤ 2n

n− 2
, n ≥ 3, (5)

satisfies, then the embedding H1
0 (Ω)→ Lp(·) (Ω) is continuous.

Lemma 3. [1] If p+ <∞ and p : Ω→ [1,∞) is a measurable function, then C∞0 (Ω) is dense in Lp(·) (Ω) .

Lemma 4. [1] (Hölder’ inequality) Let p, q, s ≥ 1 be measurable functions defined on Ω and

1

s (y)
=

1

p (y)
+

1

q (y)
, for a.e. y ∈ Ω,

satisfies. If f ∈ Lp(·) (Ω) and g ∈ Lq(·) (Ω), then fg ∈ Ls(·) (Ω) and

‖fg‖s(·) ≤ 2 ‖f‖p(·) ‖g‖q(·) .

Lemma 5. [1] (Unit ball property) Let p ≥ 1 be a measurable function on Ω. Then,

‖f‖p(·) ≤ 1 if and only if %p(·) (f) ≤ 1,

where

%p(·) (f) =

∫
Ω
|f (x)|p(x) dx.

Lemma 6. [2] If p ≥ 1 is a measurable function on Ω. Then,

min
{
‖u‖p

−

p(·) , ‖u‖
p+

p(·)

}
≤ %p(·) (u) ≤ max

{
‖u‖p

−

p(·) , ‖u‖
p+

p(·)

}
for any u ∈ Lp(·) (Ω) and for a.e. x ∈ Ω.
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Remark 1. We denote by c various positive constants which may be different at different occurrences. Also, throughout this paper, we use the
embedding

H2
0 (Ω) ↪→ H1

0 (Ω) ↪→ Lp (Ω)

which implies
‖u‖p ≤ c ‖5u‖ ≤ c ‖4u‖ ,

where 2 ≤ p <∞ (n = 1, 2) , 2 ≤ p ≤ 2n
n−2 (n ≥ 3) .

3 Blow up

In this part, for the case b > 0, we establish the blow up of solutions for problem (1). As in [9], we introduce the new variable

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Ω, ρ ∈ (0, 1) , t > 0.

Thus, we have
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1) , t > 0.

Then, problem (1) takes the form

utt + ∆2u−M
(
‖∇u‖2

)
∆u+ µ1ut (x, t) |ut (x, t)|m(x)−2

+µ2z (x, 1, t) |z (x, 1, t)|m(x)−2

= bu |u|p(x)−2 in Ω× (0,∞) ,
τzt (x, ρ, t) + zρ (x, ρ, t) = 0 in Ω× (0, 1)× (0,∞) ,
z (x, ρ, 0) = f0 (x,−ρτ) in Ω× (0, 1) ,
u (x, t) = 0 on ∂Ω× [0,∞),
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) in Ω.

(6)

The energy functional associated with problem (6) is

E (t) = 1
2 ‖ut‖

2 + 1
2 ‖∆u‖

2 + 1
2 ‖∇u‖

2 + 1
2(γ+1)

‖∇u‖2(γ+1)

+
∫1

0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x)
dxdρ− b

∫
Ω
|u|p(x)

p(x)
dx.

(7)

Lemma 7. Let (u, z) be a solution of (6). Then there exists some C0 > 0 such that

E′ (t) ≤ −C0

∫
Ω

(
|ut|m(x) + |z (x, 1, t)|m(x)

)
dx ≤ 0. (8)

Lemma 8. [8] Suppose that condition (2) holds.Then there exists a positive C > 1, depending on Ω only, such that

%s/p
−

(u) ≤ C
(
‖∆u‖2 + % (u)

)
. (9)

Then, we have following inequalities:
i)

‖u‖sp− ≤ C
(
‖∆u‖2 + ‖u‖p

−

p−

)
, (10)

ii)

%s/p
−

(u) ≤ C

(
|H (t)|+ ‖ut‖2 + % (u) +

∫1

0

∫
Ω

ξ (x) |z (x, ρ, t)|m(x)

m (x)
dxdρ

)
, (11)

iii)

‖u‖sp− ≤ C

(
|H (t)|+ ‖ut‖2 + ‖u‖p

−

p−
+

∫1

0

∫
Ω

ξ (x) |z (x, ρ, t)|m(x)

m (x)
dxdρ

)
, (12)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ p−. Let (u, z) be a solution of (6), then

iv)

% (u) ≥ C ‖u‖p
−

p−
, (13)

v) ∫
Ω
|u|m(x) dx ≤ C

(
%m

−/p− (u) + %m
+/p− (u)

)
. (14)
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Theorem 9. Let conditions (2) and (4) be provided and assume that

E (0) < 0.

Then the solution (6) blows up in finite time.

Proof: We establish

L (t) = H1−α (t) + ε

∫
Ω
uutdx. (15)

A direct differentiation of (15) using the first equation in (6) satisfies

L′ (t) = (1− α)H−α (t)H ′ (t) + ε
∫

Ω

[
u2
t − |∆u|

2 − |∇u|2 − |∇u|2(γ+1)
]
dx

+εb
∫

Ω |u|
p(x) dx− εµ1

∫
Ω uut (x, t) |ut (x, t)|

m(x)−2

dx

−εµ2
∫

Ω uz (x, 1, t) |z (x, 1, t)|
m(x)−2

dx.

(16)

We take δ such that

δ
− m(x)

m(x)−1 = kH−α (t) .

Lemma 9 satisfies

Hα(m+−1) (t)

∫
Ω
|u|m(x) dx ≤ C

(
‖∆u‖2 + % (u)

)
. (17)

Consequently, we get

L′ (t) ≥ (1− α)H−α (t)
[
C0 − ε

(
m+−1
m+

)
ck
] ∫

Ω |ut|
m(x) dx

+ (1− α)H−α (t)
[
C0 − ε

(
m+−1
m+

)
ck
] ∫

Ω |z (x, 1, t)|
m(x)

dx

+ε

(
(p−−2)−ap−

2 − C

m−k1−m−

)
‖∆u‖2

+ε (1− a) p−H (t) + ε
(1−a)p−+2

2 ‖ut‖2 + ε
(1−a)p−−2

2 ‖∇u‖2

+ε
(1−a)p−−2(γ+1)

2(γ+1)
‖∇u‖2(γ+1) + ε

(
ab− C

m−k1−m−

)
% (u)

+ε (1− a) p−
∫1

0

∫
Ω
ξ(x)|z(x,ρ,t)|m(x)

m(x)
dxdρ.

(18)

Choosing a small enough so that
(1− a) p− − 2

2
> 0 and

(1− a) p− − 2 (γ + 1)

2 (γ + 1)
> 0.

and k so large that (
p− − 2

)
− ap−

2
− C

m−k1−m− > 0 and ab− C

m−k1−m− > 0.

By (12), we obtain∣∣∣∣∫
Ω
uut (x, t) dx

∣∣∣∣1/(1−α)

≤ C

[
|H (t)|+ ‖ut‖2 + ‖4u‖2 + % (u) +

∫1

0

∫
Ω

ξ (x) |z (x, ρ, t)|m(x)

m (x)
dxdρ

]
. (19)

For some Ψ > 0, we arrive at
L′ (t) ≥ ΨL1/(1−α) (t) .

A simple integration over (0, t) yields, which implies that the solution blows up in a finite time T ∗, with

T ∗ ≤ 1− α
Ψα [L (0)]α/(1−α)

.

As a result, the proof is completed. �

4 Conclusion

In recent years, there has been published much work concerning the wave equation with constant delay or time-varying delay. However, to the
best of our knowledge, there was no blow-up result for the nonlinear Timoshenko equation with delay term and variable exponents. We have
been obtained the blow-up result under the sufficient conditions in a bounded domain.
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