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Abstract: In this work, every ring have unity and every module is unital left module. Let M be an R−module and N ≤M . If
N � RadM , then N is called a radical small (or briefly r-small) submodule of M and denoted by N �r M . In this work, some
properties of these submodules are given.
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1 Introduction

Throughout this paper all rings are associative with identity and all modules are unital left modules.
Let R be a ring and M be an R−module. We denote a submodule N of M by N ≤M . Let M be an R−module and N ≤M . If there

exists L ≤M such that M = N + L and N ∩ L = 0, then N is called a direct summand of M and denoted by M = N ⊕ L. Let M be an
R−module and N ≤M . If L = M for every submodule L of M such that M = N + L, then N is called a small (or superfluous)submodule
of M and denoted by N �M . A module M is said to be hollow if every proper submodule of M is small in M . M is said to be local if
there exists a proper submodule of M which contains all proper submodule of M . Let M be an R−module and U, V ≤M . If M = U + V
and V is minimal with respect to this property, or equivalently, M = U + V and U ∩ V � V , then V is called a supplement of U in M . M
is said to be supplemented if every submodule of M has a supplement in M . The intersection of maximal submodules of an R-module M is
called the radical of M and denoted by RadM . If M have no maximal submodules, then we denote RadM = M. Let M be an R−module
and U, V ≤M . If M = U + V and U ∩ V ≤ RadV , then V is called a generalized (Radical) supplement (briefly, Rad-supplement) of U in
M . M is said to be generalized (Radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a Rad-supplement in M .

More details about supplemented modules are in [1]-[2]-[5]-[6]. More details about generalized (Radical) supplemented modules are in
[3]-[4].

Lemma 1. Let M be an R−module. The following assertions are hold.
(1) If K ≤ L ≤M , then L�M if and only if K �M and L/K �M/K.
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K �M , then f (K)� N . The converse is true if f

is an epimorphism and Kef �M .
(3) If K �M , then K+L

L � M
L for every L ≤M .

(4) If L ≤M and K � L, then K �M .
(5) If K1,K2, ...,Kn �M , then K1 +K2 + ...+Kn �M .
(6) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki � Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn � L1 + L2 + ...+ Ln.

Proof: See [1, 2.2] and [5, 19.3]. �

Lemma 2. Let M be an R−module. The following assertions are hold.
(1) RadM =

∑
L�M

L.

(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (RadM) ≤ RadN . If Kef ≤ RadM , then
f (RadM) = Radf (M).

(3) If N ≤M , then RadN ≤ RadM .
(4) For K,L ≤M , RadK +RadL ≤ Rad (K + L).
(5) Rx�M for every x ∈ RadM .

Proof: See [5, 21.5 and 21.6]. �

Lemma 3. Let V be a supplement of U in M . Then
(1) If W + V = M for some W ≤ U , then V is a supplement of W in M .
(2) If M is finitely generated, then V is also finitely generated.
(3) If U is a maximal submodule of M , then V is cyclic and U ∩ V = RadV is the unique maximal submodule of V .
(4) If K �M , then V is a supplement of U +K in M .
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(5) For K �M , K ∩ V � V and hence RadV = V ∩RadM .
(6) Let K ≤ V . Then K � V if and only if K �M .
(7) For L ≤ U , V+L

L is a supplement of U/L in M/L.

Proof: See [5, 41.1]. �

2 r-Small Submodules

Definition 1. Let M be an R−module and N ≤M . If N � RadM , then N is called a radical small (or briefly r-small) submodule of M
and denoted by N �r M .

Lemma 4. Let M be an R−module.
(1) If M = U ⊕ V then V is a supplement of U in M . Also U is a supplement of V in M .
(2) For M1, U ≤M , if M1 + U has a supplement in M and M1 is supplemented, then U also has a supplement in M .
(3) Let M = M1 +M2. If M1 and M2 are supplemented, then M is also supplemented.
(4) Let Mi ≤M for i = 1, 2, ..., n. If Mi is supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also supplemented.
(5) If M is supplemented, then M/L is supplemented for every L ≤M .
(6) If M is supplemented, then every homomorphic image of M is also supplemented.
(7) If M is supplemented, then M/RadM is semisimple.
(8) Hollow and local modules are supplemented.
(9) If M is supplemented, then every finitely M−generated module is supplemented.
(10) RR is supplemented if and only if every finitely generated R−module is supplemented.

Proof: See [5, 41.2]. �

Lemma 5. Let M be an R−module.
(1) If M is supplemented, then M is Rad-supplemented.
(2) If V is a Rad-supplement of U in M and W + V = M for some W ≤ U , then V is a Rad-supplement of W in M .
(3) If U is a maximal submodule of M and V is a Rad-supplement of U in M , U ∩ V = RadV is the unique maximal submodule of V .
(4) If V is a Rad-supplement of U in M and L ≤ U , then V+L

L is a Rad-supplement of U/L in M/L.
(5) If V is a Rad-supplement of U in M , then RadV = V ∩RadM .
(6) Let M = U + V . Then V is a Rad-supplement of U in M if and only if Rx� V for every x ∈ U ∩ V .
(7) For M1, U ≤M , if M1 + U has a Rad-supplement in M and M1 is Rad-supplemented, then U also has a Rad-supplement in M .

Proof: See [3]-[4]. �

Lemma 6. Let M be an R−module.
(1) Let M = M1 +M2. If M1 and M2 are Rad-supplemented, then M is also Rad-supplemented.
(2) Let Mi ≤M for i = 1, 2, ..., n. If Mi is Rad-supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also Rad-

supplemented.
(3) If M is Rad-supplemented, then M/L is Rad-supplemented for every L ≤M .
(4) If M is Rad-supplemented, then every homomorphic image of M is also Rad-supplemented.
(5) If M is Rad-supplemented, then M/RadM is semisimple.
(6) If M is Rad-supplemented, then every finitely M−generated module is Rad-supplemented.
(7) RR is Rad-supplemented if and only if every finitely generated R−module is Rad-supplemented.

Proof: See [3]-[4]. �

Proposition 1. Let M be an R−module and N ≤M . If N �r M , then N �M .

Proof: Since N �r M , N � RadM . Then by Lemma 1, N �M . �

Proposition 2. Let M be an R−module and K,L ≤M . If K �r M and L�r M , then K + L�M .

Proof: Since K �r M and L�r M , by Proposition 1, K �M and L�M . Then by Lemma 1, K + L�M . �

Proposition 3. Let M be an R−module and Ki �r M for i = 1, 2, ..., n. Then K1 +K2 + ...+Kn �M .

Proof: Clear from Proposition 2. �

Proposition 4. Let M be an R−module and N ≤M . If N �r M , then N+L
L � M

L for every L ≤M .

Proof: Since N �r M , by Proposition 2, N �M . Then by Lemma 1, N+L
L � M

L for every L ≤M . �

Proposition 5. Let f : M −→ N be an R−module homomorphism. If K �r M , then f (K)� N .

Proof: Since K �r M , by Proposition 1, K �M . Then by Lemma 1, f (K)� N . �
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Proposition 6. Let M be an R−module and K ≤ N ≤M . If N �r M , then K �M .

Proof: Since N �r M , by Proposition 1, N �M . Then by Lemma 1, K �M . �

Proposition 7. Let M be an R−module and K ≤ N ≤M . If K �r N , then K �M .

Proof: Since K �r N , by Proposition 1, K � N . Then by Lemma 1, K �M . �

Proposition 8. Let M be an R−module and K ≤ L ≤M . If L�r M , then L/K �M/K.

Proof: Since L�r M , by Proposition 1, L�M . Then by Lemma 1, L/K �M/K. �

Proposition 9. Let M be an R−module and K ≤ L ≤M . If K �r M and L/K �r M/K, then L�M .

Proof: Since K �r M and L/K �r M/K, by Proposition 1, K �M and L/K �M/K. Then by Lemma 1, L�M . �

Proposition 10. Let M be an R−module K1 ≤ L1 ≤M and K2 ≤ L2 ≤M . If K1 �r L1 and K2 �r L2, then K1 +K2 � L1 + L2.

Proof: Since K1 �r L1 and K2 �r L2, by Proposition 1, K1 � L1 and K2 � L2. Then by Lemma 1, K1 +K2 � L1 + L2. �

Proposition 11. Let M be an R−module Ki ≤ Li ≤M for i = 1, 2, ..., n. If Ki �r Li for every i = 1, 2, ..., n, then K1 +K2 + ...+
Kn � L1 + L2 + ...+ Ln.

Proof: Since Ki �r Li for every i = 1, 2, ..., n, by Proposition 1, Ki � Li. Then by Lemma 1, K1 +K2 + ...+Kn � L1 + L2 + ...+
Ln. �

Proposition 12. Let M be an R−module and M = U + V for U, V ≤M . If U ∩ V �r V , then V is a supplement of U in M .

Proof: Since U ∩ V �r V , by Proposition 1, U ∩ V � V . Then by definition V is a supplement of U in M . �

Proposition 13. Let V be a supplement of U in M . If K �r M , then V is a supplement of U +K in M .

Proof: Since K �r M , by Proposition 1, K �M . Since V is a supplement of U in M , by Lemma 3, V is a supplement of U +K in M . �

Proposition 14. Let V be a supplement of U in M and K �r M . Then K ∩ V � V .

Proof: Since K �r M , by Proposition 1, K �M . Since V is a supplement of U in M , by Lemma 3, K ∩ V � V . �

Proposition 15. Let V be a supplement of U in M and K ≤ V . IfK �r M . Then K � V .

Proof: Since K �r M , by Proposition 1, K �M . Since V is a supplement of U in M , by Lemma 3, K � V . �

Proposition 16. Let M = U + V and U ∩ V �r V . Then V+L
L is a supplement of U

L in M
L for every L ≤ U .

Proof: Since M = U + V and U ∩ V �r V , by Proposition 12, V is a supplement of U in M . Then by Lemma 3, V+L
L is a supplement of

U
L in M

L for every L ≤ U . �

Proposition 17. Let M be an R−module. If every proper submodule of M is r-small in M , then M is hollow.

Proof: Since every proper submodule of M is r-small in M , by Proposition 1, every proper submodule of M is small in M . Then by definition
M is hollow. �

Proposition 18. Let M be an R−module. If every proper submodule of M is r-small in M , then M is supplemented.

Proof: Since every proper submodule of M is r-small in M , by Proposition 17, M is hollow. Then by Lemma 4, M is supplemented. �

Proposition 19. Let M be an R−module. If every proper submodule of M is r-small in M , then M is Rad-supplemented.

Proof: Since every proper submodule of M is r-small in M , by Proposition 18, M is supplemented. Then by Lemma 5, M is Rad-supplemented.
�

Proposition 20. Let R be any ring. If every proper submodule of RR is r-small in RR, then every finitely generated R−module is supplemented.

Proof: Since every proper submodule of RR is r-small in RR, by Proposition 18, RR is supplemented. Then by Lemma 4, every finitely
generated R−module is supplemented. �
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Proposition 21. Let R be any ring. If every proper submodule of RR is r-small in RR, then every finitely generated R−module is Rad-
supplemented.

Proof: Since every proper submodule of RR is r-small in RR, by Proposition 20, every finitely generated R−module is supplemented. Then
by Lemma 5, every finitely generated R−module is Rad-supplemented. �

Proposition 22. Let M be an R−module and M = U + V with U, V ≤M . If Rx�r V for every x ∈ U ∩ V , then V is a Rad-supplement
of U in M .

Proof: Since Rx�r V for every x ∈ U ∩ V , by Proposition 1, Rx� V . Then by Lemma 5, V is a Rad-supplement of U in M . �

Lemma 7. Let N ≤M . If N �M and RadM is a supplement submodule in M , then N �r M .

Proof: Since N �M and RadM is a supplement submodule in M , by Lemma 3, N = N ∩RadM � RadM . Hence N �r M , as desired.
�

Corollary 1. Let N ≤M . If N �M and RadM is a direct summand of M , then N �r M .

Proof: Clear from Lemma 7. �

Proposition 23. If N �r M , then N � K for every maximal submodule K of M .

Proof: Since N �r M , N � RadM and since RadM ≤ K for every maximal submodule K of M , by Lemma 1, N � K. �

Proposition 24. Let M be an R−module and N ≤ K ≤M . If N �r K, then N �r M .

Proof: Since N �r K, N � RadK. By Lemma 2, RadK ≤ RadM . Then by Lemma 1, N � RadM and N �r M . �

Proposition 25. Let M be an R−module and N ≤ K ≤M . If K �r M , then N �r M .

Proof: Since K �r M , K � RadM . Then by Lemma 1, N � RadM . Hence N �r M , as desired. �

Proposition 26. Let M be an R−module and N,K ≤M . If N �r M , then (N +K) /K �r M/K.

Proof: Since N �r M , N � RadM . By Lemma 1, (N +K) /K � (RadM +K) /K. By Lemma 2, (RadM +K) /K ≤ Rad (M/K).
Then by Lemma 1, (N +K) /K � Rad (M/K). Hence (N +K) /K �r M/K, as desired. �

Proposition 27. Let f : M −→ N be an R−module homomorphism. If K �r M , then f (K)�r N .

Proof: Since K �r M , K � RadM . By Lemma 1 and Lemma 2, f (K)� f (RadM) ≤ RadN . Hence f (K)�r N , as desired. �

Lemma 8. Let M be an R−module and K,L ≤M . If N �r K and T �r L, then N + T �r K + L.

Proof: Since N �r K and T �r L, N � RadK and T � RadL. By Lemma 1 and Lemma 2, T +N � RadK +RadL ≤
Rad (K + L). Hence N + T �r K + L, as desired. �

Corollary 2. Let M1,M2, ...,Mk ≤M . If N1 �r M1, N2 �r M2, ..., Nk �r Mk, then N1 +N2 + ...+Nk �r M1 +M2 + ...+Mk.

Proof: Clear from Lemma 8. �
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