Conference Proceeding Science and Technology, 3(1), 2020, 33-36

Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020).

r-Small Submodules

Celil Nebivev^{1,*} Hasan Hüsevin Ökten²

¹ Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey, ORCID: 0000-0002-7992-7225

² Technical Sciences Vocational School, Amasya University, Amasya, Turkey, ORCID:0000-0002-7886-0815

* Corresponding Author E-mail: cnebiyev@omu.edu.tr

Abstract: In this work, every ring have unity and every module is unital left module. Let M be an R-module and $N \le M$. If $N \ll RadM$, then N is called a radical small (or briefly r-small) submodule of M and denoted by $N \ll_r M$. In this work, some properties of these submodules are given.

Keywords: Small Submodules, Maximal Submodules, Radical, Supplemented Modules.

1 Introduction

[3]-[4].

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If there exists $L \leq M$ such that M = N + L and $N \cap L = 0$, then N is called a *direct summand of* M and denoted by $M = N \oplus L$. Let M be an R-module and $N \leq M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A module M is said to be *hollow* if every proper submodule of M is small in M. M is said to be *local* if there exists a proper submodule of M which contains all proper submodule of M. Let M be an R-module and U, $V \le M$. If M = U + Vand V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is said to be supplemented if every submodule of M has a supplement in M. The intersection of maximal submodules of an R-module M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \leq RadV$, then V is called a generalized (Radical) supplement (briefly, Rad-supplement) of U in M. M is said to be generalized (Radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a Rad-supplement in M. More details about supplemented modules are in [1]-[2]-[5]-[6]. More details about generalized (Radical) supplemented modules are in

Lemma 1. Let M be an R-module. The following assertions are hold.

(1) If $K \leq L \leq M$, then $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll M$, then $f(K) \ll N$. The converse is true if f (2) Let V be an R -model and $f \in M$. (3) If $K \ll M$, then $\frac{K+L}{L} \ll \frac{M}{L}$ for every $L \le M$. (4) If $L \le M$ and $K \ll L$, then $K \ll M$.

(5) If $K_1, K_2, ..., K_n \ll M$, then $K_1 + K_2 + ... + K_n \ll M$.

(6) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proof: See [1, 2.2] and [5, 19.3].

Lemma 2. Let M be an R-module. The following assertions are hold. (1) $RadM = \sum_{L \ll M} L.$

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. Then $f(RadM) \leq RadN$. If $Kef \leq RadM$, then f(RadM) = Radf(M).(3) If $N \leq M$, then $RadN \leq RadM$.

(4) For $\overline{K}, L \leq M$, $RadK + RadL \leq Rad(K + L)$.

(5) $Rx \ll M$ for every $x \in RadM$.

Proof: See [5, 21.5 and 21.6].

Lemma 3. Let V be a supplement of U in M. Then

(1) If W + V = M for some $W \le U$, then V is a supplement of W in M.

(2) If M is finitely generated, then V is also finitely generated.

(3) If U is a maximal submodule of M, then V is cyclic and $U \cap V = RadV$ is the unique maximal submodule of V.

(4) If $K \ll M$, then V is a supplement of U + K in M.

ISSN: 2651-544X http://dergipark.gov.tr/cpost

(5) For $K \ll M$, $K \cap V \ll V$ and hence $RadV = V \cap RadM$. (6) Let $K \leq V$. Then $K \ll V$ if and only if $K \ll M$. (7) For $L \leq U$, $\frac{V+L}{L}$ is a supplement of U/L in M/L.

Proof: See [5, 41.1].

2 r-Small Submodules

Definition 1. Let M be an R-module and $N \leq M$. If $N \ll RadM$, then N is called a radical small (or briefly r-small) submodule of M and denoted by $N \ll_r M$.

Lemma 4. Let M be an R-module.

- (1) If $M = U \oplus V$ then V is a supplement of U in M. Also U is a supplement of V in M.
- (2) For $M_1, U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is supplemented, then U also has a supplement in M.
- (3) Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is also supplemented.
- (4) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also supplemented.
- (5) If M is supplemented, then M/L is supplemented for every $L \leq M$.
- (6) If M is supplemented, then every homomorphic image of M is also supplemented.
- (7) If M is supplemented, then M/RadM is semisimple.
- (8) Hollow and local modules are supplemented.
- (9) If M is supplemented, then every finitely M-generated module is supplemented.
- (10) $_{R}R$ is supplemented if and only if every finitely generated R-module is supplemented.

Proof: See [5, 41.2].

Lemma 5. Let M be an R-module.

- (1) If M is supplemented, then M is Rad-supplemented.
- (2) If V is a Rad-supplement of U in M and W + V = M for some $W \leq U$, then V is a Rad-supplement of W in M.
- (3) If U is a maximal submodule of M and V is a Rad-supplement of U in $M, U \cap V = RadV$ is the unique maximal submodule of V.
- (4) If V is a Rad-supplement of U in M and $L \leq U$, then $\frac{V+L}{L}$ is a Rad-supplement of U/L in M/L. (5) If V is a Rad-supplement of U in M, then $RadV = V \cap RadM$.
- (6) Let M = U + V. Then V is a Rad-supplement of U in M if and only if $Rx \ll V$ for every $x \in U \cap V$.
- (7) For $M_1, U \leq M$, if $M_1 + U$ has a Rad-supplement in M and M_1 is Rad-supplemented, then U also has a Rad-supplement in M.

Proof: See [3]-[4].

Lemma 6. Let M be an R-module.

(1) Let $M = M_1 + M_2$. If M_1 and M_2 are Rad-supplemented, then M is also Rad-supplemented.

(2) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is Rad-supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also Radsupplemented.

- (3) If M is Rad-supplemented, then M/L is Rad-supplemented for every $L \leq M$.
- (4) If M is Rad-supplemented, then every homomorphic image of M is also Rad-supplemented.

(5) If M is Rad-supplemented, then M/RadM is semisimple.

- (6) If M is Rad-supplemented, then every finitely M-generated module is Rad-supplemented.
- (7) $_{R}R$ is Rad-supplemented if and only if every finitely generated R-module is Rad-supplemented.

Proof: See [3]-[4].

Proposition 1. Let M be an R-module and $N \leq M$. If $N \ll_r M$, then $N \ll M$.

Proof: Since $N \ll_r M$, $N \ll RadM$. Then by Lemma 1, $N \ll M$.

Proposition 2. Let M be an R-module and K, $L \leq M$. If $K \ll_r M$ and $L \ll_r M$, then $K + L \ll M$.

Proof: Since
$$K \ll_r M$$
 and $L \ll_r M$, by Proposition 1, $K \ll M$ and $L \ll M$. Then by Lemma 1, $K + L \ll M$.

Proposition 3. Let M be an R-module and $K_i \ll_r M$ for i = 1, 2, ..., n. Then $K_1 + K_2 + ... + K_n \ll M$.

Proof: Clear from Proposition 2.

Proposition 4. Let M be an R-module and $N \leq M$. If $N \ll_r M$, then $\frac{N+L}{L} \ll \frac{M}{L}$ for every $L \leq M$.

Proof: Since $N \ll_r M$, by Proposition 2, $N \ll M$. Then by Lemma 1, $\frac{N+L}{L} \ll \frac{M}{L}$ for every $L \leq M$.

Proposition 5. Let $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll_r M$, then $f(K) \ll N$.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Then by Lemma 1, $f(K) \ll N$.

Proposition 6. Let M be an R-module and $K \leq N \leq M$. If $N \ll_r M$, then $K \ll M$.

Proof: Since $N \ll_r M$, by Proposition 1, $N \ll M$. Then by Lemma 1, $K \ll M$.

Proposition 7. Let M be an R-module and $K \leq N \leq M$. If $K \ll_r N$, then $K \ll M$.

Proof: Since $K \ll_r N$, by Proposition 1, $K \ll N$. Then by Lemma 1, $K \ll M$.

Proposition 8. Let M be an R-module and $K \leq L \leq M$. If $L \ll_r M$, then $L/K \ll M/K$.

Proof: Since $L \ll_r M$, by Proposition 1, $L \ll M$. Then by Lemma 1, $L/K \ll M/K$.

Proposition 9. Let M be an R-module and $K \leq L \leq M$. If $K \ll_r M$ and $L/K \ll_r M/K$, then $L \ll M$.

Proof: Since $K \ll_r M$ and $L/K \ll_r M/K$, by Proposition 1, $K \ll M$ and $L/K \ll M/K$. Then by Lemma 1, $L \ll M$.

Proposition 10. Let *M* be an *R*-module $K_1 \le L_1 \le M$ and $K_2 \le L_2 \le M$. If $K_1 \ll_r L_1$ and $K_2 \ll_r L_2$, then $K_1 + K_2 \ll L_1 + L_2$.

Proof: Since $K_1 \ll_r L_1$ and $K_2 \ll_r L_2$, by Proposition 1, $K_1 \ll L_1$ and $K_2 \ll L_2$. Then by Lemma 1, $K_1 + K_2 \ll L_1 + L_2$.

Proposition 11. Let *M* be an *R*-module $K_i \leq L_i \leq M$ for i = 1, 2, ..., n. If $K_i \ll_r L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proof: Since $K_i \ll_r L_i$ for every i = 1, 2, ..., n, by Proposition 1, $K_i \ll L_i$. Then by Lemma 1, $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proposition 12. Let M be an R-module and M = U + V for $U, V \leq M$. If $U \cap V \ll_r V$, then V is a supplement of U in M.

Proof: Since $U \cap V \ll_r V$, by Proposition 1, $U \cap V \ll V$. Then by definition V is a supplement of U in M.

Proposition 13. Let V be a supplement of U in M. If $K \ll_r M$, then V is a supplement of U + K in M.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, V is a supplement of U + K in M. \Box

Proposition 14. Let V be a supplement of U in M and $K \ll_r M$. Then $K \cap V \ll V$.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, $K \cap V \ll V$.

Proposition 15. Let V be a supplement of U in M and $K \leq V$. If $K \ll_r M$. Then $K \ll V$.

Proof: Since $K \ll_r M$, by Proposition 1, $K \ll M$. Since V is a supplement of U in M, by Lemma 3, $K \ll V$.

Proposition 16. Let M = U + V and $U \cap V \ll_r V$. Then $\frac{V+L}{L}$ is a supplement of $\frac{U}{L}$ in $\frac{M}{L}$ for every $L \leq U$.

Proof: Since M = U + V and $U \cap V \ll_r V$, by Proposition 12, V is a supplement of U in M. Then by Lemma 3, $\frac{V+L}{L}$ is a supplement of $\frac{U}{L}$ in $\frac{M}{L}$ for every $L \leq U$.

Proposition 17. Let M be an R-module. If every proper submodule of M is r-small in M, then M is hollow.

Proof: Since every proper submodule of M is r-small in M, by Proposition 1, every proper submodule of M is small in M. Then by definition M is hollow.

Proposition 18. Let M be an R-module. If every proper submodule of M is r-small in M, then M is supplemented.

Proof: Since every proper submodule of M is r-small in M, by Proposition 17, M is hollow. Then by Lemma 4, M is supplemented.

Proposition 19. Let M be an R-module. If every proper submodule of M is r-small in M, then M is Rad-supplemented.

Proof: Since every proper submodule of M is r-small in M, by Proposition 18, M is supplemented. Then by Lemma 5, M is Rad-supplemented.

Proposition 20. Let R be any ring. If every proper submodule of $_{R}R$ is r-small in $_{R}R$, then every finitely generated R-module is supplemented.

Proof: Since every proper submodule of $_RR$ is r-small in $_RR$, by Proposition 18, $_RR$ is supplemented. Then by Lemma 4, every finitely generated R-module is supplemented.

Proposition 21. Let R be any ring. If every proper submodule of $_RR$ is r-small in $_RR$, then every finitely generated R-module is Rad-supplemented.

Proof: Since every proper submodule of $_RR$ is r-small in $_RR$, by Proposition 20, every finitely generated R-module is supplemented. Then by Lemma 5, every finitely generated R-module is Rad-supplemented.

Proposition 22. Let M be an R-module and M = U + V with $U, V \leq M$. If $Rx \ll_r V$ for every $x \in U \cap V$, then V is a Rad-supplement of U in M.

Proof: Since $Rx \ll_r V$ for every $x \in U \cap V$, by Proposition 1, $Rx \ll V$. Then by Lemma 5, V is a Rad-supplement of U in M.

Lemma 7. Let $N \leq M$. If $N \ll M$ and RadM is a supplement submodule in M, then $N \ll_r M$.

Proof: Since $N \ll M$ and RadM is a supplement submodule in M, by Lemma 3, $N = N \cap RadM \ll RadM$. Hence $N \ll_r M$, as desired.

Corollary 1. Let $N \leq M$. If $N \ll M$ and RadM is a direct summand of M, then $N \ll_r M$.

Proof: Clear from Lemma 7.

Proposition 23. If $N \ll_r M$, then $N \ll K$ for every maximal submodule K of M.

Proof: Since $N \ll_r M$, $N \ll RadM$ and since $RadM \leq K$ for every maximal submodule K of M, by Lemma 1, $N \ll K$.

Proposition 24. Let M be an R-module and $N \leq K \leq M$. If $N \ll_r K$, then $N \ll_r M$.

Proof: Since $N \ll_r K$, $N \ll RadK$. By Lemma 2, $RadK \leq RadM$. Then by Lemma 1, $N \ll RadM$ and $N \ll_r M$.

Proposition 25. Let M be an R-module and $N \leq K \leq M$. If $K \ll_r M$, then $N \ll_r M$.

Proof: Since $K \ll_r M$, $K \ll RadM$. Then by Lemma 1, $N \ll RadM$. Hence $N \ll_r M$, as desired.

Proposition 26. Let M be an R-module and N, $K \leq M$. If $N \ll_r M$, then $(N + K) / K \ll_r M / K$.

Proof: Since $N \ll_r M$, $N \ll RadM$. By Lemma 1, $(N + K)/K \ll (RadM + K)/K$. By Lemma 2, $(RadM + K)/K \leq Rad(M/K)$. Then by Lemma 1, $(N + K)/K \ll Rad(M/K)$. Hence $(N + K)/K \ll_r M/K$, as desired.

Proposition 27. Let $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll_r M$, then $f(K) \ll_r N$.

Proof: Since $K \ll_r M$, $K \ll RadM$. By Lemma 1 and Lemma 2, $f(K) \ll f(RadM) \leq RadN$. Hence $f(K) \ll_r N$, as desired.

Lemma 8. Let M be an R-module and $K, L \leq M$. If $N \ll_r K$ and $T \ll_r L$, then $N + T \ll_r K + L$.

Proof: Since $N \ll_r K$ and $T \ll_r L$, $N \ll RadK$ and $T \ll RadL$. By Lemma 1 and Lemma 2, $T + N \ll RadK + RadL \leq Rad(K + L)$. Hence $N + T \ll_r K + L$, as desired.

Corollary 2. Let $M_1, M_2, ..., M_k \leq M$. If $N_1 \ll_r M_1, N_2 \ll_r M_2, ..., N_k \ll_r M_k$, then $N_1 + N_2 + ... + N_k \ll_r M_1 + M_2 + ... + M_k$.

Proof: Clear from Lemma 8.

3 References

- 1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
- 2 C. Nebiyev, A. Pancar, On Supplement Submodules, Ukrainian Math. J., 65(7) (2013), 1071-1078.
- 3 W. Xue, *Characterizations of Semiperfect and Perfect Rings*, Publ. Matematiques, **40** (1996), 115-125.
- 4 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
- 5 R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Philadelphia, 1991.
- 6 H. Zöschinger, Komplementierte Moduln Über Dedekindringen, J. of Algebra, 29 (1974), 42-56.