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Abstract
In this paper, we consider two Ma–Minda-type subclasses of starlike and convex func-
tions associated with the normalized analytic function φNe(z) = 1 + z − z3/3 that maps
an open unit disk onto the Nephroid shaped bounded domain in the right–half of the
complex plane. We investigate convolution and quasi-Hadamard product properties for
the functions belonging to such classes. In addition, we compute best possible estimates
on third order Hermitian–Toeplitz determinant and non-sharp estimates on certain third
order Hankel determinants for the starlike functions associated with the interior region of
Nephroid.
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1. Introduction
The coefficient inequalities of the normalized analytic univalent functions yield it’s geo-

metric properties related information. Let D = {z ∈ C : |z| < 1} denotes the open unit
disk and let A be the class of all analytic functions f of the form

f(z) = z +
∞∑

n=2
anz

n (1.1)

defined in D and normalized by the conditions f(0) = 0 and f ′(0) = 1. Denote by S the
subclass of A containing all the univalent functions in D. Let Ω be the family of analytic
functions w satisfying the conditions w(0) = 0, |w(z)| < 1 for all z ∈ D. If f and g are
analytic functions in D, then we say f is subordinate to g, written as f ≺ g, if there exists
a function w ∈ Ω such that f = g ◦ w. In particular, if g ∈ S, the equivalence condition
f ≺ g ⇔ f(0) = g(0) and f(D) ⊂ g(D) holds [8]. The function f ∈ A is starlike if f(D)
is starlike with respect to the origin and the function f ∈ A is convex if f(D) is convex.
In terms of subordination, the function f ∈ A is starlike and convex if and only if the
subordination relations zf ′(z)/f(z) ≺ (1 + z)/(1 − z) and zf ′′(z)/f ′(z) ≺ 2z/(1 − z) for
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all z ∈ D respectively hold. Several subclasses of the starlike and convex functions were
studied by many authors [13,15,29,34–36] in the literature.

Using the concept of subordination, Ma and Minda [28] introduced and studied the
unified classes S∗(φ) and C(φ) of starlike and convex functions, where φ is the analytic
function satisfying Re(φ(z)) > 0 for all z ∈ D. These classes contain various subclasses of
starlike and convex functions. In recent past, several Ma–Minda-type classes of starlike
and convex functions have been introduced and studied by various authors [16,23,37,38].
In this paper, we consider two subclasses S∗

Ne and CNe of Ma–Minda classes S∗(φ) and
C(φ) respectively which are associated with the analytic function φNe(z) = 1 + z − z3/3
that is univalent, starlike with respect to 1 and maps D onto a Nephroid shaped bounded
symmetric region with respect to real axis in the right–half plane. Analytically, these
classes are defined as

S∗
Ne =

{
f ∈ S : zf

′(z)
f(z)

≺ φNe(z)
}

and CNe =
{
f ∈ S : 1 + zf ′′(z)

f ′(z)
≺ φNe(z)

}
for all z ∈ D. Recently, these classes were introduced by Wani and Swaminathan [40].
They studied several properties of these classes such as the structural formula, growth
and distortion theorems, Fekete-Szegö functionals, radius estimates [41] and subordination
results.

If f, g ∈ A, where f is given by (1.1) and g is given by g(z) = z +
∑∞

n=2 bnz
n, then the

convolution or Hadamard product of f and g, denoted by f ∗ g, is defined by

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑

n=2
anbnz

n.

It is noted that if g(z) = z/(1 − z), then f ∗ g = f and if g(z) = z/(1 − z)2, then
f ∗ g = zf ′ for all f ∈ A. Further, let T be the class of analytic functions with negative
coefficients of the form

f(z) = a1z −
∞∑

n=2
anz

n, (a1 > 0; an ≥ 0) (1.2)

defined in D. For the functions, f defined by (1.2) and g(z) = b1z −
∑∞

n=1 bnz
n, the

quasi-Hadamard product (or convolution) is given by

f(z) ∗ g(z) = a1b1z −
∞∑

n=2
anbnz

n.

The quasi-Hadamard of two or more functions were defined by Owa [30] and Kumar [19].
Let the functions fi (i = 1, ...,m) and gj (j = 1, ..., s) of the form

fi(z) = a1,iz −
∞∑

n=2
an,iz

n, (a1,i > 0; an,i ≥ 0) (1.3)

gj(z) = b1,jz −
∞∑

n=2
bn,jz

n, (b1,j > 0; bn,j ≥ 0) (1.4)

be analytic in D. Denote by h the quasi-Hadamard product f1 ∗f2 ∗ ...∗fm ∗g1 ∗g2 ∗ ...∗gs

is defined by

h(z) =
{ m∏

i=1
a1,i

s∏
j=1

b1,j

}
z −

∞∑
n=2

{ m∏
i=1

an,i

s∏
j=1

bn,j

}
zn. (1.5)

In 2000, Hossen [12] established certain results related to quasi-Hadamard product for
p−valent starlike and p−valent convex functions. Aouf [3] proved a theorem concerning to
quasi-Hadamard product for certain analytic functions. Using uniformly starlikeness and
uniformly convexity, Breaz and El-Ashwah [5] studied quasi-Hadamard product between
some p−valent and uniformly analytic functions with negative coefficients.
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Hankel and Hermitian-Toeplitz determinants have important role in various branches
of pure and applied mathematics. Let ⟨ak⟩k≥1 denotes a sequence of coefficients of the
normalized analytic function f ∈ A. The coefficient estimates of normalized univalent
functions in the disk D give many useful information regarding the geometric properties.
For instance, the estimate on second coefficient of the function f ∈ S yields the growth
and distortion theorems. This idea inspires researchers to determine the estimates on
the coefficient functionals such as the Hermitian-Toepltiz and Hankel determinants. For
q, n ∈ N, the Hankel determinant of order n associated with the sequence ⟨ak⟩k≥1 is
defined by

H(n)
q (f) := det{an+i+j−2}q

i,j , 1 ≤ i, j ≤ q, a1 = 1. (1.6)
For the functions f ∈ S and f ∈ S∗, Hankel determinants were discussed initially by

Pommerenke [31,32]. Later, Hayman (1968) [11] computed the best possible bound κn1/2

on Hankel determinant |H2,n(f)| for general univalent functions, where κ as an absolute
constant. In 2013, authors [26] determined sharp estimates on second Hankel determinant
for Ma-Minda starlike and convex functions. In 2010, Babalola [4] first computed bounds
on the third Hankel determinant for analytic functions with bounded-turning as well as
starlike and convex functions. Later on, Zaprawa [43] obtained improved bounds for third
order Hankel determinant obtained by Babalola [4] but these bounds were not sharp.
Kowalczyk et al. [17] established sharp inequality |H(1)

3 (f)| ≤ 4/135 for convex functions.
Recently, Kumar et al. [22] improved certain existing bound on the third Hankel deter-
minant for some classes of close-to-convex functions. For recent results on third Hankel
determinant, see [10, 24, 25, 39]. Hankel determinants are closely related to Hermitian-
Toeplitz determinants [18, 42]. The third order Hermitian-Toeplitz determinant T3,1(f)
for the function f ∈ A is given by

|T3,1(f)| := 2Re(a2
2 ā3) − 2|a2|2 − |a3|2 + 1. (1.7)

The sharp estimates on certain symmetric Toeplitz determinants were evaluated for uni-
valent functions and typically real functions by Ali et al. [2]. Further, the best possible
lower and upper bounds for the second and third-order Hermitian–Toeplitz determinants
are estimated over the classes of starlike and convex functions of order α [7]. Jastrzȩbski
[14] computed best possible upper and lower bounds of second and third order Hermitian–
Toeplitz determinants for some close-to-star functions. Recently, Kumar and Kumar [21]
investigate sharp upper and lower bounds on third order Hermitian-Toeplitz determinant
for the classes of strongly starlike functions.

Motivated by the above stated research work, second section provides convolution prop-
erties of the classes S∗

Ne and CNe. Further, certain results associated with quasi-Hadamard
product for such classes are established in Section 3. In the last section, we obtain best
possible lower and upper bounds on the third-order Hermitian–Toeplitz determinant for
starlike functions in the class S∗

Ne. In addition, non-sharp estimates on third–order Hankel
determinants H(1)

3 (f), H(2)
3 (f) and H(3)

3 (f) for the functions f belonging to the class S∗
Ne

are also computed.

2. Convolution properties
In view of the work done in [6, 9], we derive convolution properties of the classes S∗

Ne
and CNe. We first begin with necessary and sufficient convolution conditions of the class
S∗

Ne.
Theorem 2.1. The function f defined by (1.2) is in the class S∗

Ne if and only if
1
z

[
f(z) ∗ z − Lz2

(1 − z)2

]
̸= 0 (2.1)

for all L = 3+3eiθ−e3iθ

3eiθ−e3iθ , where θ ∈ [0, 2π] and also L = 1.
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Proof. Suppose the function f ∈ S∗
Ne, then we have

zf ′(z)
f(z)

≺ 1 + z − z3

3
. (2.2)

Since the function zf ′(z)/f(z) is analytic in D, it follows f(z) ̸= 0, z ∈ D∗ = D\{0}; that
is, (1/z)f(z) ̸= 0 and this is equivalent to the fact that (2.1) holds for L = 1. In view of
relation (2.2), we have

zf ′(z)
f(z)

= 3 + 3w(z) − w3(z)
3

, (2.3)

where w ∈ Ω. The expression (2.3) is equivalent to

zf ′(z)
f(z)

̸= 3 + 3eiθ − e3iθ

3
(2.4)

so that
1
z

[
3zf ′(z) − (3 + 3eiθ − e3iθ)f(z)

]
̸= 0. (2.5)

Since we have convolution relations f(z) ∗ z
1−z = f(z) and f(z) ∗ z

(1−z)2 = zf ′(z), then
expression (2.5) is written as

1
z

[
f(z) ∗

( 3z
(1 − z)2 − (3 + 3eiθ − e3iθ)z

(1 − z)

)]
̸= 0.

Therefore, we have

e3iθ − 3eiθ

z

[
f(z) ∗

z − 3+3eiθ−e3iθ

3eiθ−e3iθ z2

(1 − z)2

]
̸= 0, (2.6)

which completes the necessary part of Theorem 2.1.
Conversely, because assumption (2.1) holds for L = 1, it follows that (1/z)f(z) ̸= 0 for

all z ∈ D, hence the function ψ(z) = zf ′(z)/f(z) is analytic in D, and it is regular at z = 0
with ψ(0) = 1. Since it was shown in the first part of the proof that assumption (2.1) is
equivalent to (2.4), we have

zf ′(z)
f(z)

̸= 3 + 3eiθ − e3iθ

3
(2.7)

and if we denote

φNe(z) = 3 + 3z − z3

3
(2.8)

relation (2.7) shows that the simply connected domain ψ(D) is included in a connected
component of C\φNe(∂D). Using the fact ψ(0) = φNe(0) together with the univalence of
the function φNe, it follows that ψ ≺ φNe, which represents (2.2). Thus, f ∈ S∗

Ne which
completes the proof of Theorem 2.1. �

Theorem 2.2. A necessary and sufficient condition for the function f defined by (1.2) to
be in the class S∗

Ne is that

a1 −
∞∑

n=2

3 − 3n+ 3eiθ − e3iθ

3eiθ − e3iθ
anz

n−1 ̸= 0. (2.9)

Proof. From Theorem 2.1, f ∈ S∗
Ne if and only if

1
z

[
f(z) ∗ z − Lz2

(1 − z)2

]
̸= 0 (2.10)
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for all L = 3+3eiθ−e3iθ

3eiθ−e3iθ and also L = 1. The left-hand side of (2.10) is written as

1
z

[
f(z) ∗

(
z

(1 − z)2 − Lz2

(1 − z)2

)]
= 1
z

{
zf ′(z) − L(zf ′(z) − f(z))

}
= a1 −

∞∑
n=2

(n(1 − L) + L)anz
n−1

= a1 −
∞∑

n=2

3 − 3n+ 3eiθ − e3iθ

3eiθ − e3iθ
anz

n−1,

which completes the desired proof. �
We next determine coefficient estimate for a function of form (1.2) to be in the class

S∗
Ne.

Theorem 2.3. If the function f defined by (1.2) satisfies the following inequality
∞∑

n=2
(3n− 1)|an| ≤ 2a1, (2.11)

then f ∈ S∗
Ne.

Proof. According to the expression(2.9), a simple computation gives∣∣∣∣a1 −
∞∑

n=2

3 − 3n+ 3eiθ − e3iθ

3eiθ − e3iθ
anz

n−1
∣∣∣∣ ≥ a1 −

∞∑
n=2

∣∣∣∣3 − 3n+ 3eiθ − e3iθ

3eiθ − e3iθ

∣∣∣∣|an|

= a1 −
∞∑

n=2

| − (3n− 3) + (3eiθ − e3iθ)|
|3eiθ − e3iθ|

|an|

≥ a1 −
∞∑

n=2

3n− 1
2

|an| ≥ 0,

if the inequality (2.11) holds. Hence, the desired proof is completed. �
By making use of the well-known Alexander relation between starlike and convex func-

tions and in view of Theorem 2.1, following necessary and sufficient convolution conditions
for the class CNe are given.

Theorem 2.4. The function f defined by (1.2) is in the class CNe if and only if
1
z

[
f(z) ∗ z + [1 − 2L]z2

(1 − z)3

]
̸= 0 (2.12)

for all L = 3+3eiθ−e3iθ

3eiθ−e3iθ , where θ ∈ [0, 2π], and also L = 1.

Reasoning along the similar lines as the proof of the Theorem 2.2 and Theorem 2.3, we
establish following results for the class CNe. We are omitting the details.

Theorem 2.5. A necessary and sufficient condition for the function f defined by (1.2) to
be in the class CNe is that

a1 −
∞∑

n=2
n

3 − 3n+ 3eiθ − e3iθ

3eiθ − e3iθ
anz

n−1 ̸= 0. (2.13)

Theorem 2.6. If the function f defined by (1.2) satisfies the following inequality
∞∑

n=2
n(3n− 1)|an| ≤ 2a1, (2.14)

then f ∈ CNe.
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3. Quasi-Hadamard product properties
In this section, we obtain quasi-Hadamard product of the classes S∗

Ne and CNe. In order
to prove further results in this section, we need to define a class S(c)Ne which as follows:
A function f of the form (1.2) is in S(c)Ne if and only if the inequality

∞∑
n=2

nc(3n− 1)an ≤ 2a1

holds for any fixed non-negative real number c. It is noted that for c = 1, S(1)Ne ≡ CNe,
and for c = 0, S(0)Ne ≡ S∗

Ne. Therefore for any positive integer c, following inclusion
relation holds:

S(c)Ne ⊂ S(c−1)Ne ⊂ ... ⊂ S(2)Ne ⊂ CNe ⊂ S∗
Ne.

Theorem 3.1. Let the functions fi defined by (1.3) be in the class S∗
Ne for every i =

1, 2, ...m. Then the quasi-Hadamard product f1 ∗ f2 ∗ ... ∗ fm belongs to the class S(m−1)Ne.

Proof. To prove the theorem, we need to show that
∞∑

n=2

[
nm−1(3n− 1)

m∏
i=1

an,i

]
≤ 2

m∏
i=1

a1,i.

Since fi ∈ S∗
Ne, we have

∞∑
n=2

(3n− 1)an,i ≤ 2a1,i (3.1)

for every i = 1, 2, ...m. Thus,
(3n− 1)an,i ≤ 2a1,i

or
an,i ≤ 2

(3n− 1)
a1,i

for every i = 1, 2, ...m. Since 3n−1
2 > n for every n ≥ 2, thus 2

3n−1 <
1
n . Hence, the right

side of the last inequality not greater than n−1a1,i. Thus, we obtain

an,i ≤ n−1a1,i. (3.2)

By making use of the inequality (3.2) for i = 1, 2, ...m − 1 and the inequality (3.1) for
i = m, we get

∞∑
n=2

[
nm−1(3n− 1)

m∏
i=1

an,i

]
≤

∞∑
n=2

[
nm−1(3n− 1)an,m

{
n−(m−1)

m−1∏
i=1

a1,i

}]

=
∞∑

n=2
(3n− 1)an,m

{ m−1∏
i=1

a1,i

}

≤ 2
m∏

i=1
a1,i.

Since S(m−1)Ne ⊂ S(m−2)Ne ⊂ ... ⊂ S(0)Ne ≡ S∗
Ne and therefore, f1 ∗f2 ∗ ...∗fm ∈ S(m−1)Ne.

This completes the proof. �

Theorem 3.2. Let the functions fi defined by (1.3) be in the class CNe for every i =
1, 2, ...m. Then the quasi-Hadamard product f1 ∗f2 ∗ ...∗fm belongs to the class S(2m−1)Ne.

Proof. To prove the theorem, we need to show that
∞∑

n=2

[
n2m−1(3n− 1)

m∏
i=1

an,i

]
≤ 2

m∏
i=1

a1,i.
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Since fi ∈ CNe, we have
∞∑

n=2
n(3n− 1)an,i ≤ 2a1,i (3.3)

for every i = 1, 2, ...m. Thus
n(3n− 1)an,i ≤ 2a1,i

or
an,i ≤ 2

n(3n− 1)
a1,i

for every i = 1, 2, ...m. Since n(3n−1)
2 > n2 for every n ≥ 2, thus 2

n(3n−1) <
1

n2 . Then the
right side of the last inequality not greater than n−2a1,i. Thus,

an,i ≤ n−2a1,i (3.4)

for every i = 1, 2, ...m. By making use of the inequality (3.4) for i = 1, 2, ...m− 1 and the
inequality (3.3) for i = m, we get

∞∑
n=2

[
n2m−1(3n− 1)

m∏
i=1

an,i

]
≤

∞∑
n=2

[
n2m−1(3n− 1)an,m

{
n−2(m−1)

m−1∏
i=1

a1,i

}]

=
∞∑

n=2
n(3n− 1)an,m

{ m−1∏
i=1

a1,i

}

≤ 2
m∏

i=1
a1,i.

Since S(2m−1)Ne ⊂ S(2m−2)Ne ⊂ ... ⊂ S(1)Ne ≡ CNe, thus, f1 ∗ f2 ∗ ... ∗ fm ∈ S(2m−1)Ne.
This completes the proof. �

Theorem 3.3. Let the functions fi defined by (1.3) be in the class CNe for every i =
1, 2, ...m; and let the functions gj defined by (1.4) be in the class S∗

Ne for every j = 1, 2, ...s.
Then the quasi-Hadamard product f1 ∗ f2 ∗ ... ∗ fm ∗ g1 ∗ g2 ∗ ... ∗ gs belongs to the class
S(2m+s−1)Ne.

Proof. To prove the theorem, we need to show that
∞∑

n=2

[
n2m+s−1(3n− 1)

{ m∏
i=1

an,i

s∏
j=1

bn,j

}]
≤ 2

{ m∏
i=1

a1,i

s∏
j=1

b1,j

}
.

Since fi ∈ CNe, we have
∞∑

n=2
n(3n− 1)an,i ≤ 2a1,i

for every i = 1, 2, ...m, thus it is noted that

n(3n− 1)an,i ≤ 2a1,i

or
an,i ≤ 2

n(3n− 1)
a1,i.

The right side of the last inequality not greater than n−2a1,i. Thus,

an,i ≤ n−2a1,i (3.5)

for every i = 1, 2, ...m. Similarly, since gj ∈ S∗
Ne, we have

∞∑
n=2

(3n− 1)bn,j ≤ 2b1,j (3.6)
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for every j = 1, 2, ...s. Hence, we obtain
bn,j ≤ n−1b1,j . (3.7)

By using the inequality (3.5) for i = 1, 2, ...m, the inequality(3.7) for j = 1, 2, ...s− 1 and
the inequality (3.6) for j = s, we get

∞∑
n=2

[
n2m+s−1(3n− 1)

{ m∏
i=1

an,i

s∏
j=1

bn,j

}]

≤
∞∑

n=2

[
n2m+s−1(3n− 1)bn,s

{
n−2mn−(s−1)

m∏
i=1

a1,i

s−1∏
j=1

b1,j

}]

=
∞∑

n=2
(3n− 1)bn,s

{ m∏
i=1

a1,i

s−1∏
j=1

b1,j

}

≤ 2
{ m∏

i=1
a1,i

s∏
j=1

b1,j

}
.

Since S(2m+s−1)Ne ⊂ S(2m+s−2)Ne ⊂ ... ⊂ S(2)Ne ⊂ CNe ⊂ S∗
Ne, we conclude the required

result. �

4. Third order Hermitian–Toeplitz and Hankel determinants
The first result of this section provides the best possible lower and upper bounds for

the Hermitian–Toeplitz determinants of third order for the class S∗
Ne. In order to prove

this result, we need the following lemma due to Libera and Zlotkiewicz:

Lemma 4.1. [27, Lemma 3, p. 254] Let P be the class of analytic functions having the
Taylor series of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · (4.1)
satisfying the condition Re(p(z)) > 0 (z ∈ D). Then

2p2 = p2
1 + (4 − p2

1)ξ
for some ξ ∈ D.

Theorem 4.2. Let the function f ∈ A be in the class S∗
Ne. Then the best possible bounds

on third order Hermitian–Toeplitz are given by

−1
4

≤ |T3,1(f)| ≤ 1.

Proof. Let the function f ∈ S∗
Ne. Then, we have zf ′(z)/f(z) = 1+w(z)−w3(z)/3, where

w(z) = c1z + c2z
2 · · · ∈ Ω. Therefore, for some p ∈ P of the form (4.1), it is noted that

zf ′(z)
f(z)

= 5(p(z))3 + 15(p(z))2 + 3p(z) + 1
3(p(z) + 1)3 . (4.2)

On equating the coefficients of like power terms, we get

a2 = p1
2

and a3 = p2
4
. (4.3)

In view of (4.3) and Lemma 4.1, for some ξ ∈ D, we have

2Re(a2
2 a3) = 2Re

(p2
1

4
.
1
4
p2

)
= 1

16
p2

1(p2
1 + (4 − p2

1)Re(ξ))

= 1
16

(p4
1 + (4 − p2

1)p2
1Re(ξ)), (4.4)
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2|a2|2 = 1
2
p2

1, (4.5)
and

|a3|2 =
∣∣∣∣1
4

(p2)
∣∣∣∣2

= 1
16

(
p4

1 + (4 − p2
1)2|ξ|2 + 2(4 − p2

1)p2
1Re(ξ)

)
. (4.6)

In view of expressions (1.7), (4.4), (4.5) and (4.6), we have

|T3,1(f)| : = 1 + 1
64

(3p4
1 − 32p2

1 − (4 − p2
1)2|ξ|2 + 2(4 − p2

1)p2
1Re(ξ))

= F (p2
1, |ξ|, Re(ξ)). (4.7)

Making use of inequality −Reξ ≤ |ξ| ≥ Reξ, above expression is written as

|T3,1(f)| : ≤ 1 + 1
64

(3x2 − 32x− (4 − x)2y2 + 2(4 − x)xy)) = F (x, y)

and

|T3,1(f)| : ≥ 1 + 1
64

(3x2 − 32x− (4 − x)2y2 − 2(4 − x)xy)) = G(x, y),

where p2 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1]. By making use of second derivative test for
function of two variable, we note that F (x, y) has no extreme point in the interior region
of the rectangular domain S = [0, 4]× [0, 1]. Therefore, the function F (x, y) has maximum
value on the boundary of domain S that is 1. In similar way, the function G(x, y) has
the minimum value in the domain S that is −1/4. The analysis done on the functions F
and G for getting extreme values gives the desired inequality. The upper and the lower
bounds are sharp for the function fu and fl, respectively, which are defined by

zf ′
u(z)

fu(z)
= 1 + z3 − 1

3
z9 and zf ′

l (z)
fl(z)

= 1 + z − 1
3
z3.

�
Next, we provide non-sharp upper bounds on some Hankel determinants of third order

for the functions in the class S∗
Ne. In order to prove results related to Hankel determinants,

we need following lemmas.

Lemma 4.3. [1, Lemma 3, p. 66] Let the function p ∈ P, 0 ≤ β ≤ 1 and β(2β−1) ≤ δ ≤ β.
Then

|p3 − 2βp1p2 + δp3
1| ≤ 2.

Lemma 4.4. [33, Lemma 2.3, p. 507] Let p ∈ P. Then for all n,m ∈ N,

|µpnpm − pm+n| ≤
{

2, 0 ≤ µ ≤ 1;
2|2µ− 1|, elsewhere.

If 0 < µ < 1, then the inequality is sharp for the function p(z) = (1 + zm+n)/(1 − zm+n).
In the other cases, the inequality is sharp for the function p0(z) = (1 + z)/(1 − z).

Lemma 4.5. [20] Let p ∈ P. Then, for any real number µ, the following holds:

|µp3 − p3
1| ≤

{
2|µ− 4|, µ ≤ 4

3 ;
2µ

√
µ

µ−1 , µ > 4
3 .

The result is sharp. If µ ≤ 4
3 , equality holds for the function p0(z) := (1 + z)/(1 − z), and

if µ > 4
3 , then equality holds for the function

p1(z) := 1 − z2

z2 − 2
√

µ
µ−1 z + 1

.
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Theorem 4.6. Let the function f ∈ A be in the class S∗
Ne. Then,

(i) |H(1)
3 (f)| ≤ 0.925696,

(ii) |H(2)
3 (f)| ≤ 1.6225,

(iii) |H(3)
3 (f)| ≤ 1.34575.

Proof. In view of (1.6), the third order Hankel determinants H(1)
3 (f), H(2)

3 (f) and H(3)
3 (f)

for the functions f ∈ A are given by

H
(1)
3 (f) =a3(a2a4 − a2

3) − a4(a4 − a2a3) + a5(a3 − a2
2), (4.8)

H
(2)
3 (f) =a2(a2a6 − a2

5) − a3(a3a6 − a4a5) + a4(a3a5 − a2
4), (4.9)

H
(3)
3 (f) =a3(a5a7 − a2

6) − a4(a4a7 − a5a6) + a5(a4a6 − a2
5). (4.10)

Since the function f ∈ S∗
Ne, then from expression (4.2), we have

zf ′(z)
f(z)

= 1 + a2z + (2a3 − a2
2)z2 + (a3

2 − 3a2a3 + 3a4)z3 + (−a4
2 + 4a2

2a3 − 4a2a4

− 2a2
3 + 4a5)z4 + (a5

2 − 5a3
2a3 + 5a2

2a4 + 5a2a
2
3 − 5a2a5 − 5a3a4 + 5a6)z5

+ (−a6
2 + 6a4

2a3 − 6a3
2a4 − 9a2

2a
2
3 + 6a2

2a5 + 12a2a3a4 − 6a2a6 + 2a3
3

− 6a3a5 − 3a2
4 + 6a7)z6 + · · ·

and
5(p(z))3 + 15(p(z))2 + 3p(z) + 1

3(p(z) + 1)3 =1 + p1z

2
+ (p2

2
− p2

1
4

)z2 + 1
12

(p3
1 − 6p1p2 + 6p3)z3

+ 1
4

(p2
1p2 − 2p1p3 − p2

2 + 2p4)z4 + 1
32

(−p5
1 + 8p2

1p3

+ 8p1p
2
2 − 16p1p4 − 16p2p3 + 16p5)z5 + 1

192
(7p6

1

− 30p4
1p2 + 48p2

1p4 + 96p1p2p3 − 96p1p5 + 16p3
2

− 96p2p4 − 48p2
3 + 96p6)z6 + · · · .

On equating the coefficients of like power of z, we have

a4 = 1
72

(−p3
1 − 3p1p2 + 12p3), (4.11)

a5 = 1
576

(5p4
1 − 12p2

1p2 − 18p2
2 − 24p1p3 + 72p4), (4.12)

a6 = 1
5760

(−27p5
1 + 160p3

1p2 − 72p2
1p3 − 336p2p3 − 6p1(7p2

2 + 36p4) + 576p5), (4.13)

a7 = 1
103680

(262p6
1 − 2235p4

1p2 + 2352p3
1p3 + 36p2

1

(
97p2

2 − 24p4
)

− 72p1(7p2p3 + 48p5) + 90
(
p3

2 − 60p2p4 − 32p2
3 + 96p6

)
). (4.14)

After rearrangement of terms and on applying triangle inequality, the expressions given
by (4.11) and (4.12) are written as

|a4| ≤ 1
6

∣∣∣∣p3 − 1
4
p1p2 − 1

12
p3

1

∣∣∣∣ , (4.15)

and

576|a5| ≤12||p1|2
∣∣∣∣ 5
12
p2

1 − p2

∣∣∣∣ + 74
∣∣∣∣−12

37
p1p3 + p4

∣∣∣∣ + 18|p2|2. (4.16)
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In view of the fact |pn| ≤ 2 and by making use of Lemma 4.3 and Lemma 4.4 in inequalities
(4.15) and (4.16), respectively, we have

|a4| ≤ 1
3

and |a5| ≤ 79
144

. (4.17)

(i) For the function f ∈ S∗
Ne, using (4.3), (4.11), (4.12), (4.13) and (4.8), we have

20736H(1)
3 (f) = −49p6

1 + 57p4
1p2 − 198p2

1p
2
2 − 486p3

2 + 312p3
1p3

+ 936p1p2p3 − 576p2
3 − 648p2

1p4 + 648p2p4

= 57p4
1
(

− 49
57
p2

1 + p2
)

+ 936p1p2
(

− 11
52
p1p2 + p3

)
+ 648p4(−p2

1 + p2) + 312p3
(
p3

1 − 24
13
p3

)
− 486p3

2. (4.18)

By making use of triangle inequality, Lemmas 4.4, 4.5 and the fact |pn| ≤ 2, the expres-
sion (4.18) becomes

20736|H(1)
3 (f)| ≤ 57(2)5 + 936(2)3 + 648(2)2 + 312(2)2

(24
13

) √
24
11

+ 486(2)3

= 15792 + 4608
√

6
11
,

which implies

|H(1)
3 (f)| ≤ 329

432
+ 2

3

√
2
33

≈ 0.925696.

(ii) Further, if f ∈ S∗
Ne, using (4.3), (4.11), (4.12), (4.13) and (4.9), we have

29859840H(2)
3 (f) = −34992p7

1 − 1045p9
1 + 207360p5

1p2 + 4320p7
1p2 − 54432p3

1p
2
2 + 11448p5

1p
2
2

− 49680p3
1p

2
2 + 18468p1p

4
2 − 93312p4

1p3 + 7920p6
1p3 − 435456p2

1p2p3

− 12960p4
1p2p3 − 67392p2

1p
2
2p3 + 31104p2

2p3 + 8640p3
1p

2
3 − 138240p3

3

− 32400p5
1p4 + 51840p3

1p2p4 + 108864p1p
2
2p4 + 155520p2

1p3p4

+ 311040p2p3p4 − 233280p1p
2
4 + 746496p2

1p5 − 186624p2
2p5 − 279936p3

1p4.

After rearrangement of terms and using triangle inequality, above expression can be written
as

29859840|H(2)
3 (f)| ≤ 207360|p1|5

∣∣∣∣− 27
160

p2
1 + p2

∣∣∣∣ + 4320|p1|7
∣∣∣∣−209

864
p2

1 + p2

∣∣∣∣
+ 49680|p2|2|p1|3

∣∣∣∣ 53
230

p2
1 − p2

∣∣∣∣ + 12960|p1|4|p3|
∣∣∣∣11
18
p2

1 − p2

∣∣∣∣
+ 31104|p3||p2|2

∣∣∣∣−13
6
p2

1 + p2

∣∣∣∣ + 8640|p3|2
∣∣∣p3

1 − 16p3
∣∣∣

+ 746496|p1|2
∣∣∣∣−3

8
p1p4 + p5

∣∣∣∣ + 51840|p1|3|p4|
∣∣∣∣−5

8
p2

1 + p2

∣∣∣∣
+ 186624|p2|2

∣∣∣∣ 7
12
p1p4 − p5

∣∣∣∣ + 233280|p1||p4|
∣∣∣∣2
3
p1p3 − p4

∣∣∣∣
+ 18468|p1||p2|4 + 311040|p2||p3||p4| + 93312|p1|4|p3|
+ 435456|p1|2|p2||p3| + 54432|p1|3|p2|2.
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Using Lemmas 4.4, 4.5 and the fact |pn| ≤ 2, above inequality becomes

29859840|H(2)
3 (f)| ≤ 207360(2)6 + 4320(2)8 + 54432(2)5 + 49680(2)6 + 18468(2)5

+ 12960(2)6 + 93312(2)5 + 31104(2)4(10
3

) + 435456(2)4

+ 8640(2)3(16)
√

16
15

+ 746496(2)3 + 51840(2)5

+ 186624(2)3 + 233280(2)3 + 311040(2)3

= 256(184787 + 1152
√

15),

which implies that

|H(2)
3 (f)| ≤ 184787

116640
+ 4

27
√

15
≈ 1.6225.

(iii) In view of (4.11), (4.12) and (4.13), a simple calculation yields

1658880(a4a6 − a2
5) = − 5(−5p4

1 + 12p2
1p2 + 24p1p3 + 18(p2

2 − 4p4))2

+ 4(p3
1 + 3p1p2 − 12p3)(27p5

1 − 160p3
1p2 + 42p1p

2
2 + 72p2

1p3

+ 336p2p3 + 216p1p4 − 576p5)
= − 17p8

1 + 284p6
1p2 + 192p5

1p3 − 1572p4
1p

2
2 − 2736p4

1p4 + 7008p3
1p2p3

− 2304p3
1p5 − 1656p2

1p
3
2 + 11232p2

1p2p4 − 6336p2
1p

2
3 − 2304p1p

2
2p3

− 6912p1p2p5 + 6912p1p3p4 − 1620p4
2 + 12960p2

2p4 − 16128p2p
2
3

+ 27648p3p5 − 25920p2
4.

On rearrangement of terms, above expression becomes

1658880(a4a6 − a2
5) =284p6

1

(
− 17

284
p2

1 + p2

)
+ 27648p5

(
−1

4
p1p2 + p3

)
+ 25920

( 4
15
p1p3 − p4

)
+ 11232p2

1p2

(
− 23

156
p2

2 + p4

)
+ 12960p2

2

(
−581

648
p2

2 + p4

)
+ 2736p4

1

( 4
57
p1p3 − p4

)
+ 7008p3

1p3 − 2304p1p
2
2p3 − 6336p2

1p
2
3 − 16128p2p

2
3

− 2304p3
1p5 − 1572p4

1p
2
2. (4.19)

Using triangle inequality and Lemma 4.4 in (4.19), we get

1658880|a4a6 − a2
5| ≤ 1098432,

which implies

|a4a6 − a2
5| ≤ 1907

2880
. (4.20)
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In view of (4.11), (4.12), (4.13) and (4.14), a simple calculation yields

29859840(a4a7 − a5a6) =167p9
1 − 4320p7

1p2 + 576p6
1p3 + 27648p5

1p
2
2 + 30672p5

1p4

− 91584p4
1p2p3 − 12096p4

1p5 − 20880p3
1p

3
2 − 95040p3

1p2p4

+ 108864p3
1p

2
3 − 34560p3

1p6 + 116640p2
1p

2
2p3 + 103680p2

1p2p5

− 41472p2
1p3p4 − 7884p1p

4
2 + 57024p1p

2
2p4 − 62208p1p2p

2
3

− 103680p1p2p6 − 41472p1p3p5 + 139968p1p
2
4 − 50112p3

2p3

+ 93312p2
2p5 − 41472p2p3p4 − 138240p3

3 + 414720p3p6

− 373248p4p5

=4320p7
1

( 167
4320

p2
1 − p2

)
+ 20880p3

1p
2
2

(192
145

p2
1 − p2

)
+ 91584p4

1p3

(
− 1

159
p2

1 + p2

)
+ 108864p2

3

(
−80

63
p3 + p3

1

)
+ 62208p1p2p3

( 3645
19444

p1p2 − p3

)
+ 93312p2

2

(
−29

54
p2p3 + p5

)
− 12096p4

1

(1417
56

p1p4 − p5

)
+ 41472p2p4

(11
8
p1p2 − p3

)
+ 139968p1p4

(
− 8

27
p1p3 + p4

)
+ 103680p1p2 (p1p5 − p6)

+ 34560
(
12p3 − p3

1

)
− 7884p1p

4
2 − 95040p3

1p2p5

− 41472p1p3p5 − 373248p4p5.

By making use of triangle inequality, Lemmas 4.4, 4.5 and the fact |pn| ≤ 2 in above
inequality, we get

29859840|a4a7 − a5a6| ≤ 1152
187

(
6193253 + 48960

√
33 + 42240

√
85

)

implies that

|a4a7 − a5a6| ≤
4
√

5
17

27
+ 33119

25920
+ 1

3
√

33
. (4.21)
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In view of (4.12), (4.13) and (4.14), a simple calculation yields

298598400(a5a7 − a2
6) = 5

(
5p4

1 − 12p2
1p2 − 24p1p3 − 18p2

2 + 72p4
)

(262p6
1 − 2235p4

1p2

+ 2352p3
1p3 + 36p2

1(97p2
2 − 24p4) − 72p1(7p2p3 + 48p5)

+ 90(p3
2 − 60p2p4 − 32p2

3 + 96p6)) − 9(27p5
1 − 160p3

1p2

+ 72p2
1p3 + 42p1p

2
2 + 216p1p4 + 336p2p3 − 576p5)2

= − 11p10
1 + 6165p8

1p2 − 7632p7
1p3 − 52992p6

1p
2
2 − 32256p6

1p4

+ 158544p5
1p2p3 + 193536p5

1p5 + 114840p4
1p

3
2 − 265680p4

1p2p4

− 400896p4
1p

2
3 + 216000p4

1p6 + 312768p3
1p

2
2p3 − 1451520p3

1p2p5

+ 670464p3
1p3p4 − 335556p2

1p
4
2 + 1495584p2

1p
2
2p4 − 202176p2

1p2p
2
3

− 518400p2
1p2p6 + 1161216p2

1p3p5 − 730944p2
1p

2
4 − 219456p1p

3
2p3

+ 746496p1p
2
2p5 − 839808p1p2p3p4 + 345600p1p

3
3 − 1036800p1p3p6

+ 995328p1p4p5 − 8100p5
2 + 518400p3

2p4 − 756864p2
2p

2
3 − 777600p2

2p6

+ 3483648p2p3p5 − 1944000p2p
2
4 − 1036800p2

3p4

+ 3110400p4p6 − 2985984p2
5.

In similar way, on rearrangement of terms and on applying triangle inequality, Lemmas 4.4,
4.5 and the fact |pn| ≤ 2 in above expression, we get

|a5a7 − a2
6| ≤264619

259200
. (4.22)

On applying triangle inequality in (4.10), we have

|H(3)
3 (f)| ≤ |a3||a5a7 − a2

6| + |a4||a4a7 − a5a6| + |a5||a4a6 − a2
5|

and on putting the desired values from (4.17), (4.20), (4.21), (4.22) in above inequality,
we have

|H(3)
3 (f)| ≤ 4

81

√
5
17

+ 8084743
6220800

+ 1
9
√

33
≈ 1.34575.

�
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