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Abstract

In this paper, we establish some new conditions for the existence and uniqueness of solutions for a class of nonlinear Hadamard fractional
Volterra-Fredholm integro-differential equations with initial conditions. The desired results are proved by using Arzelá-Ascoli theorem aid
of fixed point theorems due to Banach and Krasnoselskii in Banach spaces.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration of arbitrary order, which can be noninteger. Differential
equations of fractional order have attracted the attention of several researchers; see the monographs [18, 20] and references therein. In the
literature, there exist several definitions of fractional integrals and derivatives, from the most popular Riemann-Liouville and Caputo-type
fractional derivatives to the other ones such as Hadamard fractional derivative, the Erdelyi-Kober fractional derivative, and so forth. Fractional
differential equations have recently been applied in various areas of engineering, mathematics, physics and bio-engineering, and other
applied sciences [16, 19].
Lately, there has been a developing interest for the fractional integro-differential equations (FIDEs). FIDEs have been recently used as effective
tools in the modeling of many phenomena in various fields of applied sciences and engineering such as acoustic control, signal processing,
porous media, electrochemistry, viscoelasticity, rheology, polymer physics, proteins, electromagnetics, optics, medicine, economics,
astrophysics, chemical engineering, chaotic dynamics, statistical physics and so on [6, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 23, 24]. Many
problems can be modeled by FIDE from various sciences and engineering applications.
The Hadamard fractional derivative, introduced by Hadamard in 1892, differs from the Riemann-Liouville and Caputo derivatives in the
sense that the kernel of the integral (in the definition of Hadamard derivative) contains a logarithmic function of arbitrary exponent [1, 7].
Recently, the study of Hadamard fractional derivative of differential equations is also of great importance. There has been a significant
development in Hadamard derivative of differential equations in recent years for detail study on Hadamard fractional derivative, we refer to
[4, 17].
Recently, Wang et al. [22] discussed the existence and stability of fractional differential equations with Hadamard derivative

HDν
1,tu(t) = f (t,u(t)), t ∈ J = (1,b], 0 < ν < 1,

HDν
1,tu(1) = d, d ∈ R.

Ahmad and Ntouyas [5] studied the existence of solutions for an initial-value problem of hybrid fractional differential equations of Hadamard
type given by

HDν u(t)
g(t,u(t))

= f (t,u(t)), t ∈ J = [1,T ], 0 < ν ≤ 1,

H I1−ν u(t)|t=1 = d, d ∈ R.
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Abbas et al. [1] studied the stability for nonlinear Hilfer-Hadamard fractional differential equations of the form
HDν ,ρ

1 u(t) = f (t,u(t),H Dν ,ρ
1 u(t)), t ∈ J = [1,+∞), 0 < ν < 1, 0≤ ρ ≤ 1,

H I1−γ

1 u(t)|t=1 = u0, ν ≤ γ = ν +ρ−νρ.

Abbas et al. [2] discussed the existence and the Ulam stability of solutions for the following problem of fractional differential equations of
the form

HDν ,ρ
1 u(t) = f (t,u(t)), t ∈ J = [1,T ], 0 < ν < 1, 0≤ ρ ≤ 1,

H I1−γ

1 u(t)|t=1 = u0, ν ≤ γ = ν +ρ−νρ.

Ahmed et al. [3] discussed the existence of solutions by means of endpoint theory for initial value problem of Hadamard and Riemann-
Liouville fractional integro-differential inclusions of the form

HDν (u(t)−
m

∑
i=1

Iρ

i Gi(t,u(t)) ∈ F(t,u(t)), t ∈ J := [1,T ], 0 < ν ≤ 1,

u(1) = 0,

Motivated by the above works, we will study a more general problem of fractional integro-differential equations wich called Riemann-
Liouville-Hadamard fractional Volterra-Fredholm integro-differential equations of the form

HDν (u(t)−
m

∑
i=1

Iρ

i Gi(t,u(t)) = F(t,u(t),Ku(t),Hu(t)), t ∈ J := [1,T ], 0 < ν ≤ 1, (1.1)

u(1) = 0, (1.2)

where HDν is the Hadamard fractional derivative of order ν , and Iβ is the Riemann-Liouville fractional integral of order β > 0, β = ρi, i =
1 : m. The F : J×R×R×R−→ R is a continuous function, K and H are linear integral operators defined by (Ku)(t) =

∫ t
1 k(t,s)u(s)ds

and (Hu)(t) =
∫ T

1 h(t,s)u(s)ds, with ϕ1 = sup{|k(t,s)| : (t,s) ∈ J× J} and ϕ2 = sup{|h(t,s)| : (t,s) ∈ J× J}.
The paper is organized as follows: Sect. 2, presents, as preliminaries, the definition of the Hadamard fractional derivative, Riemann-Liouville
fractional integral, and some important results, given as theorems, as well as the spaces in which such operators and theorems are defined. In
Sect. 3, we use the fixed point theorems due to Banach and Krasnoselskii to prove the existence and uniqueness results for the problem
(1.1)-(1.2). In Sect. 4, concluding remarks close the paper.

2. Preliminaries

Let us first recall some basic definitions, propositions and lemmas, which will be used throughout the work.
Let C(J,R) denotes the Banach space of continuous function on J with the norm

‖u‖C := sup{u(t) : t ∈ J}.

Definition 2.1. [1, 20] The Hadamard derivative of fractional order ν for a function h : [1,∞)−→ R is defined as

HDν h(t) =
1

Γ(n−ν)

(
t

d
dt

)n ∫ t

1

(
log

t
s

)n−ν−1
h(s)

ds
s
, n−1 < ν < n. (2.1)

where n = [ν ]+1, and [ν ] denotes the integer part of real number ν and log(.) = loge(.).

Definition 2.2. [1] The Hadamard fractional integral of order ν for a function h is defined as

H Iν h(t) =
1

Γ(ν)

∫ t

1

(
log

t
s

)ν−1
h(s)

ds
s
, ν > 0,

provided the integral exists.

Definition 2.3. [25] The Riemann-Liouville fractional integral of order ν > 0 of a function f is defined as

Jν h(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1h(s)ds, t > 0, ν ∈ R+,

J0h(t) = h(t), (2.2)

where R+ is the set of positive real numbers.

Definition 2.4. [20] The Riemann-Liouville derivative of order ν with the lower limit zero for a function h : [0,∞)−→ R can be written as

Dν h(t) =
1

Γ(1−ν)

d
dt

∫ t

0

h(s)
(t− s)ν

ds, t > 0, 0 < ν < 1. (2.3)

Theorem 2.5. [25] (Banach’s fixed point theorem) Let (X ,d) be a nonempty complete metric space with T : X −→ X is a contraction
mapping. Then map T has a fixed point x∗ ∈ Xsuch that T x∗ = x∗.

Theorem 2.6. [19] (Krasnoselskii’s fixed point theorem) Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be
two operators such that:
1. Ax+By ∈M whenever x,y ∈M.
2. A is compact and continuous.
3. B is a contraction mapping.
Then there exists z ∈M such that z = Az+Bz.
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3. Existence and uniqueness results

In this section, we shall give an existence and uniqueness results of Eq.(1.1), with the conditions (1.2). Before starting and proving the main
results, we introduce the following hypotheses:
(A1) There exists a constant Lg > 0, such that

|Gi(t,u(t))−Gi(t,v(t))| ≤ Lg|u(t)− v(t)|, ∀t ∈ J, u,v ∈ R.

(A2) There exist functions µ(t),µ1(t),µ2(t) and θi(t) ∈C(J,R) such that

|F(t,u,v,y)| ≤ µ(t)+µ1(t)|v|+µ2(t)|y|, ∀(t,u,v,y) ∈ J×R3,

|Gi(t,u)| ≤ θi(t), ∀(t,u) ∈ J×R.

Setting supt∈J |µ(t)|= ‖µ‖, supt∈J |µ1(t)|= ‖µ1‖, supt∈J |µ2(t)|= ‖µ2‖,supt∈J |θi(t)|= ‖θi‖, i = 1 : m.
(A3) There exist constants L1,L2,L3 > 0 such that

|F(t,u1,v1,y1)−F(t,u2,v2,y2)| ≤ L1|u1−u2|+L2|v1− v2|+L3|y1− y2|, ∀t ∈ J,ui,vi,yi ∈ R, i = 1,2.

Lemma 3.1. Let 0 < ν ≤ 1. Assume that F(.,u(.),Hu(.),Ku(.)) ∈C[J,X ]. Then u satisfies the problem (1.1)-(1.2) if and only if u satisfies
the mixed type integral equation

u(t) =
1

Γ(ν)

∫ t

1

(
log

t
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ
+

m

∑
i=1

Iρi Gi(t,u(t)), t ∈ J. (3.1)

Theorem 3.2. Assume that the hypothesis (A1)-(A2) are fulfilled, and if

Lg

m

∑
i=1

(T −1)ρi

Γ(ρi +1)
< 1.

Then there exists at least one solution for the problem (1.1)-(1.2).

Proof. Consider the operator T : C(J,R)−→C(J,R) defined by

(Tu)(t) =
1

Γ(ν)

∫ t

1

(
log

t
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ
+

m

∑
i=1

Iρi Gi(t,u(t)).

Consider the ball Br = {u ∈C(J,R) : ‖u‖ ≤ r} with r > 0 , where(
∑

m
i=1

(T−1)ρi

Γ(ρi+1)‖θi‖+ (logT )ν

Γ(ν+1) ‖µ‖
)

(
1− (ϕ1‖µ1‖+ϕ2‖µ2‖)

[
γ

Γ(ν)
+

(logT )ν

Γ(ν+1)

]) ≤ r.

γ = T
∫ logT

0 uν−1e−u and (ϕ1‖µ1‖+ϕ2‖µ2‖)‖
[

γ

Γ(ν)
+

(logT )ν

Γ(ν+1)

]
< 1. We define the operators P and Q such that T = P+Q, by

(Pu)(t) =
1

Γ(ν)

∫ t

1

(
log

t
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ
,

(Qu)(t) =
m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1Gi(τ,u(τ))dτ, t ∈ J. (3.2)

For any u,v ∈ Br, we have

|(Pu)(t)+(Qu)(t)| ≤ 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
|F(τ,u(τ),Ku(τ),Hu(τ))|dτ

τ
+

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1|Gi(τ,u(τ))|dτ

≤ 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
(|µ(τ)|+ |µ1(τ)||Ku(τ)|+ |µ2(τ)||Hu(τ)|)dτ

τ
+

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1|θi(τ)|dτ

≤
m

∑
i=1

(T −1)ρi

Γ(ρi +1)
‖θi‖+

(logT )ν

Γ(ν +1)
‖µ‖+(ϕ1‖µ1‖+ϕ2‖µ2‖)r

[
γ

Γ(ν)
+

(logT )ν

Γ(ν +1)

]
≤ r.

Next we will show that P is continuous and compact. The operator P is obviously continuous. Also, P is uniformly bounded on Br as

‖Pu‖ ≤ (logT )ν

Γ(ν +1)
‖µ‖+(ϕ1‖µ1‖+ϕ2‖µ2‖)r

[
γ

Γ(ν)
+

(logT )ν

Γ(ν +1)

]
.

Let t1, t2 ∈ J with t1 < t2 and u ∈ Br. Then we have

|(Pu)(t2)− (Pu)(t1)| = | 1
Γ(ν)

∫ t2

1

(
log

t2
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ
− 1

Γ(ν)

∫ t1

1

(
log

t1
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ

≤ ‖µ‖+(ϕ1‖µ1‖+ϕ2‖µ2‖)r(T −1)
Γ(ν +1)

[
(log t1)ν − (log t2)ν

]
−→ 0 as t2 −→ t1.
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Thus, P is equicontinuous. So P is relatively compact on Br. Hence, by the Arzelá-Ascoli theorem, P is compact on Br. Now we show that
Q is a contraction mapping. Let u,v ∈ Br. Then, for t ∈ J, we have∣∣∣(Qu)(t)− (Qv)(t)

∣∣∣ =
∣∣∣ m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1Gi(τ,u(τ))dτ−

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1Gi(τ,v(τ))dτ

∣∣∣
≤

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1

∣∣∣Gi(τ,u(τ))−Gi(τ,v(τ))
∣∣∣dτ

≤
m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1Lg‖u− v‖dτ

≤
m

∑
i=1

Lg(T −1)ρi

Γ(ρi +1)
‖u− v‖.

Hence, T is a contraction mapping. Thus all the assumptions of Krasnoselskii fixed point theorem are satisfied, which implies that the
problem (1.1)-(1.2) has at least one solution on J, and the proof is completed.

Theorem 3.3. Assumes that (A1) and (A3) hold, and if

φ :=
m

∑
i=1

Lg(T −1)ρi

Γ(ρi +1)
+L1

(logT )ν

Γ(ν +1)
+(ϕ1L1 +ϕ2L2)

[
γ

Γ(ν)
+

(logT )ν

Γ(ν +1)

]
< 1. (3.3)

Then there exists a unique solution to the problem (1.1)-(1.2).

Proof. Consider the operator T defined by Theorem 3.2 and we show that T has a unique fixed point, which is a unique solution of the
problem (1.1)-(1.2).
Let us fix N = supt∈J |F(t,0,0,0)|,gi = supt∈J |GI(t,0)|, and choose M = ∑

m
i=1 gi

(T−1)ρi

Γ(ρi+1) +N (logT )ν

Γ(ν+1) ,
M

1−φ
≤ r. Then we show that T Br ⊂ Br.

For u ∈ Br, we have

|(Tu)(t)| = | 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
F(τ,u(τ),(Ku)(τ),(Hu)(τ))

dτ

τ
+

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1Gi(τ,u(τ))dτ|

≤ sup
t∈J

[ 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
|F(τ,u(τ),(Ku)(τ),(Hu)(τ))|dτ

τ
+

m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1|Gi(τ,u(τ))|dτ

]
≤ sup

t∈J

[ 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
(|F(τ,u(τ),(Ku)(τ),(Hu)(τ))−F(τ,0,0,0)|+ |F(τ,0,0,0)|)dτ

τ

+
m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1(|Gi(τ,u(τ))−Gi(τ,0)|+ |Gi(τ,0)|)dτ

]
≤

m

∑
i=1

(T −1)ρi

Γ(ρi +1)
(rLg +gi)+(rL1 +N)

(logT )ν

Γ(ν +1)
+(ϕ1L1 +ϕ2L2)r

[
γ

Γ(ν)
+

(logT )ν

Γ(ν +1)

]
= rφ +M

≤ r,

which implies that T Br ⊂ Br.
Now, for u,v ∈C(J,R) and for each t ∈ J, we obtain

|(Tu)(t)− (T v)(t)|

≤ sup
t∈J

[ 1
Γ(ν)

∫ t

1

(
log

t
s

)ν−1
|F(τ,u(τ),(Ku)(τ),(Hu)(τ))−F(τ,v(τ),(Kv)(τ),(Hv)(τ))|dτ

τ

+
m

∑
i=1

1
Γ(ρi)

∫ t

1
(t− s)ρi−1|Gi(τ,u(τ))−Gi(τ,v(τ))|dτ

]
≤

( m

∑
i=1

Lg(T −1)ρi

Γ(ρi +1)
+L1

(logT )ν

Γ(ν +1)
+(ϕ1L1 +ϕ2L2)

[
γ

Γ(ν)
+

(logT )ν

Γ(ν +1)

])
‖u− v‖

≤ φ‖u− v‖.

This gives ‖Tu−T v‖ ≤ φ‖u− v‖. By inequality (3.3), the operator T is a contracting mapping. Hence, we conclude that the operator T has
a unique fixed point u ∈C(J,R).

4. Conclusions

In this paper, we establish some new conditions for the existence and uniqueness of solutions for a class of nonlinear Hadamard fractional
Volterra-Fredholm integro-differential equations with initial conditions. The desired results are proved by using Arzelá-Ascoli theorem, aid
of fixed point theorems due to Banach and Krasnoselskii in Banach spaces.
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