Conference Proceeding Science and Technology, 3(1), 2020, 33–36

Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020).

r-Small Submodules

*Celil Nebiyev*1,[∗] *Hasan Hüseyin Ökten*²

¹ *Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey, ORCID: 0000-0002-7992-7225*

²*Technical Sciences Vocational School, Amasya University, Amasya, Turkey, ORCID:0000-0002-7886-0815*

** Corresponding Author E-mail: cnebiyev@omu.edu.tr*

Abstract: In this work, every ring have unity and every module is unital left module. Let M be an R−module and N ≤ M. If $N \ll RadM$, then N is called a radical small (or briefly r-small) submodule of M and denoted by $N \ll r M$. In this work, some properties of these submodules are given.

Keywords: Small Submodules, Maximal Submodules, Radical, Supplemented Modules.

1 Introduction

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If there exists $L \leq M$ such that $M = N + L$ and $N \cap L = 0$, then N is called a *direct summand of* M and denoted by $M = N \oplus L$. Let M be an R−module and $N \leq M$. If $L = M$ for every submodule L of M such that $M = N + L$, then N is called a *small* (or *superfluous*)submodule of M and denoted by $N \ll M$. A module M is said to be *hollow* if every proper submodule of M is small in M. M is said to be *local* if there exists a proper submodule of M which contains all proper submodule of M. Let M be an R−module and $U, V \leq M$. If $M = U + V$ and V is minimal with respect to this property, or equivalently, $M = U + V$ and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is said to be *supplemented* if every submodule of M has a supplement in M. The intersection of maximal submodules of an R-module M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote $RadM = M$. Let M be an R-module and $U, V \leq M$. If $M = U + V$ and $U \cap V \leq RadV$, then V is called a *generalized* (*Radical*) *supplement* (briefly, *Rad-supplement*) of U in M. M is said to be *generalized* (*Radical*) *supplemented* (briefly, *Rad-supplemented*) if every submodule of M has a Rad-supplement in M.

More details about supplemented modules are in [1]-[2]-[5]-[6]. More details about generalized (Radical) supplemented modules are in [3]-[4].

Lemma 1. *Let* M *be an* R−*module. The following assertions are hold.*

(1) If $K \le L \le M$, then $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.

 (2) Let N be an R−module and $f : M \longrightarrow N$ be an R−module homomorphism. If $K \ll M$, then $f(K) \ll N$. The converse is true if f *is an epimorphism and* $Kef \ll M$ *.*

 (3) *If* $K \ll M$, then $\frac{K+L}{L} \ll \frac{M}{L}$ for every $L \leq M$.

(4) If $L \leq M$ and $K \ll L$, then $K \ll M$.

 (5) *If* $K_1, K_2, ..., K_n \ll M$, then $K_1 + K_2 + ... + K_n \ll M$.

(6) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll L_i$ for every $i = 1, 2, ..., n$, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proof: See [1, 2.2] and [5, 19.3]. □

Lemma 2. *Let* M *be an* R−*module. The following assertions are hold.* (1) RadM = \sum $L \ll M$ L*.* (2) *Let* N *be an* R−*module and* f : M −→ N *be an* R−*module homomorphism. Then* f (RadM) ≤ RadN*. If* Kef ≤ RadM*, then* $f(RadM) = Radf(M)$. (3) If $N \leq M$, then $RadN \leq RadM$.

 (4) *For* $K, L \leq M$, $RadK + RadL \leq Rad(K + L)$.

(5) $Rx \ll M$ *for every* $x \in RadM$.

Proof: See [5, 21.5 and 21.6]. □

Lemma 3. *Let* V *be a supplement of* U *in* M*. Then*

 (1) *If* $W + V = M$ *for some* $W \leq U$ *, then V is a supplement of W in M*.

(2) *If* M *is finitely generated, then* V *is also finitely generated.*

(3) If U is a maximal submodule of M, then V is cyclic and $U \cap V = RadV$ is the unique maximal submodule of V.

(4) If $K \ll M$, then V is a supplement of $U + K$ in M.

http://dergipark.gov.tr/cpost

(5) *For* $K \ll M$, $K \cap V \ll V$ *and hence* $Rad V = V \cap RadM$. (6) Let $K \leq V$. Then $K \ll V$ if and only if $K \ll M$.

(7) For $L \leq U$, $\frac{V+L}{L}$ is a supplement of U/L in M/L .

Proof: See [5, 41.1]. □

2 r-Small Submodules

Definition 1. *Let* M *be an* R−*module and* N ≤ M*. If* N RadM*, then* N *is called a radical small* (*or briefly r-small*) *submodule of* M *and denoted by* $N \ll_r M$ *.*

Lemma 4. *Let* M *be an* R−*module.*

- (1) If $M = U \oplus V$ then V is a supplement of U in M. Also U is a supplement of V in M.
- (2) For $M_1, U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is supplemented, then U also has a supplement in M.
- (3) *Let* $M = M_1 + M_2$ *. If* M_1 *and* M_2 *are supplemented, then* M *is also supplemented.*

(4) Let $M_i \leq M$ for $i = 1, 2, ..., n$. If M_i is supplemented for every $i = 1, 2, ..., n$, then $M_1 + M_2 + ... + M_n$ is also supplemented.

- (5) If M is supplemented, then M/L is supplemented for every $L \leq M$.
- (6) *If* M *is supplemented, then every homomorphic image of* M *is also supplemented.*
- (7) *If* M *is supplemented, then* M/RadM *is semisimple.*
- (8) *Hollow and local modules are supplemented.*
- (9) *If* M *is supplemented, then every finitely* M−*generated module is supplemented.*
- (10) $_R$ R is supplemented if and only if every finitely generated R−module is supplemented.

Proof: See [5, 41.2]. □

Lemma 5. *Let* M *be an* R−*module.*

- (1) *If* M *is supplemented, then* M *is Rad-supplemented.*
- $\overline{X}(2)$ *If* V *is a Rad-supplement of* U *in* M *and* $W + V = M$ *for some* $W \leq U$ *, then* V *is a Rad-supplement of* W *in* M.
- (3) *If* U is a maximal submodule of M and V is a Rad-supplement of U in M, U \cap V = RadV is the unique maximal submodule of V.
- (4) If V is a Rad-supplement of U in M and $L \leq U$, then $\frac{V+L}{L}$ is a Rad-supplement of U/L in M/L .
- (4) *If V is a Rad-supplement of U in M and* $L \le U$, *inen* $\frac{L}{L}$ *is a i i* (5) *If V is a Rad-supplement of U in M*, *then RadV* = *V* \cap *RadM*.
- (6) Let $M = U + V$. Then V is a Rad-supplement of U in M if and only if $Rx \ll V$ for every $x \in U \cap V$.
- (7) For $M_1, U \leq M$, if $M_1 + U$ has a Rad-supplement in M and M_1 is Rad-supplemented, then U also has a Rad-supplement in M.

Proof: See [3]-[4]. □

Lemma 6. *Let* M *be an* R−*module.*

(1) Let $M = M_1 + M_2$. If M_1 and M_2 are Rad-supplemented, then M is also Rad-supplemented.

(2) Let $M_i \leq M$ for $i = 1, 2, ..., n$. If M_i is Rad-supplemented for every $i = 1, 2, ..., n$, then $M_1 + M_2 + ... + M_n$ is also Rad*supplemented.*

- (3) If M is Rad-supplemented, then M/L is Rad-supplemented for every $L \leq M$.
- (4) *If* M *is Rad-supplemented, then every homomorphic image of* M *is also Rad-supplemented.*

(5) *If* M *is Rad-supplemented, then* M/RadM *is semisimple.*

- (6) *If* M *is Rad-supplemented, then every finitely* M−*generated module is Rad-supplemented.*
- (7) ^RR *is Rad-supplemented if and only if every finitely generated* R−*module is Rad-supplemented.*

Proof: See [3]-[4]. □

Proposition 1. *Let* M *be an* R−*module and* $N \leq M$ *. If* $N \leq r M$ *, then* $N \leq M$ *.*

Proof: Since $N \ll r M$, $N \ll RadM$. Then by Lemma 1, $N \ll M$.

Proposition 2. Let M be an R-module and $K, L \leq M$. If $K \ll_r M$ and $L \ll_r M$, then $K + L \ll M$.

Proof: Since
$$
K \ll_r M
$$
 and $L \ll_r M$, by Proposition 1, $K \ll M$ and $L \ll M$. Then by Lemma 1, $K + L \ll M$.

Proposition 3. Let M be an R-module and $K_i \ll_r M$ for $i = 1, 2, ..., n$. Then $K_1 + K_2 + ... + K_n \ll M$.

Proof: Clear from Proposition 2. □

Proposition 4. Let M be an R-module and $N \leq M$. If $N \ll_r M$, then $\frac{N+L}{L} \ll \frac{M}{L}$ for every $L \leq M$.

Proof: Since $N \ll r M$, by Proposition 2, $N \ll M$. Then by Lemma 1, $\frac{N+L}{L} \ll \frac{M}{L}$ for every $L \leq M$.

Proposition 5. Let $f : M \longrightarrow N$ be an R-module homomorphism. If $K \ll_{r} M$, then $f(K) \ll N$.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Then by Lemma 1, $f(K) \ll N$.

Proposition 6. *Let* M *be an* R *-module and* $K \leq N \leq M$ *. If* $N \ll_r M$ *, then* $K \ll M$ *.*

Proof: Since $N \ll_r M$, by Proposition 1, $N \ll M$. Then by Lemma 1, $K \ll M$.

Proposition 7. *Let* M *be an* R *-module and* $K \leq N \leq M$ *. If* $K \ll r$ N *, then* $K \ll M$ *.*

Proof: Since
$$
K \ll_r N
$$
, by Proposition 1, $K \ll N$. Then by Lemma 1, $K \ll M$.

Proposition 8. Let M be an R-module and $K \le L \le M$. If $L \ll_r M$, then $L/K \ll M/K$.

Proof: Since $L \ll_r M$, by Proposition 1, $L \ll M$. Then by Lemma 1, $L/K \ll M/K$.

Proposition 9. Let M be an R-module and $K \leq L \leq M$. If $K \ll_r M$ and $L/K \ll_r M/K$, then $L \ll M$.

Proof: Since $K \ll_r M$ and $L/K \ll_r M/K$, by Proposition 1, $K \ll M$ and $L/K \ll M/K$. Then by Lemma 1, $L \ll M$.

Proposition 10. Let M be an R-module $K_1 \leq L_1 \leq M$ and $K_2 \leq L_2 \leq M$. If $K_1 \ll_r L_1$ and $K_2 \ll_r L_2$, then $K_1 + K_2 \ll L_1 + L_2$.

Proof: Since $K_1 \ll_r L_1$ and $K_2 \ll_r L_2$, by Proposition 1, $K_1 \ll L_1$ and $K_2 \ll L_2$. Then by Lemma 1, $K_1 + K_2 \ll L_1 + L_2$.

Proposition 11. Let M be an R-module $K_i \le L_i \le M$ for $i = 1, 2, ..., n$. If $K_i \ll_r L_i$ for every $i = 1, 2, ..., n$, then $K_1 + K_2 + ...$ $K_n \ll L_1 + L_2 + ... + L_n$.

Proof: Since $K_i \ll_r L_i$ for every $i = 1, 2, ..., n$, by Proposition 1, $K_i \ll L_i$. Then by Lemma 1, $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ...$ L_n .

Proposition 12. Let M be an R-module and $M = U + V$ for $U, V \leq M$, If $U \cap V \leq r$ V, then V is a supplement of U in M.

Proof: Since $U \cap V \ll r$, by Proposition 1, $U \cap V \ll V$. Then by definition V is a supplement of U in M.

Proposition 13. Let V be a supplement of U in M. If $K \ll_r M$, then V is a supplement of $U + K$ in M.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, V is a supplement of $U + K$ in M. \Box

Proposition 14. Let V be a supplement of U in M and $K \ll_r M$. Then $K \cap V \ll V$.

Proof: Since $K \ll_{r} M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, $K \cap V \ll V$.

Proposition 15. Let V be a supplement of U in M and $K \leq V$. If $K \ll r$ M. Then $K \ll V$.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, $K \ll V$.

Proposition 16. Let $M = U + V$ and $U \cap V \ll_r V$. Then $\frac{V+L}{L}$ is a supplement of $\frac{U}{L}$ in $\frac{M}{L}$ for every $L \leq U$.

Proof: Since $M = U + V$ and $U \cap V \ll r V$, by Proposition 12, V is a supplement of U in M. Then by Lemma 3, $\frac{V + L}{L}$ is a supplement of $\frac{U}{L}$ in $\frac{M}{L}$ for every $L \leq U$.

Proposition 17. *Let* M *be an* R−*module. If every proper submodule of* M *is r-small in* M*, then* M *is hollow.*

Proof: Since every proper submodule of M is r-small in M, by Proposition 1, every proper submodule of M is small in M. Then by definition M is hollow.

Proposition 18. *Let* M *be an* R−*module. If every proper submodule of* M *is r-small in* M*, then* M *is supplemented.*

Proof: Since every proper submodule of M is r-small in M, by Proposition 17, M is hollow. Then by Lemma 4, M is supplemented.

Proposition 19. *Let* M *be an* R−*module. If every proper submodule of* M *is r-small in* M*, then* M *is Rad-supplemented.*

Proof: Since every proper submodule of M is r-small in M, by Proposition 18, M is supplemented. Then by Lemma 5, M is Rad-supplemented. \Box

Proposition 20. Let R be any ring. If every proper submodule of _RR is r-small in _RR, then every finitely generated R−module is supplemented.

Proof: Since every proper submodule of $_R R$ is r-small in $_R R$, by Proposition 18, $_R R$ is supplemented. Then by Lemma 4, every finitely generated R -module is supplemented. Proposition 21. *Let* R *be any ring. If every proper submodule of* ^RR *is r-small in* ^RR*, then every finitely generated* R−*module is Radsupplemented.*

Proof: Since every proper submodule of $_R R$ is r-small in $_R R$, by Proposition 20, every finitely generated R –module is supplemented. Then by Lemma 5, every finitely generated R−module is Rad-supplemented.

Proposition 22. Let M be an R-module and $M = U + V$ with $U, V \leq M$. If $Rx \ll_r V$ for every $x \in U \cap V$, then V is a Rad-supplement *of* U *in* M*.*

Proof: Since $Rx \ll_r V$ for every $x \in U \cap V$, by Proposition 1, $Rx \ll V$. Then by Lemma 5, V is a Rad-supplement of U in M.

Lemma 7. Let $N \leq M$. If $N \leq M$ and RadM is a supplement submodule in M, then $N \leq r M$.

Proof: Since $N \ll M$ and RadM is a supplement submodule in M, by Lemma 3, $N = N \cap RadM \ll RadM$. Hence $N \ll N$, as desired. \Box

Corollary 1. Let $N \leq M$. If $N \ll M$ and RadM is a direct summand of M, then $N \ll_r M$.

Proof: Clear from Lemma 7. □

Proposition 23. *If* $N \ll r M$, then $N \ll K$ for every maximal submodule K of M.

Proof: Since $N \ll_{r} M$, $N \ll RadM$ and since $RadM \leq K$ for every maximal submodule K of M, by Lemma 1, $N \ll K$.

Proposition 24. *Let* M *be an* R *-module and* $N \le K \le M$ *. If* $N \ll_r K$ *, then* $N \ll_r M$ *.*

Proof: Since $N \ll r K$, $N \ll RadK$. By Lemma 2, $RadK \leq RadM$. Then by Lemma 1, $N \ll RadM$ and $N \ll r M$.

Proposition 25. Let M be an R–module and $N \leq K \leq M$. If $K \ll_{r} M$, then $N \ll_{r} M$.

Proof: Since $K \ll_r M$, $K \ll RadM$. Then by Lemma 1, $N \ll RadM$. Hence $N \ll_r M$, as desired.

Proposition 26. Let M be an R-module and N, $K \leq M$. If $N \ll_r M$, then $(N + K)/K \ll_r M/K$.

Proof: Since $N \ll r M$, $N \ll RadM$. By Lemma 1, $(N + K)/K \ll (RadM + K)/K$. By Lemma 2, $(RadM + K)/K \le Rad(M/K)$. Then by Lemma 1, $(N + K)/K \ll Rad(M/K)$. Hence $(N + K)/K \ll r M/K$, as desired.

Proposition 27. Let $f : M \longrightarrow N$ be an R-module homomorphism. If $K \ll_r M$, then $f(K) \ll_r N$.

Proof: Since $K \ll_{r} M$, $K \ll RadM$. By Lemma 1 and Lemma 2, $f(K) \ll f(RadM) \leq RadN$. Hence $f(K) \ll_{r} N$, as desired.

Lemma 8. Let M be an R-module and K, $L \leq M$. If $N \ll_r K$ and $T \ll_r L$, then $N + T \ll_r K + L$.

Proof: Since $N \ll r K$ and $T \ll r L$, $N \ll RadK$ and $T \ll RadL$. By Lemma 1 and Lemma 2, $T + N \ll RadK + RadL \leq$ $Rad(K + L)$. Hence $N + T \ll_r K + L$, as desired.

Corollary 2. Let $M_1, M_2, ..., M_k \leq M$. If $N_1 \ll_r M_1$, $N_2 \ll_r M_2, ..., N_k \ll_r M_k$, then $N_1 + N_2 + ... + N_k \ll_r M_1 + M_2 + ... + M_k$.

Proof: Clear from Lemma 8. □

3 References

- 1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics*, Birkhauser, Basel, 2006.
- 2 C. Nebiyev, A. Pancar, *On Supplement Submodules*, Ukrainian Math. J., 65(7) (2013), 1071-1078.
- 3 W. Xue, *Characterizations of Semiperfect and Perfect Rings*, Publ. Matematiques, 40 (1996), 115-125.
- 4 Y. Wang, N. Ding, *Generalized Supplemented Modules*, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
- 5 R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Philadelphia, 1991.
- 6 H. Zöschinger, *Komplementierte Moduln Über Dedekindringen*, J. of Algebra, 29 (1974), 42-56.