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Abstract
We characterize continuity and compactness of the Volterra integral operator Tg with
the non-constant analytic symbol g between certain weighted Fréchet or (LB)-spaces of
analytic functions on the open unit disc, which arise as projective (resp. inductive) limits
of intersections (resp. unions) of Bergman spaces of order 1 < p < ∞ induced by the
standard radial weight (1 − |z|2)α for 0 < α < ∞. Motivated from the earlier results
obtained for weighted Bergman spaces of standard weight, we also establish several results
concerning the spectrum of the Volterra operators acting on the weighted Bergman Fréchet
space Ap

α+, and acting on the weighted Bergman (LB)-space Ap
α−.
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1. Introduction
The aim of this note is to investigate continuity, compactness and spectrum of the

Volterra integral operator defined on certain weighted Fréchet or (LB)-spaces of analytic
functions on the open unit disc D of the complex plane. For a non-constant analytic
function g ∈ H(D), the Volterra operator Tg with symbol g is defined on the space H(D)
of analytic functions on the unit disc by

Tg(f)(z) :=
∫ z

0
f(ζ)g′(ζ) dζ, z ∈ D.

We investigate the Volterra operator Tg when it is defined on spaces which appear as
intersections or unions of the weighted Bergman spaces of analytic functions described
below. The Bergman space Ap

α = Ap
α(D) of order 1 < p < ∞ induced by the standard

radial weight (1 − |z|2)α for −1 < α < ∞ is given by

Ap
α := {f ∈ H(D) : ||f ||p,α =

(
(α + 1)

∫
D

|f(z)|pdsα(z)
)1/p

< ∞}, (1.1)
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dsα(z) = (1 − |z|2)αds(z), and ds(z) = 1
π dxdy. One might also use the weight (1 − |z|)α

instead of (1 − |z|2)α. Since 1 − |z| ≤ 1 − |z|2 ≤ 2(1 − |z|), these weights induce the same
space and the norms are equivalent. Each Ap

α is a closed subspace of Lp(D, ds(z)) in which
the polynomials are dense [15, Section 1.1]. The weighted Bergman space Ap

α is a Banach
space with the norm ||·||p,α. Classical Bergman space Ap(D) corresponds to the case α = 0.
We denote by Ap

ω a weighted Bergman space of order 1 < p < ∞ with the weight function
ω(z) such that it becomes a Banach space with the norm

||f ||p,ω :=
(∫

D
|f(z)|pω(z)ds(z)

)1/p

.

The aim of this paper is to investigate the Volterra operator Tg on spaces that arise as
intersections and unions of Bergman spaces of order 1 < p < ∞ induced by the standard
radial weights (1 − |z|2)α for 0 < α < ∞. The weighted Bergman Fréchet space Ap

α+ is
given by

Ap
α+ := {f ∈ H(D) :

(∫
D

|f(z)|pdsµ(z)
)1/p

< ∞, ∀µ > α}

=
⋂

µ>α

Ap
µ =

⋂
n∈N

Ap

(α+ 1
n

) = proj
n∈N

Ap

(α+ 1
n

).
(1.2)

The weighted Bergman (LB)-space Ap
α− is defined by

Ap
α− := {f ∈ H(D) :

(∫
D

|f(z)|pdsµ(z)
)1/p

< ∞, for some µ < α}

=
⋃

µ<α

Ap
µ =

⋃
n∈N

Ap

(α− 1
n

) = ind
n∈N

Ap

(α− 1
n

),
(1.3)

where the inductive limit is taken over all n ∈ N such that (α − 1
n) > 0. The monograph

[15] presents an investigation of Bergman type spaces (for p = ∞) in that fashion with
relevance to interpolation and sampling of analytic functions. The paper [18] gives a
description of intersections and unions of weighted Bergman spaces of order 0 < p < ∞.
Unlike those, we treat the space Ap

α+ as a Fréchet space when equipped with the locally
convex topology generated by the increasing system of norms

|||f |||p,α,n :=
(∫

D
|f(z)|pds(α+ 1

n
)(z)

)1/p

, (1.4)

for f ∈ Ap
α+ and each n ∈ N. Analogously, Ap

α− is an (LB)-space endowed with the
finest locally convex topology such that each natural inclusion map from Ap

µ into Ap
γ ,

for 0 < µ < γ is continuous. It is also regular, since every bounded set B ⊆ Ap
α− is

contained and bounded in the Banach space Ap
µ, for some 0 < µ < α. We also note that,

for 1 < p < ∞ and 0 < α < ∞ we have Ap
α− ⊂ Ap

α ⊂ Ap
α+, where each inclusion is

continuous. Since for each pair 0 < µ < γ < ∞ the canonical inclusion map ι : Ap
µ → Ap

γ

is compact (see, for instance, [17, Proposition 3.1] for a proof), both Ap
α+ and Ap

α− are
Schwartz spaces by [16, §21.1, Example 1(b)] and [20, Proposition 25.20]. We characterize
continuity and compactness of Tg between different weighted Bergman Fréchet and (LB)-
spaces in Section 2. In connection with previous significant results obtained for Banach
spaces, Section 3 is devoted to the spectral properties of Tg acting on a weighted Bergman
Fréchet or (LB)-space.

If g(z) = z, for z ∈ D, then the Volterra operator coincides with the integration operator
J . If we let g(z) = − log(1 − z), for z ∈ D, then C(f)(z) := 1

z Tg(f)(z), z ∈ D, z ̸= 0,
C(f)(0) := f(0) is the Cesàro operator. This operator acting on Ap

α+ and Ap
α− was

investigated by the author in [17].
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The Volterra operator for holomorphic functions on the unit disc was introduced by
Pommerenke [21]. He showed that Tg is bounded on the Hardy space H2 if and only if
g ∈ BMOA. Aleman and Siskakis extended this result to Hp, 1 ≤ p < ∞ [8]. Later they
also considered the case of weighted Bergman spaces [9]. We also refer to [4, 10]. Aleman
and Constantin [5], Aleman and Persson [7], Aleman and Paláez [6] studied the spectra of
Volterra and Cesàro operators on several spaces of holomorphic functions on the unit disc.
For a survey regarding Volterra operators defined on several spaces of analytic functions,
see [23].

The motivation of the present research is due to the investigation on the spectrum
of Volterra-type operators on weighted Bergman spaces carried out by Aleman and Con-
stantin in [5], and the study of the author [17] where continuity, compactness and spectrum
of Cesàro operator in the same context of unions and intersections of weighted Bergman
spaces considered here inspired by the works of Albanese, Bonet and Ricker [1, 3]. The
Volterra operator is closely related to Cesàro operator. Our results, however, requires
different approaches and new ingredients. For an analogue study concerning the Volterra
operator in limits of growth spaces of analytic functions, we refer to Bonet [12] in relation
with [19].

2. Continuous of Volterra operators on Ap
α+ and Ap

α−

The Volterra operator Tg, where g belongs to H(D) is continuous on the weighted
Bergman space Ap

α if and only if g belongs to the Bloch space B1. This is proved in
[9, Theorem 1]. Let us remind that a holomorphic function g belongs to Bα for 0 ≤ α < ∞
if and only if supz∈D|g′(z)|(1 − |z|2)α < ∞. The function g ∈ H(D) belongs to the little
Bloch space B0

α ⊂ Bα if and only if lim|z|→1− |g′(z)|(1 − |z|2)α = 0. We refer the reader to
[24] for further information on Bloch spaces. The following result is due to [22, Theorem
2]. It shall be quoted frequently in our proofs.

Proposition 2.1. Let g ∈ H(D) be an analytic function. Suppose that 1 < p, q < ∞, and
−1 < α, β < ∞.

(i) Let p ≤ q and 2+α
p − 2+β

q ≤ 1. Then, the Volterra operator Tg : Ap
α → Aq

β is
continuous if and only if g ∈ B1+ 2+β

q
− 2+α

p
. In particular, if p = q and α = β,

Tg : Ap
α → Ap

α is continuous if and only if g ∈ B1.
(ii) Let q < p and 2+α

p − 2+β
q ≤ 1. Then, the Volterra operator Tg : Ap

α → Aq
β is

continuous if and only if g′ ∈ As
s+γ, where 1

s = 1
q − 1

p and γ = pβ−qα
p−q .

(iii) Let 2+α
p − 2+β

q > 1, and suppose that Tg : Ap
α → Aq

β be continuous. Then, g is
constant.

Proposition 2.2. Let 1 < p ≤ q < ∞ and 0 < α, β < ∞ satisfy γ := 1 + 2+β
q − 2+α

p ≥ 0.
Let g ∈ H(D) be an analytic function.

(1) The Volterra operator Tg : Ap
α+ → Aq

β+ is continuous if and only if

g ∈
⋂

τ∈(γ,x)
Bτ , (2.1)

for every x > γ. In particular,
(i) The Volterra operator Tg : Ap

α+ → Ap
α+ is continuous if and only if

g ∈
⋂

τ∈(1,x)
Bτ , (2.2)

for every x > 1.
(ii) Let 2+α

p ≤ 2+β
q . The Volterra operator Tg : Ap

α+ → Aq
β+ is continuous if g

satisfies (2.2) for every x > 1.
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(iii) Let 2+β
q < 2+α

p . If the Volterra operator Tg : Ap
α+ → Aq

β+ is continuous, then
g satisfies (2.2) for every x > 1.

(2) The Volterra operator Tg : Ap
α− → Aq

β− is continuous if and only if g satisfies (2.1)
for x = γ + min{(α + 1) q−1

pq , (β + 1) q−1
q }. In particular,

(i) The Volterra operator Tg : Ap
α− → Ap

α− is continuous if and only if g satisfies
(2.2) for x = 1 + α+1

2p .
(ii) Let 2+α

p ≤ 2+β
q . The Volterra operator Tg : Ap

α− → Aq
β− is continuous if g

satisfies (2.2) for x = 1 + α+1
2p .

(iii) Let 2+β
q < 2+α

p . If the Volterra operator Tg : Ap
α− → Aq

β− is continuous, then
g satisfies (2.2) for x = 1 + min{α,β}+1

p .

Proof. (1) Since the polynomails are dense in each of Ap
µ, for every µ > α, by (1.2), the

Fréchet space Ap
α+ is a reduced projective limit of the Banach spaces Ap

µ, µ > α. This
implies, Tg : Ap

α+ → Aq
β+ is continuous if and only if for each µ > β there is α < η <

α + µ − β such that Tg : Ap
η → Aq

µ is continuous. Now let g satisfy (2.1) for every x > γ.
For any ε > 0, find δ ∈ (0, ε) such that g ∈ Bγ+ε−δ. Given µ := β + qε, define η := α + pδ
and let us observe that for every z ∈ D,∣∣g′(z)

∣∣(1 − |z|2)1+ 2+µ
q

− 2+η
p =

∣∣g′(z)
∣∣(1 − |z|2)γ+ε−δ. (2.3)

Hence g ∈ B1+ 2+µ
q

− 2+η
p

. So Tg : Ap
η → Aq

µ is continuous by Proposition 2.1(i). Therefore
Tg : Ap

α+ → Aq
β+ is also continuous. For the converse, let Tg : Ap

α+ → Aq
β+ be continuous.

Then, for every ε > 0, given µ := β+qε there exists α < η < α+qε such that Tg : Ap
η → Aq

µ

is continuous. By Proposition 2.1(i), g ∈ B1+ 2+µ
q

− 2+η
p

. Then, observe that for every z ∈ D,∣∣g′(z)
∣∣(1 − |z|2)1+ 2+µ

q
− 2+η

p >
∣∣g′(z)

∣∣(1 − |z|2)γ+ε. (2.4)
Hence, g ∈ Bγ+ε for every ε > 0. So (2.1) holds for all x > γ. In particular, if we let
p = q and α = β, part (i) follows immediately. If we let 2+α

p ≤ 2+β
q , then by (2.3), part

(ii) follows. If we suppose 2+β
q < 2+α

p , then by (2.4), part (iii) holds.

(2) Let x = min{(α+1) q−1
pq , (β+1) q−1

q }. By Grothendieck’s factorization theorem (see e.g.
[20, Theorem 24.33]), Tg : Ap

α− → Ap
α− is continuous if and only if for every −1 < µ < α,

there exists µ < η < α such that Tg : Ap
µ → Ap

η is continuous. Suppose that for every
ε ∈ (0, x) we have g ∈ Bγ+ε. Then, given −1 < µ := α − pq

q−1ε define −1 < η := β − q
q−1ε.

Observe that for every z ∈ D,∣∣g′(z)
∣∣(1 − |z|2)1+ 2+η

q
− 2+µ

p =
∣∣g′(z)

∣∣(1 − |z|2)γ+ q
q−1 ε− 1

q−1 ε

=
∣∣g′(z)

∣∣(1 − |z|2)γ+ε.
(2.5)

Thus, g ∈ B1+ 2+η
q

− 2+µ
p

. By Proposition 2.1(i), Tg : Ap
µ → Aq

η is continuous. Then,
Tg : Ap

α− → Aq
β− is also continuous. For the converse, let Tg : Ap

α− → Aq
β− be contin-

uous. Then, for every −1 < µ := α − pε there exists −1 < β − pε < η := β − pδ such
that Tg : Ap

µ → Aq
η is continuous. Then, by Proposition 2.1(i), g ∈ B1+ 2+η

q
− 2+µ

p
. Thus, for

every z ∈ D, ∣∣g′(z)
∣∣(1 − |z|2)1+ 2+η

q
− 2+µ

p =
∣∣g′(z)

∣∣(1 − |z|2)γ+ε− p
q

δ
. (2.6)

Hence, there exists δ̂ ∈ (0, p
q ε] such that g ∈ Bγ+ε−δ̂. This happens when (2.1) is satisfied.

In particular, if we let p = q and α = β, part (i) follows immediately. If we let 2+α
p ≤ 2+β

q ,
then by (2.5), part (ii) follows. If we suppose 2+β

q < 2+α
p , then by (2.6) we get part (iii).

�
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Remark 2.3. Let γ := 1 + 2+β
q − 2+α

p ≥ 0. Concerning Proposition 2.2, suppose that
g ∈

⋂
τ>γ Bτ \Bγ . Then, for every ε > 0, we have g ∈ Bγ+ε \Bγ . Then, given µ := β + qε,

for every z ∈ D, ∣∣g′(z)
∣∣(1 − |z|2)1+ 2+µ

q
− 2+α

p =
∣∣g′(z)

∣∣(1 − |z|2)γ+ε.

So, g ∈ B1+ 2+µ
q

− 2+α
p

. Hence Tg : Ap
α → Aq

µ is continuous. Thus, the continuity estimate

||Tgf ||q,β+qε . ||f ||p,α, f ∈ Ap
α+. (2.7)

is optimal. That is, we cannot get rid of the term qε, by the density argument we also
used in Proposition 2.2.

The following proposition directly follows from Proposition 2.1(ii).

Proposition 2.4. Let 1 < q < p < ∞ and 0 < α, β < ∞ satisfy 2+α
p − 2+β

q ≤ 1. Define
1
s = 1

q − 1
p . Then,

(1) The Volterra operator Tg : Ap
α+ → Aq

β+ is continuous if and only if for every ε > 0
there exists δ ∈ (0, ε] such that g′ ∈ As

s+γ, where γ = p(β+ε)−p(α+δ)
p−q .

(2) The Volterra operator Tg : Ap
α− → Aq

β− is continuous if and only if for every
ε ∈ (0, β + 1) there exists δ ∈ (0, ε] such that g′ ∈ As

s+µ, where µ = p(β−δ)−p(α−ε)
p−q .

An operator T : X → X on a space X is called compact (resp. bounded) if there exists
a zero neighborhood U such that T (U) is a relatively compact (resp. bounded) subset of
X. If the bounded subsets of X are relatively compact, i.e., X is a Schwartz space, then
bounded operators coincides with compact operators. By [17, Corollary 3.2], this is the
case for Ap

α+ and Ap
α−. Therefore, Proposition 2.1 will play a crucial role in characterizing

compactness of the Volterra operator Tg on Ap
α+ and Ap

α−. The following well-known
abstract lemma will help us prove our main result on compactness.

Lemma 2.5. (i) Let E = projm Em and F = projn Fn be Fréchet spaces such that E
(resp. F ) is the intersection of the sequence of Banach spaces Em (resp. Fn), E
is dense in Em and Em+1 ⊂ Em with continuous inclusion for each m (resp. F is
dense in Fn and Fn+1 ⊂ Fn with continuous inclusion for each n). Let T : E → F
be a linear operator. Assume T is continuous. Then T is bounded if and only
if there is m such that for each n, T has a unique continuous linear extension
Tm,n : Em → Fn.

(ii) Let X = ind Xn and Y = ind Ym be two (LB)-spaces which are increasing unions
of Banach spaces X = ∪∞

n=1Xn and Y = ∪∞
m=1Ym. Let T : X → Y be a continuous

linear map. Assume that Y is a regular (LB)-space. Then T is bounded if and only
if there exists m ∈ N such that T (Xn) ⊂ Ym and T : Xn → Ym is continuous for
all n ≥ m.

Proposition 2.6. Let 1 < p ≤ q < ∞, and 0 < α, β < ∞ satisfy γ := 1 + 2+β
q − 2+α

p > 0.
Let g ∈ H(D) be an analytic function.

(1) The Volterra operator Tg : Ap
α+ → Aq

β+ is compact if and only if

g ∈
⋃

τ<γ

Bτ . (2.8)

In particular,
(i) The Volterra operator Tg : Ap

α+ → Ap
α+ is compact if and only if

g ∈
⋃

τ<x

Bτ , (2.9)

for x = 1.
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(ii) Let 2+α
p ≤ 2+β

q . Then, the Volterra operator Tg : Ap
α+ → Aq

β+ is compact if g

satisfies (2.9) for x = 1.
(iii) Let 2+β

q < 2+α
p . If the Volterra operator Tg : Ap

α+ → Aq
β+ is compact, then g

satisfies (2.9) for x = 1.
(2) The Volterra operator Tg : Ap

α− → Aq
β− is compact if and only if g satisfies (2.8).

In particular,
(i) The Volterra operator Tg : Ap

α− → Ap
α− is compact if and only if g satisfies

(2.9) for x = min{1, α+1
p }.

(ii) Let 2+β
q < 2+α

p . If the Volterra operator Tg : Ap
α− → Aq

β− is compact, then g

satisfies (2.9) for x = min{α,β}+1
q .

(iii) Let 2+α
p ≤ 2+β

q . The Volterra operator Tg : Ap
α− → Aq

β− is compact if g

satisfies (2.9) for x = α+1
q .

Proof. (1) Suppose that Tg : Ap
α+ → Aq

β+ is compact. Since Ap
α+ is a Fréchet-Schwartz

space for any fixed 1 < p < ∞ and 0 < α < ∞, the Volterra operator Tg : Ap
α+ → Aq

β+
is bounded. By Lemma 2.5(i), there exists ε > 0 such that for µ := α + pε, every
η := β + pδ < β + pε yields Tg : Ap

µ → Aq
η is continuous. If 1 + 2+η

q − 2+µ
p < 0, then by

Proposition 2.1(iii), g is constant, so g ∈ Ba, for any a ∈ [0, ∞). Now let 1+ 2+η
q − 2+µ

p ≥ 0.
By Proposition 2.1(i), g ∈ B1+ 2+η

q
− 2+µ

p
= Bγ+ p

q
δ−ε. Furthermore,

∣∣g′(z)
∣∣(1 − |z|2)γ+ p

q
δ−ε

>
∣∣g′(z)

∣∣(1 − |z|2)γ+δ−ε. (2.10)

Therefore, g ∈ Bγ−ε+δ. This gives the desired result. For the converse, let there exist
ε ∈ (0, γ] such that g ∈ Bγ−ε. For any δ ∈ (0, ε] we have

∣∣g′(z)
∣∣(1 − |z|2)γ+ p

q
δ−ε

<
∣∣g′(z)

∣∣(1 − |z|2)γ−ε. (2.11)

So, g ∈ Bγ+ p
q

δ−ε. Then, by Proposition 2.1(i), Tg : Ap
α+pε → Aq

β+pδ is continuous. By
Lemma 2.5(i), Tg : Ap

α+ → Aq
β+ is compact. In particular, if α = β and p = q, then part

(i) is also true. If suppose that 2+β
q < 2+α

p , then by (2.10) part (iii) follows. If we suppose
that 2+α

p ≤ 2+β
q , then (2.11) yields part (ii).

(2) Define x = min{α,β}+1
q . Let Tg : Ap

α− → Aq
β− be compact, equivalently bounded.

Then, by Lemma 2.5(ii), there exists ε ∈ (0, x) such that for −1 < µ := β − qε, every
−1 < α − qε < η < α yields Tg : Ap

η → Aq
µ is continuous. If 1 + 2+µ

q − 2+η
p < 0, by

Proposition 2.1(iii), g is constant, and there is nothing to prove. Suppose 1+ 2+µ
q − 2+η

p ≥ 0.
Note that for any δ ∈ (0, ε], Tg : Ap

α−pδ → Aq
µ is continuous. By Proposition 2.1(i),

g ∈ Bγ−ε+δ. Hence, (2.8) is satisfied. For the converse, let there exist ε ∈ (0, x) such that
for all δ ∈ (0, ε] we have g ∈ Bγ−ε+δ. Note that

∣∣g′(z)
∣∣(1 − |z|2)γ+ q

p
δ−ε

<
∣∣g′(z)

∣∣(1 − |z|2)γ−ε+δ. (2.12)

This means g ∈ Bγ+ q
p

δ−ε. By Proposition 2.1(i), Tg : Ap
α−qδ → Aq

β−qε is continuous. By
Lemma 2.5(ii), Tg : Ap

α− → Aq
β− is compact. In particular, letting p = q and α = β yields

part (i). If we let 2+β
q < 2+α

p , then g ∈ B1−ε+δ, and part (ii) follows. If we take 2+α
p ≤ 2+β

q ,
then by (2.12) part (iii) holds.

�
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Remark 2.7. Let γ := 1 + 2+β
q − 2+α

p ≥ 0. Note that by [22, Corollary 7(i)], the Volterra
operator Tg : Ap

α → Aq
β is compact if and only if g ∈ B0

γ . Concerning Proposition 2.6, let
g ∈

⋃
τ<γ Bτ . So there exists ε > 0 with g ∈ Bγ−ε. This means there exists M > 0 such

that |g′(z)|(1 − |z|2)γ−ε ≤ M , for every z ∈ D. Let us observe that∣∣g′(z)
∣∣(1 − |z|2)γ =

∣∣g′(z)
∣∣(1 − |z|2)ε(1 − |z|2)γ−ε

≤ M(1 − |z|2)ε → 0,

as |z| → 1−. So g ∈ B0
γ . Hence Tg : Ap

α → Aq
β is compact. Now let g ∈ B0

γ \
⋃

τ<γ Bτ .
Then, Tg : Ap

α → Aq
β is compact. Suppose that Tg : Ap

α+ → Aq
β+ is compact as well. Then,

there exists ε ∈ (0, γ] such that for µ := α + pε one has Tg : Ap
µ → Aq

β is continuous. This
means,

∞ > sup
z∈D

∣∣g′(z)
∣∣(1 − |z|2)1+ 2+β

q
− 2+µ

p = sup
z∈D

∣∣g′(z)
∣∣(1 − |z|2)γ−ε = ∞.

This is a contradiction.

3. Spectra of Volterra operators on Ap
α+ and Ap

α−

Let E be a locally convex Hausdorff space, and ΓE a system of continuous seminorms
determining the topology of E. Let E′ denote the space of all continuous linear functionals
on E. Denote the identity operator on E by I. Let L(E) denote the space of all continuous
linear operators from E into itself. For T ∈ L(E), the resolvent set ρ(T ; E) of T consists
of all λ ∈ C such that R(λ, T ) := (λI − T )−1 exists in L(E). The set σ(T ; E) := C \ ρ(T )
is called the spectrum of T . The point spectrum σpt(T ; E) of T consists of all λ ∈ C such
that (λI − T ) is not injective. Contrary to Banach spaces, concerning the spectrum of
an operator T on the Fréchet space E, one may encounter that ρ(T ; E) = ∅ or ρ(T ; E)
fails to be an open set in C. For this reason, some authors prefer to consider the subset
ρ∗(T ; E) of ρ(T ; E) consisting of λ ∈ C such that there exists δ > 0 such that B(λ, δ) :=
{z ∈ C : |z − λ| < δ} ⊆ ρ(T ; E) and {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous in L(E).
Define the Waelbroeck spectrum σ∗(T ; E) := C \ ρ∗(T ; E), which is a closed set containing
σ(T ; E). If T ∈ L(E) with E a Banach space, then σ∗(T ; E) = σ(T ; E).

Given λ ∈ C \ {0}, and h ∈ H(D), the equation f − 1
λTgf = h has a unique solution

given by

f(z) = Rλ,gh(z) := h(0)eg(z)/λ + eg(z)/λ
∫ z

0
e−g(ζ)/λh′(ζ)dζ, z ∈ D.

Lemma 3.1 and Lemma 3.2 are taken from [12]. Their proofs are very close to the case
of entire functions which were considered in [11].

Lemma 3.1. Let E be a locally convex space continuously contained in H(D) that con-
tains the constants. Assume that Tg : E → E is continuous for some non-constant entire
function g such that g(0) = 0. Then, the following statements are equivalent:

(i) λ ∈ ρ(Tg; E).
(ii) Rλ,g : E → E is continuous.
(iii) eg(z)/λ ∈ E and Sλ,gh := eg(z)/λ

∫ z
0 e−g(ζ)/λh′(ζ)dζ, z ∈ C is continuous on the

subspace E0 of E of all functions h ∈ E with h(0) = 0.

In connection with Lemma 3.1, we denote Ap0
α as the subspace of Ap

α which stands for
functions h ∈ Ap

α satisfying h(0) = 0. Similar notation shall be adapted for Ap
α+ and Ap

α−
throughout.
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Lemma 3.2. Let E be a locally convex space continuously contained in H(D) that con-
tains the constants. Assume that Tg : E → E is continuous for some non-constant entire
function g such that g(0) = 0. Then,

{0} ∪ {λ ∈ C \ {0} : eg/λ /∈ E} ⊂ σ(Tg; E).

The following abstract spectral results for Fréchet and (LB)-spaces will be useful in
proving our assertions.

Lemma 3.3 ([2, Lemma 2.1]). Let E =
⋂

n∈N En be a Fréchet space which is the in-
tersection of a sequence of Banach spaces ((En, ||·||n))n∈N satisfying En+1 ⊆ En with
||x||n ≤ ||x||n+1, for all n ∈ N and x ∈ En+1. Let T ∈ L(E). Suppose that for all
n ∈ N, there exists Tn ∈ L(En) such that the restriction of Tn to E (resp. of Tn to En+1)
coincides with T (resp. Tn+1). Then, the following statements hold:

(i) σ(T ; E) ⊆ ∪n∈Nσ(Tn; En) and R(λ, T ) coincides with the restriction of R(λ, Tn) to
E, for all n ∈ N and each λ ∈

⋂
n∈N ρ(Tn; En).

(ii) If ∪n∈Nσ(Tn; En) ⊆ σ(T ; E), then
σ∗(T ; E) = σ(T ; E).

Lemma 3.4 ([3, Lemma 5.2]). Let E = indn∈N(En, ||·||n) be a Hausdorff inductive limit
of Banach spaces. Let T ∈ L(E). Suppose that for each n ∈ N, the restriction Tn of T to
En maps En into itself and Tn ∈ L(En). Then, the following properties are satisfied:

(i) σpt(T ; E) =
⋃

n∈N σpt(Tn; En).
(ii) σ(T ; E) ⊆

⋂
m∈N(

⋃∞
n=m σ(Tn; En)). Moreover, if λ ∈

⋂∞
n=m ρ(Tn; En) for some

m ∈ N, then R(λ, Tn) coincides with the restriction of R(λ, T ) to En, for every
n ≥ m.

(iii) If
⋃∞

n=m σ(Tn; En) ⊆ σ(T ; E), for some m ∈ N, then
σ∗(T ; E) = σ(T ; E).

For every z ∈ D, we define the Möbius transformation

φz(w) := z − w

1 − zw
, w ∈ D.

It is routine to check that the change of variables u = φz(w) gives

1 − |u|2 = (1 − |z|2)(1 − |w|2)
|1 − zw|2

, Ju = (1 − |z|2)2

|1 − zw|4
,

and |1 − zw| = 1 − |z|2

|1 − zu|
.

(3.1)

where Ju is the real Jacobian term. For 1 < p < ∞, and −1 < α < ∞ we have the relation

||f ||p,α ≍
∣∣∣∣f ′∣∣∣∣

p,p+α + |f(0)|, ∀f ∈ H(D). (3.2)

One inequality is a classical result due to Hardy-Littlewood [14, Theorem 5.6], and the
reverse inequality is easily proved by the methods in [14, Chapter 5]. Now we state our
first result concerning the spectrum of the Volterra operator.
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Proposition 3.5. Let 1 < p < ∞, and 0 < α < ∞. If g ∈ B1, then

(1) The spectrum of Volterra operator Tg : Ap
α+ → Ap

α+ satisfies

σ(Tg; Ap
α+) =

⋃
µ>α

σ(Tg; Ap
µ).

(2) The spectrum of Volterra operator Tg : Ap
α− → Ap

α− satisfies

σ(Tg; Ap
α−) =

⋂
µ<α

 ⋃
η∈(µ,α)

σ(Tg; Ap
η)

 .

Proof. (1) One inclusion follows by Lemma 3.3. For the other inclusion, assume that
λ /∈ σ(Tg; Ap

α+). Then, by Lemma 3.1 eg/λ ∈ Ap
µ, for every µ > α. We show λ /∈⋃

µ>α σ(Tg; Ap
µ). Suppose not. Then, there exists β > α such that λ ∈ σ(Tg; Ap

β). Applying
Lemma 3.1 once again for Ap

β, we see that Sλ,g /∈ L(Ap0

β ). On the other hand, using the
change of variables u = φz(ζ) for an arbitrary z ∈ D, by (3.1) we obtain

∞ >
∣∣∣∣∣∣eg/λ

∣∣∣∣∣∣p
p,β

= (β + 1)
∫
D

∣∣∣∣e g(u)
λ

∣∣∣∣p(1 − |u|2)βds(u)

≍
∫
D

∣∣∣∣e g(ζ)
λ

∣∣∣∣p
(

1 − |z|2

|1 − zζ|2

)2+β

(1 − |ζ|2)βds(ζ).

Then, by [13, Theorem 1], the multiplication operator Meg/λ is continuous on Ap
β. Thus,

ω(z) := ep Re g(z)
λ (1 − |z|2)β is a weight function in D, and as illustrated in [5, p. 202]

the weighted Bergman space norm induced by ω satisfies the property
∣∣∣∣∣∣e−g/λSλ,gh

∣∣∣∣∣∣
p,ω

≍∣∣∣∣∣∣(e−g/λSλ,gh)′
∣∣∣∣∣∣

p,ω̂
=
∣∣∣∣∣∣e−g/λh′

∣∣∣∣∣∣
p,ω̂

, for h ∈ Ap0

β if we denote ω̂(z) = ω(z)(1 − |z|2)p. But

then, for every h ∈ Ap0

β we obtain by (3.2) that (cf. [5, Theorem 5.1])

||Sλ,gh||pp,β =
∣∣∣∣∣∣∣∣ 1

eg/λ
Sλ,gh

∣∣∣∣∣∣∣∣p
p,ω

≍
∣∣∣∣∣∣∣∣( 1

eg/λ
Sλ,gh

)′∣∣∣∣∣∣∣∣p
p,ω̂

=
∣∣∣∣∣∣∣∣ 1

eg/λ
h′
∣∣∣∣∣∣∣∣p

p,ω̂

= (β + p + 1)
∫
D

∣∣h′(z)
∣∣p(1 − |z|2)β+pds(z)

=
∣∣∣∣h′∣∣∣∣

p,β+p ≍ ||h||pp,β,

which implies that Sλ,g is continuous on Ap0

β . This is a contradiction.

(2) Similarly, one of the inclusions follow by Lemma 3.4. For the other inclusion, assume
that λ /∈ σ(Tg; Ap

α−). We show λ /∈
⋂

µ<α(
⋃

η∈(µ,α) σ(Tg; Ap
η)). Assume contrary. Then,

for every µ < α there exists η ∈ (µ, α) such that λ ∈ σ(Tg; Ap
η). Since λ ∈ ρ(Tg; Ap

α−), by
Lemma 3.1 we have eg/λ ∈ Ap

α− and so there exists β < α such that eg/λ ∈ Ap
µ for every

µ ∈ [β, α). Without loss of any generality, suppose η ≥ β. The rest is very similar to part
(1).

�

Given an analytic function g ∈ D, we denote by gz, z ∈ D its hyperbolic translate
gz(ζ) := g(φz(ζ))−g(z), ζ ∈ D. The following important result shall be quoted for several
occasions.
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Theorem 3.6 ([5, Theorem A; B; 5.1]). Let p > 0 and let α > −1. Let g ∈ B1. Then,
the following statements hold:

(i) σpt(Tg; Ap
α) = ∅.

(ii) For every γ > −2α − 3, the spectrum of the Volterra operator σ(Tg; Ap
α) includes

{0} ∪ {λ ∈ C : sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γ(1 − |ζ|2)αds(ζ) = ∞}. (3.3)

If g′ is rational, then this condition is equivalent to eg/λ /∈ Ap
α.

(iii) There exists g ∈ B1 such that eg/λ ∈ Ap
α, for all λ ∈ C \ {0} but

σ(Tg; Ap
α) ⊃

{
λ ∈ C :

∣∣∣∣λ − p

2(2 + α)

∣∣∣∣ ≤ p

2(2 + α)

}
.

(iv) If g′(z) =
∫
T

dµ(ζ)
ζ−z , z ∈ D for some finite measure µ on the unit circle,

σ(Tg; Ap
α) = {0} ∪ {λ ∈ C \ {0} : eg/λ /∈ Ap

α}

= {0} ∪
{

λ ∈ C \ {0} : sup
ζ∈T

Re µ({ζ})
λ

≥ 2 + α

p

}
.

Theorem 3.7. Let 1 < p < ∞, and 0 < α < ∞. Let g ∈ B1. Then, the following
statements hold.

(1) σpt(Tg; Ap
α+) = ∅.

(2) For every γ ≥ −2α − 3, the set σ(Tg; Ap
α+) contains (3.3).

(3) There exists g ∈ B1 such that eg/λ ∈ Ap
α+, for all λ ∈ C \ {0} but

σ(Tg; Ap
α+) ⊃ {0} ∪

{
λ ∈ C :

∣∣∣∣λ − p

2(2 + α)

∣∣∣∣ <
p

2(2 + α)

}
.

(4) If g′(z) =
∫
T

dµ(ζ)
ζ−z , z ∈ D for some finite measure µ on the unit circle,

(i) The spectrum of the Volterra operator on Ap
α+ reads as

σ(Tg; Ap
α+) = {0} ∪

{
λ ∈ C \ {0} : Re µ({ζ})

λ
>

2 + α

p

}
= {0} ∪ {λ ∈ C \ {0} : eg/λ /∈ Ap

α+}.

(ii) σ∗(Tg; Ap
α+) = σ(Tg; Ap

α+).

Proof. (1) Let Tg : Ap
α+ → Ap

α+ have an eigenvalue λ ∈ C. Suppose that f ∈ Ap
α+ \ {0}

is its corresponding eigenvector. But then, there exists µ > α with f ∈ Ap
µ such that

Tgf = λf in Ap
µ hence λ ∈ σpt(Tg; Ap

µ). This contradicts Theorem 3.6(i).

(2) By Lemma 3.2 we directly have 0 ∈ σ(Tg; Ap
α+). By Proposition 3.5 and Theo-

rem 3.6(ii) we already know that for every γ > −2µ − 3 we have

σ(Tg; Ap
α+) =

⋃
µ>α

σ(Tg; Ap
µ)

⊃
⋃

µ>α

{λ ∈ C : sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γ(1 − |ζ|2)µds(ζ) = ∞}.

We show that the latter includes (3.3). Take any λ ∈ C \ {0} satisfying the equation in
(3.3), and assume contrary. Then, for every ε > 0, given µ := α+ε there exist γµ > −2µ−3
and cµ > 0 such that

sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γµ(1 − |ζ|2)µds(ζ) < cµ. (3.4)
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Since γµ + 2ε > −2α − 3, by (3.1), the change of variables w = φz(ζ) yields

∞ = sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γµ+2ε(1 − |ζ|2)αds(ζ)

= sup
z∈D

(1 − |z|2)α+2+γµ+2ε

ep Re g(z)
λ

∫
D

ep Re g(w)
λ

(1 − |w|2)α

|1 − zw|2α+4+γµ+2ε

(1 − |w|2)ε

(1 − |w|2)ε
ds(w)

≤ sup
z∈D

(1 − |z|2)µ+2+γµ

ep Re g(z)
λ

∫
D

ep Re g(w)
λ

(1 − |w|2)µ

|1 − zw|2µ+4+γµ
ds(w).

By the change of variables u = φz(w) we obtain

sup
z∈D

∫
D

ep Re gz(u)
λ |1 − zu|γµ(1 − |u|2)µds(u) = ∞.

That contradicts (3.4).

(3) Let us choose g ∈ B1 as in Theorem 3.6(iii). Since Ap
α ⊆ Ap

α+, we obtain eg/λ ∈ Ap
α+,

for all λ ∈ C\{0}. We know by Lemma 3.2 that 0 ∈ σ(Tg; Ap
α+). Now let us take λ ∈ C\{0}

with
∣∣∣λ − p

2(2+α)

∣∣∣ < p
2(2+α) . Then, there exists N ∈ N such that

∣∣∣∣λ − p
2(2+(α+ 1

n
))

∣∣∣∣ ≤
p

2(2+(α+ 1
n

)) , for all n ≥ N . Suppose that λ ∈ ρ(Tg; Ap
α+). By Theorem 3.6(iii), λ ∈

σ(Tg; Ap

(α+ 1
n

)), for all n ≥ N . On the other hand, by Proposition 3.5, we have λ ∈⋂
n∈N ρ(Tg; Ap

(α+ 1
n

)). This is a contradiction.

(4) By Proposition 3.5 and Theorem 3.6 (iv),

σ(Tg; Ap
α+) =

⋃
n∈N

σ(Tg; Ap

(α+ 1
n

))

= {0} ∪
⋃

n∈N

{
λ ∈ C \ {0} : Re µ({ζ})

λ
≥

2 + (α + 1
n)

p

}

= {0} ∪
{

λ ∈ C \ {0} : Re µ({ζ})
λ

>
2 + α

p

}
.

For the second equality suppose λ ∈ σ(Tg; Ap
α+). Then by Lemma 3.3(i) λ ∈ ∪µ>ασ(Tg; Ap

µ),
hence there exists β > α with λ ∈ σ(Tg; Ap

β). So by Theorem 3.6(iv), we obtain eg/λ /∈ Ap
β.

Hence eg/λ /∈ Ap
α+. Thus, σ(Tg; Ap

α+) ⊂ {0} ∪ {λ ∈ C \ {0} : eg/λ /∈ Ap
α+}. Combining with

Lemma 3.2 we prove that (i) holds. For part (ii), thanks to Lemma 3.3(ii), it suffices to
make sure that

⋃
µ>α σ(Tg; Ap

µ) ⊆ σ(Tg; Ap
α+). This is true by part (i).

�
Theorem 3.8. Let 1 < p < ∞, and 0 < α < ∞. Let g ∈ B1. Then, the following
statements hold.

(1) σpt(Tg; Ap
α−) = ∅.

(2) For every γ > −2α − 3, the set σ(Tg; Ap
α−) contains (3.3).

(3) There exists g ∈ B1 such that eg/λ ∈ Ap
α−, for all λ ∈ C \ {0} but

σ(Tg; Ap
α−) ⊃

{
λ ∈ C :

∣∣∣∣λ − p

2(2 + α)

∣∣∣∣ ≤ p

2(2 + α)

}
.

(4) If g′(z) =
∫
T

dµ(ζ)
ζ−z , z ∈ D for some finite measure µ on the unit circle,

(i) The spectrum of Tg on Ap
α− reads

σ(Tg; Ap
α−) = {0} ∪

{
λ ∈ C \ {0} : sup

ζ∈T
Re µ({ζ})

λ
≥ 2 + α

p

}
.

(ii) σ∗(Tg; Ap
α−) = σ(Tg; Ap

α−).
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Proof. (1) This is a direct consequence of Lemma 3.4 and Theorem 3.6(i).
(2) By Proposition 3.5 and Theorem 3.6(ii), for every γ > −2η − 3 we have

σ(Tg; Ap
α−)

=
⋂

µ<α

 ⋃
η∈(µ,α)

σ(Tg; Ap
η)


⊃
⋂

µ<α

⋃
η∈(µ,α)

{λ ∈ C : sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γ(1 − |ζ|2)ηds(ζ) = ∞}.

We show that the latter includes (3.3). So we take any λ ∈ C \ {0} satisying the equality
in (3.3), and assume contrary. Then, there exists −1 < µ := α − ε such that for every
µ < η := α − δ < α there are γη > −2η − 3 and cη > 0 satisfying

sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γη (1 − |ζ|2)ηds(ζ) < cη.

Note that for every z, ζ ∈ D we have
1

|1 − zζ|
≤ 1

1 − |ζ|
≤ 2

1 − |ζ|2
.

Since we have γη − δ > −2α − 3, we obtain

∞ = sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γη−δ(1 − |ζ|2)αds(ζ)

≤ 2 sup
z∈D

∫
D

ep Re gz(ζ)
λ |1 − zζ|γη (1 − |ζ|2)ηds(ζ) < cη.

This is a contradiction.
(3) In the selection of g ∈ B1, we follow Theorem 3.6(iii). In [5, p. 229] it is shown that
with this particular choice of g, the function eg/λ belongs to the Hardy space Hp, for every
p > 0. In particular, for every λ ∈ C\{0} we have eg/λ ∈ Ap

(α− 1
n

), for all n ∈ N. Let us take

λ ∈ C \ {0} satisfying
∣∣∣λ − p

2(2+α)

∣∣∣ ≤ p
2(2+α) and suppose that λ ∈ ρ(Tg; Ap

α−). It is clear

that for any n ∈ N we have
∣∣∣∣λ − p

2(2+(α− 1
n

))

∣∣∣∣ ≤ p
2(2+(α− 1

n
)) and hence by Theorem 3.6(iii)

we obtain λ ∈ σ(Tg; Ap

(α− 1
n

)), for any n ∈ N. By Proposition 3.5(2), this is a contradiction.

(4) By Proposition 3.5 and Theorem 3.6(iv) we obtain

σ(Tg; Ap
α−) =

⋂
m∈N

⋃
n≥m

σ(Tg; Ap

(α− 1
n

))

= {0} ∪
⋂

m∈N

⋃
n≥m

{
λ ∈ C \ {0} : sup

ζ∈T
Re µ({ζ})

λ
≥

2 + (α − 1
n)

p

}

= {0} ∪
⋂

m∈N

{
λ ∈ C \ {0} : sup

ζ∈T
Re µ({ζ})

λ
>

2 + (α − 1
m)

p

}

= {0} ∪
{

λ ∈ C \ {0} : sup
ζ∈T

Re µ({ζ})
λ

≥ 2 + α

p

}
.

This proves part (i). For part (ii), let us adapt the argument from [3, Proposition 2.9]
(also used in [12, Proposition 3.9] and [17, Theorem 2.7(3)]). Let λ /∈ σ(Tg; Ap

α−).
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Then there exist r > 0 and N ∈ N such that for every n ≥ N ,

B(λ, r) ∩
(

{0} ∪
{

λ ∈ C \ {0} : sup
ζ∈T

Re µ({ζ})
λ

≥ 2 + α

p

})
= ∅.

Therefore, B(λ, r) ⊂ ρ(Tg; Ap
α−), as well as B(λ, r) ⊂ ρ(Tg; Ap

(α− 1
n

)), for all n ≥ N .

In particular, the set {R(δ, Tg) : δ ∈ B(λ, r)} is equicontinuous, that is, operator norm
bounded in L(Ap

(α− 1
n

)), for all n ≥ N . It remains to show that {R(δ, Tg) : δ ∈ B(λ, r)}
is equicontinuous in Ap

α−. Since Ap
α− is a (DFS)-space, we can apply Banach-Steinhaus

principle. So it suffices to show that {R(δ, Tg)f : δ ∈ B(λ, r)} is a bounded set in Ap
α−,

for every f ∈ Ap
α−. Let us fix f ∈ Ap

α−. Then, f ∈ Ap

(α− 1
n

), for some n ≥ N . So

{R(δ, Tg)f : δ ∈ B(λ, r)} is a bounded set in Ap

(α− 1
n

), and hence in Ap
α−.

�
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