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Abstract:  The  selection  of  the  best  mobile  phase  setup  is  one  of  the  most  important  factors  to  be
considered prior to quantitative instrumentation of multiple pesticides. Usually, mobile phases comprises of
water  (A)  and an organic  solvent  (B)  are the setup used in liquid chromatography instruments for  the
analysis of pesticide residues in various samples. Unfortunately, most of the analyses are being carried out
without  optimization  and  selection  of  the  best  mobile  phase  setup  to  improve  the  sensitivity  of  the
instrument. For that reason, the comparative analysis of the reportedly used mobile phases and some few
suggested ones was carried out on the multi-pesticide mixture of 0.1 mg/kg (100 µg/kg) standard solutions
and  quantified  with  liquid  chromatography-tandem  mass  spectrometry  (LC-MS/MS)  instrument.
Consequently, the best mobile phases setup that resulted in the sum of average total chromatographic peak
areas (ATCPAs) and average total chromatographic peak heights (ATCPH) for the total ion chromatography
(TIC) scans as an index that correspond to the concentration levels was selected [0.1% formic acid in H2O
(A) and 0.1% formic acid in acetonitrile (ACN) (B)]. And further optimization was successfully carried out on
the selected mobile phase-A and the resulted setup [1% ACN and 0.1% formic acid in Milli-Q-water (mobile
phase A) coupled with 0.1% formic acid in ACN (mobile phase-B)] improved the instrumental sensitivity on
the targeted analytes. Thus, this justify the potential benefits of optimizing setup of the mobile phases prior
to LC-MS/MS instrumentation of multi-pesticide analytes. 
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INTRODUCTION

Foods  are  contaminated  through  various  activities
performed  by  man  such  as  the  accidental or
intentional  discharge  of  chemicals  or  waste
substances  from  domestic,  industrial  and
agricultural  sites  into  the  environment (1,  2).
However,  most  of  these  contaminants  are  non-
biodegradable, which can be easily transferred from
the  ground  surface  to  the  underground  water
because  of  their  ability  in  dissolving  sparingly  in
water  (3,  4).  At  the  long  run,  the  contaminants
pollute the foods through their respective circulatory
movements  in  the  environment  (5).  The
contaminants  include  inorganic  matters  such  as

heavy  metals  (6-8),  as  well  as  organic  chemicals
such  as  heat-generated  compounds  [polycyclic
aromatic hydrocarbons (PAHs) and acrylamide)] (9),
organic  polymers  (bromodiphenyl  ethers,
chlorobiphenyls,  chlorodibenzodioxins,
chlorodibenzofurans,  etc),  mycotoxins  (aflatoxins),
perfluoroalkyl  acids  (10-12).  Other  contaminants
with emerge-concerns include phthalates, bisphenol
A,  alkylphenols  (13),  phytosterols,  estrogens,
phytoestrogens  (14),  pharmaceuticals/veterinary
drugs, synthetic dyes and pesticides (15-18).

Advantageously,  pesticides  have  been  used  in
domestic  and  agricultural  practices  for  decades
increasing  the  gross  domestic  products  (GDP)  of
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many countries around the globe. But their dangers
in  handling  and  excessive  usage  have  been  the
issues  of  concern  due  to  their  residual
accumulations in food chain resulting in many health
problems that include cancers, etc. However, there
are challenges experienced in the determination of
multiple  residue  of  pesticide  analytes  in  food
samples. These could be due to extensive ranges of
their chemical properties such as neutral, acidic and
basic  (19),  vapor  pressure/Henry’s  law  constant
(20),  solubility  (21),  partition  coefficient  in
octanol/water  (logP)  (22)  and  acid  dissociation
constant (pKa) (23).  Besides, the analytical samples
also play challenging roles for pesticides extraction
during sample preparation because of their features
that  include  non-polar,  polar,  fatty  and  waxy
samples (24, 25).

Even  though  the  conventional  methods  such  as
liquid-liquid  extraction  (LLE),  liquid-phase
microextraction (LPME)  as  well  as  solid  phase
extraction (SPE) techniques were previously used as
the  sample  preparation  methods  for  the  multiple
pesticides analysis (16), they possess poor efficiency
and  selectivity  of  the  targeted,  which  were  their
major  drawbacks  (26). Also,  many  detectors  and
quantification instruments were used previously for
the  analyses  of  multiple  pesticide  residues  (26).
These instruments include the gas chromatography-
atomic  emission  detector  (GC-AED)  (27)  and  the
high  performance  liquid  chromatography  (HPLC)
(28).  Other  instruments  include  gas
chromatography-tandem  mass  spectrometry  (GC-
MS/MS)  (29)  and  liquid  chromatography-tandem
mass spectrometry (LC-MS/MS) (30). Unfortunately,
the  poor  sensitivity  of  these  instruments  is  their
major setbacks. Fortunately, the shortcomings of the
conventional  sample  preparation  techniques  and
that  of  the  detecting  and  quantifying  instruments
could be corrected through optimization such as the
use  of  response  surface  methodology  (RSM)  (26,
31).

Accordingly,  these  compel  food safety  analysts  to
improve  better  ways  of  analyzing  multi-pesticide
residues in food samples through effective sample
preparations  and  instrumentation  techniques.  For
instance,  RSM  optimization  of  the  instrumental
parameters  for  LC-MS/MS  (advanced)  instrument
such  as  the  setup  of  the  mobile  phases  could
provide better results of pesticides determination at
the lower concentration levels. 

Usually, mobile phases comprise of Milli-Q-water (A)
and  an organic  solvent  (B)  setup  are used in  the
liquid chromatography instruments for the analyses
of  pesticide  residues  in  various  samples  of  food
materials (26, 32, 33). In fact, the organic solvents
such  as  acetonitrile  (ACN)  and  methanol  are
significantly  used  in  the  reverse-phase  of  liquid
chromatography  (LC)  due  to  their  excellent
compatibility (34).  

Thus, the aim of this research is to  comparatively
study  the  most  recently  used  (reported)  setup  of
mobile phases and some few suggested ones (Table
2).  The  best  mobile  phases  setup  that  provided
highest  average  total  chromatographic  peak  area
(ATCPA)  as  an  index  that  correspond  to  the
concentration  of  analytes  in  the  multi-pesticide
mixture of standard solutions was selected after the
LC-MS/MS instrumentation. 

However,  the  multi-pesticides  mixture  of  standard
solutions  of  Dursban,  Diazinon,  Thiamethoxam,
Metalaxyl,  Thiobencarb,  Baycarb,  Carbaryl  and
Propamocarb  (Figure  1)  were  analyzed  for  the
purpose of the mobile phase optimization. 

It is,  therefore,  hoped that the result of this study
would  serve  as  a  reference  guide  for  the  future
studies,  and  the  optimized  mobile  phase  setup
would  be  routinely  used  in  LC-MS/MS  for  the
determination  of  multiple  pesticide  residues  in
various food samples.
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Table 1: Auto-tuning and Mass-Hunter optimization results of the instrument using the multi-pesticides mixture of standard solutions

Pesticide MF MIM TOP COC IM (ESI) PI MRM1/MRM2 CE1/CE2 ART

Dursban (Chlorpyrifos) C9H11Cl3NO3PS 349 Insecticide &
Nematicide

Organophosphorus [M+H]+ 350 96.8/197.9 34/22 11.36

Diazinon C12H21N2O3PS 304 Insecticide Organophosphorus [M+H]+ 305 96.9/169.1 42/22 10.22

Thiamethoxam C8H10ClN5O3S 292 Insecticide Neonicotinoid [M+H]+ 292 132/211 26/10 2.68

Metalaxyl C15H21NO4 279 Fungicide Xylylalanine [M+H]+ 280 160.1/220.1 26/10 7.33

Thiobencarb C12H16ClNOS 257 Herbicide Thiocarbamate [M+H]+ 258 89.1/125 54/26 10.34

Baycarb (Fenobucarb) C12H17NO2 207 Insecticide Carbamate [M+H]+ 208 77/95 42/10 8.34

Carbaryl C12H11NO2 201 Insecticide &
Nematicide

N-Methyl
Carbamate

[M+H]+ 202 127.1/145 30/6 7.16

Propamocarb C9H20N2O2 188 Fungicide Other Carbamate [M+H]+ 189 74/102.1 26/14 1.36

PIN, pesticide identity number; MF, molecular formula; MIM, mono-isotopic mass; TOP, type of pesticide; COC, class of chemical; IM, ionization mode; ESI, electrospray
ionization; PI, precursor ion (m/z); MRM, multiple reactions monitoring; CE, collision energy (eV); ART, average retention time (min)
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Table 2: The list of suggested and reported mobile phases used for the
optimization 

References Water (A) Organic Mobile Phase (B)

1. 1st suggested mobile phase A ACN

2. Rajski, Lozano (35), Pérez-
Ortega, Gilbert-López (54)

A + 0.1% FA ACN

3.  , Economou, Botitsi (56) and
Lucas (57)

A +  0.1% FA ACN + 0.1% FA

4. Vázquez, Lozano (36) A + 0.1% FA ACN + 0.1% FA + 5% A

5. 2nd suggested mobile phase A MeOH

6. Golge and Kabak (58) A + 5 mM AF MeOH + 5 mM AF

7. Zanella, Munaretto (43) A + 2% MeOH +
0.1% FA + 5 mM AF

MeOH + 0.1% FA + 5 mM
AF

8. 3rd suggested mobile phase A MeOH/ACN (1:1)

9. 4th suggested mobile phase A + 5 mM AF +
0.1%FA

MeOH/ACN (1:1) + 0.1%
FA + 5 mM AF
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Figure 1: Structural formula of the analyzed pesticide residues
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MATERIAL AND METHODS

The  chemicals  and  reagents  such  as  the  stock
standard  solution  (100  mg/kg)  for  pesticide
Baycarb,
 Carbaryl,  Diazinon,  Dursban,  Metalaxyl,
Propamocarb,  Thiamethoxam  and
Thiobencarbwere  were  purchased  from
AccuStandard®  (New  Haven,  USA).  The  LC-MS
grade  organic  solvents  that  include  ACN  and
methanol were purchased from Merck (Germany).
The  formic  acid  was  purchased  from  Fisher
Scientific.  The  Millipore-filtered  (deionized)  water
was  obtained  using  Merck  Millipore  water
purification  system  (Billerica,  USA).  While,  the
apparatus  and  equipments  that  include  the  100
and  500  µL  microsyringe  were  purchased  from
Agilent  (Australia).  The  pH  meter  PB  was
purchased  from  Sartorius  group  (Germany).  The
HPLC  autosampler  vials  were  purchased  from
Agilent  Technologies  (USA).  The  Supelco  HPLC
column [Ascentis® Express C18 (5 cm x 2.1 mm, 2.7
µm)] was purchased from Sigma-Aldrich (USA). And
the  liquid  chromatography-tandem  mass
spectrometry  (LC-MS/MS)  [triple  quadrupole
(G6490A)  built  in  Electrospray  ESI  (±)  MS/MS
Sensitivity and Jet stream Technology] instrument
was purchased from Agilent (Singapore).

Conditioning of the LC-MS/MS
The following contributory  parameters  of  the LC-
MS/MS instrument were setup initially that include;
analyte injection volume (5 µL), flow rate (0.1 mL/
min),  column  temperature  (30  ºC),  gas
temperature (200 ºC), nebulizer gas (45 psi),  gas
flow (14 L/min), sheath gas temperature (400 ºC),
capillary  voltage  (3000  V),  sheath  gas  flow  (11
L/min),  and delta(+)  EMV (200 V). However, these
factors  contributed  in  determining  optimum
fragmentor  voltage  and  the  four-fragmentor
product  ions  with  their  respective  retention  time
(RT) and collision energy (CE) (Table 1). Moreover,
the instrumental default settings were further used
for the development of the best gradient program
runs  for  the  mobile  phase-B  elution  time  by
adopting  and  modifying  the  methods  used  by
Rajski,  Lozano (35) and Vázquez,  Lozano (36) for
analysis of similar multi-pesticide compounds. This
results  in  the  best  shortest  elution  time,  which
provided the best total  ion chromatography (TIC)
peaks resolution for the LC-MS/MS instrumentation
(Figure  2).  However,  TIC  resolution  provided  an
optimum  condition  for  the  attainment  of  higher
total  chromatographic peak area (TCPA)  (37) and
mathematically expressed in Equation 1 (38). 

Therefore,

TCPA=∑CPA  
(Eq. 1)

Where 
TCPA is the  total chromatographic peak area  and
CPA is the chromatographic peak area.

Notably, the best setup of mobile phases were also
selected using the initial settings of the instrument.
Therefore,  the  TCPA  obtained  from  LC-MS/MS
analysis serves as an index used for estimating the
number of target analytes that are present in the
analyzed samples (31).  It is because of the close
similarities range of the resulted peak areas due to
the logP of targeted analytes. Moreover, the peak
areas maybe correlated and categorically suitable
for multiple pesticides analysis using the LC-MS/MS
instrument (39).

Sample Treatment and Methodology
The stock standard solution of  100 µg/mL that is
equivalent  to  100  mg/kg  (i.e.  100,000  µg/kg)  or
parts per million (ppm) (40) for each pesticide was
diluted to 10,  1 and 0.1 mg/kg (100 µg/kg) with
appropriate volumes of methanol. The appropriate
volumes were calculated using the dilution formula
as  expressed  in  Equation  2  (41),  separately.
Afterward, the prepared working standard solutions
were  preserved  in  a  refrigerator  at  4  ºC  before
carrying out the LC-MS/MS analysis.

C1C2=V 1V 2 (Eq. 2)

Where
C1:  The  concentration  of  the  stock  standard
solution, 
C2:  The  concentration  of  the  working  standard
solution
V1: The volume of the stock standard solution
V2: The volume of the working standard solution.

Meanwhile,  the selection  of  the LC-MS/MS mobile
phase was carried  out  by optimization  technique
using  one  factor  or  variable  at  a  time (OFAT  or
OVAT)  based  on  the  documentation  of  Sherma
(42).  However,  the  multivariate  optimization
technique  was  not  favorable  for  the  selection
because responses for each of the mobile phase is
required  individually  without  interaction  to
estimate  the  actual  effect  of  the  mobile  phase
setup. Moreover, the two setups of mobile (organic
and aqueous) phases are involved with interactive
percentage  flow  of  organic/aqueous  changes  to
create an optimum condition of analytes detection.
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Figure 2: The total ion chromatography (TIC) of the analyzed pesticide standards.
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Table 1: Auto-tuning and Mass-Hunter optimization results of the instrument using the multi-pesticides mixture of standard solutions

Pesticide MF MIM TOP COC IM (ESI) PI MRM1/MRM2 CE1/CE2 ART

Dursban (Chlorpyrifos) C9H11Cl3NO3PS 349 Insecticide &
Nematicide

Organophosphorus [M+H]+ 350 96.8/197.9 34/22 11.36

Diazinon C12H21N2O3PS 304 Insecticide Organophosphorus [M+H]+ 305 96.9/169.1 42/22 10.22

Thiamethoxam C8H10ClN5O3S 292 Insecticide Neonicotinoid [M+H]+ 292 132/211 26/10 2.68

Metalaxyl C15H21NO4 279 Fungicide Xylylalanine [M+H]+ 280 160.1/220.1 26/10 7.33

Thiobencarb C12H16ClNOS 257 Herbicide Thiocarbamate [M+H]+ 258 89.1/125 54/26 10.34

Baycarb (Fenobucarb) C12H17NO2 207 Insecticide Carbamate [M+H]+ 208 77/95 42/10 8.34

Carbaryl C12H11NO2 201 Insecticide &
Nematicide

N-Methyl
Carbamate

[M+H]+ 202 127.1/145 30/6 7.16

Propamocarb C9H20N2O2 188 Fungicide Other Carbamate [M+H]+ 189 74/102.1 26/14 1.36

PIN, pesticide identity number; MF, molecular formula; MIM, mono-isotopic mass; TOP, type of pesticide; COC, class of chemical; IM, ionization mode; ESI,
electrospray ionization; PI, precursor ion (m/z); MRM, multiple reactions monitoring; CE, collision energy (eV); ART, average retention time (min)
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Thus,  comparative  analysis  was  carried  out  on
some  assumed  and  selected  mobile  phases
reportedly used for analysis of pesticides in various
samples. Experimentally, the comparative analysis
was carried out on the multi-pesticide mixture of
0.1  mg/kg  multi-pesticide  mixture  of  standard
solutions.  Consequently,  the  TIC  of  the
instrumental  runs  for  each  of  the mobile  phases
resulted in chromatographic peak heights (ATCPH),
and areas (ATCPAs) as presented in Table 3.  Then
again, the addition of organic solvent into aqueous
mobile phase could provide the optimum condition
of logP, which contributes to the attainment of good
condition for the multi-pesticide residues analysis
in  food  samples  using  LC-MS/MS  instrument  as
revealed  (43).  For  this  reason,  optimization  was
carried  out  by  serial  addition  of  ACN  into  the
aqueous  mobile  phase  (0.1%  FA  milli-Q-water).
Thus,  the  mobile  phase  setup  that  provided  the
best separation of analytes and the highest TCPA
was selected for further optimization by adding 0,
0.5,  1.0, 1.5, 2.0,  2.5,  3.0, 3.5, 4.0,  4.5,  5.0, 7.5
and 10% ACN in  mobile  phase A.  Moreover,  the
best pH solution was selected based on the results
of  the average  TCPA responses  of  the LC-MS/MS
instrument. 

RESULTS AND DISCUSSION
The responses of the screened mobile phases were
compared and recorded.  The mobile phase setup
[0.1%  formic  acid  in  Milli-Q-water  (A)  and  0.1%
formic acid in ACN (B)] was the best based on the
highest  results  obtained  [ATCPAs  ±  standard
deviation (STDEV)  as well as  ATCPH± STDEV)] in
triplicates  as tabulated and illustrated in Table 3
and  Figure  3,  respectively.  This  result  was  also
supported by other findings using the mobile phase
for pesticides analysis (44, 45). Meanwhile, further
optimization result of mobile phase-A after addition
of ACN (0 - 10%) revealed that the addition of 1%
ACN into 0.1% FA Milli-Q-water at an average pH of
3.50 ± 0.07 STDEV (mobile phase A) coupled with
0.1% FA in ACN at pH 6.56 ± 0.04 STDEV (mobile
phase-B)  provided  the  highest  ATCPA  (Table  4).

The results were supported by their respective pH
readings  as  shown  in  Table  4  and  Figure  4,
respectively. Moreover, the retention time (min) of
the pesticide analytes  were less than the results
reported  by  some  literatures  such  as
thiamethoxam,  2.68  <  2.87  (46);  propamocarb,
1.36  <  1.47  (47);  carbaryl,  7.16  <  16.0  (48);
metalaxyl, 7.33 < 17.90 (49); thiobencarb 10.34 <
10.76 (50), and dursban, 11.36 < 12.30 (51). But
the  retention  time  (min)  of  baycarb  (8.34)  and
diazinon  (10.22)  were  more  than  6.73  (52)  and
7.09 (53) respectively.  Fortunately,  the optimized
mobile  phase contributes  towards  shortening the
total  run  time  (min)  for  the  multiple  pesticides
analysis using the LC-MS/MS instrument. 

CONCLUSION

The selection and optimization of the best mobile
phase  setup  was  successfully  carried  out.
Eventually, the optimized mobile phase setup [1%
ACN and 0.1% FA in Milli-Q-water (mobile phase-A)
coupled  with  0.1%  FA  in  ACN  (mobile  phase-B)]
improved  the  instrumental  sensitivity  on  the
targeted  analytes.  Thus,  this  justify  the potential
benefits of optimizing setup of the mobile phases
prior  to  LC-MS/MS  instrumentation  of  multi-
pesticide  analytes.  Also,  the  selected  and
optimized  mobile  phase  setup  could  be used for
the  analysis  of  other  contaminants  with  similar
properties to the analyzed pesticide compounds.
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Table 3: The ATCPH and ATCPA Instrumental responses for the selection of mobile phase

Ref
codes

References Water (A) Organic M/Phase (B) % M/Phase B ATCPH ± STDEV ATCPA ± STDEV

A 1st suggested mobile phase A ACN 25 (361 ± 2) x105 (47 ± 3) x 107

B Rajski, Lozano (35), Pérez-Ortega,
Gilbert-López (54)

A + 0.1% FA ACN 30 (349 ± 3) x 105 (46 ± 1) x 107

C  , Economou, Botitsi (56) and Lucas
(57)

A +  0.1% FA ACN + 0.1% FA 15 (50 ± 1) x 106 (72 ± 9) x 107

D Vázquez, Lozano (36) A + 0.1% FA ACN + 0.1% FA + 5% A 30 (31 ± 2) x 106 (38 ± 1) x 107

E 2nd suggested mobile phase A MEOH 30 (17 ± 1) x 106 (23 ± 2) x 107

F

Golge and Kabak (58)

A + 5 mM AF MEOH + 5 mM AF 30 (26 ± 2) x 106 (30 ± 1) x 107

G Zanella, Munaretto (43) A + 2% MEOH +
0.1% FA + 5 mM AF

MEOH + 0.1% FA + 5
mM AF

10 (58 ± 3) x 106 (60 ± 7) x 107

H 3rd suggested mobile phase A MEOH/ACN (1:1) 30 (27 ± 1) x 106 (30 ± 4) x 107

I 4th suggested mobile phase A + 5 mM AF +
0.1%FA

MEOH/ACN (1:1) +
0.1% FA + 5 mM AF

25 (36 ± 5) x 106 (32 ± 3) x 107

ATCPH, average total chromatographic peak height; ATCPA, average total chromatographic peak area; RT, retention time; AF, ammonium formate; FA, formic
acid; STDEV, standard deviation; Ref, reference
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Figure 3: The comparative studies of ATCPA and ATCPH results for the analyzed mobile phases
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Figure 4: Comparative illustration for the optimization of the selected aqueous mobile phase by ATCPA and ApH readings 
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Table 4: The Instrumental responses for the optimization of the selected mobile phase

Solution % ACN in Aqueous Mobile Phase ApH reading ± STDEV Organic Mobile Phase ATCPA ± STDEV

1 H2O + 0.1% FA + 0% ACN 3.36 ± 0.00 ACN + 0.1% FA (27 ± 2) x 106

2 H2O + 0.1% FA + 0.5% ACN 3.37 ± 0.08 ACN + 0.1% FA (27 ± 1) x 106

3 H2O + 0.1% FA + 1.0% ACN 3.50 ± 0.07 ACN + 0.1% FA (28 ± 2) x 106

4 H2O + 0.1% FA + 1.5% ACN 3.48 ± 0.04 ACN + 0.1% FA (27 ± 2) x 106

5 H2O + 0.1% FA + 2.0% ACN 3.45 ± 0.01 ACN + 0.1% FA (261 ± 3) x 105

6 H2O + 0.1% FA + 2.5% ACN 3.47 ± 0.00 ACN + 0.1% FA (265 ± 6) x 105

7 H2O + 0.1% FA + 3.0% ACN 3.46 ± 0.01 ACN + 0.1% FA (2652 ± 4) x 104

8 H2O + 0.1% FA + 3.5% ACN 3.48 ± 0.00 ACN + 0.1% FA (26 ± 1) x 106

9 H2O + 0.1% FA + 4.0% ACN 3.45 ± 0.04 ACN + 0.1% FA (26 ± 1) x 106

10 H2O + 0.1% FA + 4.5% ACN 3.41 ± 0.00 ACN + 0.1% FA (262 ± 5) x 105

11 H2O + 0.1% FA + 5.0% ACN 3.38 ± 0.07 ACN + 0.1% FA 26 x 106 ± 0
12 H2O + 0.1% FA + 7.5% ACN 3.37 ± 0.03 ACN + 0.1% FA (259 ± 4) x 105

13 H2O + 0.1% FA + 10.0% ACN 3.37 ± 0.03 ACN + 0.1% FA (256 ± 4) x 105

FA, formic acid; ApH, average pH reading; ATCPA, average total chromatographic peak area; STDEV, standard deviation
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