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Solving Bigeometric Volterra Integral Equations by Using Successive 
Approximations Method  

 

Nihan GÜNGÖR*1 

 

Abstract 

In this study, the successive approximations method has been applied to investigate the solution 
for the linear bigeometric Volterra integral equations of the second kind in the sense of 
bigeometric calculus. The conditions to be taken into consideration for the bigeometric 
continuity and the uniqueness of the solution of linear bigeometric Volterra integral equations 
of the second kind are researched. Finally, some numerical examples are presented to illustrate 
successive approximations method.  

Keywords: bigeometric calculus, bigeometric Volterra integral equations, successive 
approximations method. 

 

 

1. INTRODUCTION 

    The non-Newtonian calculus comprising of the 
branches of geometric, harmonic, quadratic, 
bigeometric, biharmonic and biquadratic calculus 
introduced and studied by Grossman and Katz 
[13]. Bigeometric calculus which is one of the 
most popular non-Newtonian calculus is worked 
by many researchers. Boruah and Hazarika [2,3] 
named Bigeometric calculus as G -calculus and 
investigated basic properties of derivative and 
integral in the sense of bigeometric calculus and 
also applications in numerical analysis. Boruah et 
al. [4] researched solvability of bigeometric 
differential equations by using numerical 
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methods. Güngör [12] defined Volterra integral 
equations in the bigeometric calculus and 
investigated the relationship between bigeometric 
Volterra integral equations and bigeometric 
differential equations. For understanding non-
Newtonian calculus and especially bigeometric 
calculus, the reader can find more details in [1-16, 
21, 22].  

Integral equations have used for the solution of 
several problems in engineering, pure and applied 
mathematics and mathematical physics. Volterra 
integral equations which is solved by using 
analytical and numerical methods, have an 
important role in the theory of integral equations. 
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One can find relevant terminology related to 
integral equations in [17-20, 23, 24] and also the 
details of successive approximations method can 
be found in [17, 19, 20, 24]. 

A generator is a one-to-one function   whose 
domain is   the set of real numbers and whose 
range is a subset of  . The range of generator   

is indicated by   :x x    .  -

arithmetic operations are described as indicated, 
below: 

   1 1addition                x y x y         

   1 1subtraction         x y x y         

   1 1multiplication     x y x y         

   1 1division              / /x y x y        


   1 1order                  x y x y          

for ,x y  .  , ,     is complete field. In 

particular, the identity function I  generates 
classical arithmetic and the exponential function 
generates geometric arithmetic. The numbers 

0x    are  -positive numbers and the numbers 

0x    are  -negative numbers in  .  -zero 

and  -one numbers are denoted by  0 0    and

 1 1   , respectively.  -integers are obtained 

by successive  -addition of 1  to 0  and 

successive  -subtraction of 1  from 0 . Hence the                     
 -integers are as follows: 

         , 2 , 1 , 0 , 1 , 2 ,        

For each integer n ,  we set  n n . If n  is an 

 -positive integer, then it is n  times sum of 1  
[13]. 

 

Grosmann and Katz described the -calculus with 
the help of two arbitrary selected generators. Let 
  and   are arbitrarily chosen generators and  
is the ordered pair of arithmetic ( -arithmetic, 
-arithmetic). The following notions are used: 

   
arithmetic arithmetic

Realm

Summation

Subtraction

Multiplication

Division / (or ) /  (or )

Order

A B 

 

  

 

 
 
 

 

 
 

 
 

 

 
  

If the generators   and   are chosen as one of 
I  and exp , the following special calculus are 
obtained: 

Calculus                                           

Classic                                               

Geometric                                         exp

Anageometric          exp             

I I

I

 

         

Bigeometric             exp                     exp.

I
  

The   (iota) which is an isomorphism from  -
arithmetic to  -arithmetic uniquely satisfying the 
following three properties: 

(1)   is one to one, 
(2)   is on A  and onto B ,  
(3) For any numbers x  and y   in A , 

     
     
     
     

   

,

,

,

/ / ,  0,

.

x y ı x ı y

x y ı x ı y

x y ı x ı y

x y ı x ı y y

x y ı x ı y









  

  

  

 

  

 

 
 
  

 

  

It turns out that     1x x    for every x  in

A [13]. 

 

2. BIGEOMETRIC CALCULUS 

Throughout this study, we will deal with 
Bigeometric calculus which is the * -calculus for 
which exp    as specified above. In other 
words, one uses geometric arithmetic on function 
arguments and values in the bigeometric calculus. 
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Thereby, we will start by giving the geometric 
arithmetic and its necessary properties.   
If the function exp  from   to    which gives 

 1 lnx x   is selected as a generator, that is to 

say that  -arithmetic turns into geometric 
arithmetic. The range of generator exp  is denoted 

by  exp :xe x   . The following notions are 

used: 
     

     

     

ln ln1 1

ln ln1 1

ln ln1 1 ln

geometric addition               .      

geometric subtraction          / , 0

geometric multiplication      

ge

x y

x y

x y y

x y x y e x y

x y x y e x y y

x y x y e x

  

  

  

 

 

 

      

      

     



     

   

1
ln ln1 1 ln

1 1
exp

ometric division               / , 1

geometric order                   ln ln

x y yx y x y e x y

x y x x y y

  

 

 

 

     
    



 

 exp , ,   is a field with geometric zero 1 and 

geometric identity e . The geometric positive real 
numbers and geometric negative real numbers are 

denoted by  exp exp : 1x x      and 

 exp exp : 1x x     , respectively. Now, we 

will give some useful and necessary relations 
between geometric and classical arithmetic 
operations. The geometric absolute valued of 

expx  defined by  

exp

,  1

1  ,  1

1 ,  1.

x x

x x

x x


 
 

 

Thus 
exp

1x  . For all exp,x y , the following 

relations hold: 

exp exp
exp

2 2ln

exp
                     xx x x x x x    

 
1 12 exp

exp ln ln                             
ppx xx e x x


   

exp

1
1 ln                                 n nxx e e x x  

 ,  1            1x e x x x e x y y x      

exp

xxe e                             

expexp exp exp exp exp exp
   x y x y x y x y    

 

expexp exp exp exp exp exp
   x y x y x y x y    

[2-4, 13, 15]. The geometric factorial notation 

exp!  denoted by 

1 2 !
exp! n n nn e e e e e     [2].  

 
Definition.1. Let  nx  be sequence and x  be a 

point in metric space  exp exp
, . . If for every

exp 1  , there exits  0 0n n    such that 

expexpnx x   for all 0n n , then it is said that 

the sequence  nx   exp -convergent and denoted 

by exp lim n
n

x x


   [22].  

 

Definition.2. Let exp exp:f A    be a 

function and 'expa A , expb . If for every 

exp 1   there is a number   exp 1     such 

that   expexp
f x b   for all x A  whenever 

exp expexp
1 x a   , then it is said that the      

BG -limit function f  at the point a  is b  and it is 

indicate by  limBG
x a

f x b


  or  
BG

f x b . Here 

exp expexp
1

a
x a x a 


      and 

   expexp

b
f x b f x b 


     [2,13,15]. 

 
Definition.3. Let a A  and exp exp:f A    

be a function.  If for every exp 1   there is a 

number   exp 1     such that  

    expexp
f x f a   for all x A  whenever

exp expexp
1 x a   , then it is said that f  is BG

-continuous at point a A . The function f  is 
BG -continuous at the point a A  iff this point 
a   is an element of domain of the function f  and 

   limBG
x a

f x f a


  [2, 13, 15]. 

 
Theorem.1. If the function 

  exp exp: ,f r s     be BG -continuous, then 

f  is exp -bounded on   exp,r s     [10]. 
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Definition.4. Let   exp exp: ,f r s     be a 

function and  ,a r s . If the following limit  

     
 

1

ln ln

explim lim
x a

BG
x a x a

f x f a f x

x a f a




 

 
 
 



 �
  

exists, it is indicated by  BGf a  and called the 

BG -derivative of f at a  and say that f  is       

BG -differentiable. If the function f  is                 
BG -differentiable at all points of the exp -open 

interval  ,r s , then f  is BG -differentiable on 

 ,r s  and BG -derivative of f  identified as 

     
 

1

ln

exp
1 1

lim lim
h

BG
h h

f x h f x f hx

h f x


 

 
 
 



�
 

for exph  and denoted by BGf  or 
BG

BG

d f

dx
[2, 13, 

15]. 
 
Definition.5. The BG -average of a BG -
continuous positive function f  on   exp,r s     

is defined as the exp -limit of the exp -convergent 
sequence whose n -th term is geometric average 

of      1 2, , , nf a f a f a  where 1 2, , , na a a  is 

the n  -fold exp -partition of  ,r s   and denoted 

by 
BG

s
rM f . The BG -integral of a BG -continuous 

function f  on  ,r s   is the positive number 

   ln lns rBG
s
rM f

   
 
 

 and is denoted by  
s

BG
BG

r

f x dx  

[3, 13, 15]. 
 
 
Remark.1. If f  is BG -continuous positive 

function on   exp,r s   , then 

    
 

 ln

ln

exp ln ,
ss

BG t
BG

r r

f x dx f e dt
 
 
 
 

   

i.e., the BG -integral of the function f  is defined 
by  

 
 ln

s

r

f x
s dx

xBG
BG

r

f x dx e


   

[3, 13, 15]. 
 
Theorem.2. If f   and g  are BG -continuous 

positive functions on   exp,r s    and ,   are 

arbitrary constants, then  

(1)     
s

BG
BG

r

f x g x dx     

   
s s

BG BG
BG BG

r r

f x dx g x dx      

(2)     
s s

BG BG
BG BG

r r

f x dx f x dx


  

  
 

   

(3)      
s t s

BG BG BG
BG BG BG

r r t

f x dx f x dx f x dx     

where exp expr t s    

(4)    exp exp
exp

s s
BG BG

BG BG

r r

f x dx f x dx    

 [10, 13, 15].  

 

Theorem.3. (First fundamental theorem of       
BG -calculus) If f  is BG -continuous on 

  exp,r s   and    
x

BG
BG

r

g x f x dx   for every 

 ,x r s , then BGg f  on  ,r s  [13, 15]. 

 
 
Theorem.4. (Second fundamental theorem of 

BG -calculus) If BGf  is BG -continuous on 

  exp,r s   , then 

     
s

BG BG
BG

r

f x dx f s f r   [13, 15]. 

 
 
Definition.6. Let A   be a nonempty subset of 

exp  and let n . The sequence 

   1 2, , , ,n nf f f f    is called   BG -function 

sequence for functions exp exp:nf A   . 

Here all functions defined on same set. The 
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sequence  0nf x  is exp -sequence in exp  for 

each 0x A  [21]. 

 
 
Definition.7. Let the BG -function sequence 

 nf  where exp exp:nf A   . The                

BG -function sequence  nf  BG -uniform 

converges to the function f  on the set A , if for 

any given exp 1  , there exists a naturel number 

0n  depends on number   but not depend on 

variable x   such that     expexpnf x f x   for 

all 0n n  and each x A . We denote                   

BG -uniform convergence by limBG n
n

f f


  

 uniformBG   or 
BG

nf f  uniformBG  [21]. 

 
 
Definition 8. Let the BG -function sequence 

 nf  with exp exp:nf A   . The infinite  

exp -sum exp 1 2
1

n n
n

f f f f




        is 

called BG -function series. The exp -sum 

exp

1

n

n k
k

S f


   is called n -th partial exp -sum of 

the series exp

1
n

n

f



  for  n [21]. 

 

Definition.9. Let the  BG -function series 

exp

1
n

n

f



  with exp exp:nf A    and the 

function exp exp:f A    be given. If the 

partial exp -sums sequence  nS  where 

exp

1

n

n k
k

S f


   is BG -uniform convergent to the 

function f , then exp

1
n

n

f



  is called BG -uniform 

convergent to the function f  on the set A  and 

 exp

1

 -uniformn
n

f f BG




  is written [21]. 

Theorem.5..( BG -Weierstrass M-criterion)           
If there exist exp -numbers nM  such that 

  expexpn nf x M  for all x A  where 

exp exp:f A    and the series exp

1
n

n

M



  is 

exp -convergent, then the series exp

1
n

n

f



  is        

BG -uniform convergent and exp -absolutely 
convergent [21]. 
 
 
Theorem.6. The functions exp exp:nf A    

be BG -continuous and the function 

exp exp:f A    be given. If 

 exp

1

-uniformn
n

f f BG




 , then the function f  

is BG -continuous on the set A  [21]. 
 
 
Theorem.7. The functions 

  exp exp: ,nf a b     be BG -continuous on 

  exp,a b   for all n  and 
BG

nf f

 uniformBG   on   exp,a b   . Then the 

function f  is BG -continuous on   exp,a b    

and    lim
b b

BG BG
BG BGBG nn a a

f x dx f x dx


  [21]. 

 

3. SOLVING BY SUCCESSIVE 
APPROXIMATIONS METHOD 

From [12], we know that the equation of an 
unknown exp -valued function  v x  is occurred 

form as 

       
1

,
x

BG
BGv f x K x s v dsx s

 
  

 
   (1) 

where  f x  and  ,K x s   are specified             

exp -valued functions and exp , is called 

linear BG -Volterra integral equation of the 

Nihan GÜNGÖR

Solving Bigeometric Volterra Integral Equations by Using Successive Approximations Method 

Sakarya University Journal of Science 25(1), 150-162, 2021 154



second kind. The function  ,K x s  is the kernel 

of BG - Volterra equation.  

In this method, the zeroth approximation  0v x  is 

identified as 

   0v x f x . 

If we substitute  0v x  instead of the unknown 

function  v x  on the right side of the equation 

(1), then the first approximation  1v x  is found 

by  

       
1

1 0,
x

BG
BGv x f x K x s v dss

 
  

 
  . 

The second approximation is obtained as 

       
1

2 1,
x

BG
BGv x f x K x s v s ds

 
  

 
   

by replacing  1v x instead of  v x  on right side 

of the equation (1). By proceeding similarly, the       
n -th approximation is obtained in the following 
form: 

       
1

1,
x

BG
BGn nv x f x K x s v s ds 

 
  

 
  . 

That is to say, the approximations can be put in a 
repeated scheme given by 

   0v x f x  

       
1

1,
x

BG
BGn nv x f x K x s v dss 

 
  

 
  , 

1n  .                                                                  (2) 

The successive approximations method gives the 
exact solution, if it exists, by  

   limBG n
n

v x v x


 . 

Now, we will give the necessary proposition for 
using the proof of the theorem that answers the 
question the BG -convergence of  nv x .  

Proposition.1. Let taken 

   0 x f x    

     
1

1, ,  .1
x

BG
n BG nx s nK x s ds             (3) 

 If  f x  is BG -continuous for exp exp1 x a   and 

 ,K x s  is BG -continuous for exp exp1 x a  and 

exp exp1 s x  , then the series 

 exp
exp

0

n

n
n

x



                                                      (4) 

is BG -uniform convergent and exp -absolutely 
convergent. 

Proof. Since  f x  is BG -continuous for 

exp exp1 x a  , there is exp 1m   such that 

  expexp
f x m                                                  (5)               

on exp exp1 x a  . Because of  ,K x s  is BG -

continuous for exp exp1 x a  and exp exp1 s x  , 

there is exp 1M   such that 

  exp,
exp

K x s M                                              (6) 

on exp exp exp1 s x a   .  From (5) and (6), we find 

     
x

1 0

p1 e

,
x

BG
BG

exp
K x sx s ds     

   
1 exp

             , 
x

BG
BG K x s s dsf  

   exp

1
exp exp

               ,
x

BG
BG K x s f s ds    
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exp

1

               
x

BG
BG M mds  

               =m M x   

by replacing  0 x  right side of the equation in 

(3). Therefore, we obtain 

     
x

2 1

p1 e

,
x

BG
BG

exp
K x sx s ds   

   exp

1

1exp exp
               ,

x
BG

BG sK x s ds  

exp

exp

1

2               
x

BG
BG m M sds   

exp

exp

2
2

exp

exp

               
2!

x
Mm    

by replacing  1 x  in (3). In a similar manner, we 

get  

 
exp

exp
exp

exp
exp !

n
n

n exp

x

n
x m M     

for exp exp1 x a   and n . Consequently,  

   exp
exp expexp exp exp

0 0exp

expnn

n n
n n

x x 
 

 

  

exp

exp
exp expexp exp

0 exp!
exp

n
n n

n

x
m M

n






      

exp

expexp
exp exp

0 exp!

expn n

n

n

m M
x

n





 
 

  

holds.  Let consider the exp -series 

  exp
exp exp exp

0 exp!

n

n

m
M

n





   . 

If the rate test is applied as follows 

    

 

exp

exp

ln

exp e

1

xp

exp exp

exp exp

exp

exp exp

exp

p

1

1

e p

ex

x

lim

lim

lim 1

1 !

!

n

n

nn

nn

M

n

m

e

e

M
n

m
M

n

M

e





















  


 

 


  

then we can see that the series is exp -convergent. 
This implies via BG -Weierstrass M-criterion, the 

exp -series  exp
exp

0

n

n
n

x



    

is BG -uniform convergent and exp -absolutely 
convergent.  

The convergence of  nv x  will be verified by the 

following theorem: 

Theorem.8. Suppose that the following 
conditions are satisfied: 
(i)  f x  is BG -continuous for exp exp1 x a  ,  

(ii)  ,K x s  is BG -continuous for exp exp1 x a 

and exp exp1 s x  , 

then the sequence  nv x  in (2), converges to 

solution  v x  of the equation (1), and also the 

solution  v x  is BG -continuous function on 

exp exp1 x a  . 

 
Proof.  Let taken      0 0v x f x x  . Hence 

we find  

       
1

1 0,
x

BG
BGv x f x K x s v dss

 
  

 
   

     
1

        ,
x

BG
BGf x K x s f dss

 
  

 
   

   1        f x x     
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where      01
1

,
x

BG
BG K xx ss ds    . The 

second approximation  2v x  is obtained as  

       
1

2 1,
x

BG
BGv x f x K x s v s ds

 
  

 
 

       

     

   

1

1

2

1

1

1

,

,

  ,exp

x
BG

BG

x
BG

BG

x
BG

BG

f x K x s f s ds

f x K x s f ds

K x s

s

s

s

ds

 



 

 
     

 

  









  

 

 

     2

1 2
expf x x x       

where      12
1

,
x

BG
BG K xx ss ds    . 

Proceeding this manner, we get 

   

   

exp
0

exp
1

        .

exp

exp

n
k

n k
k

n
k

k
k

v x x

f x x



 







 








 

Under the hypothesis,  nv x  is BG -continuous 

on exp exp1 x a   and also the series 

 exp
0

expn

n
n

x 



   is BG -uniform convergent 

by Proposition 1. Therefore there exists a                  
BG -continuous function  v x  such that 

   limBG n
n

v x v x


 , i.e, 

    exp
0

expn

n
n

x v x 




    

by Theorem 6. Now, we need to show  v x  is 

solution of the equation (1).  If the expressions  

   0 x f x   

     1
1

,exp exp

x
k k BG

BG kk K x s s sx d      

for k  , is added side to side,  we find 

   

       

0

1

exp
1

1

exp 1
1

, .

exp

exp

n
k

k

x n
k BG

G

k

B k
k

K x s

x

f dx s

x

s





 

 










 





  

As a result of this, we can write 

 

     

exp
0

1

exp
01

, .

exp

exp

n
k

k

x n
k

BG k

k

BG

k

K

x

f x sx s ds



 



















  

If we take BG -limit as n    on both sides of 
the equation, we obtain 

   

   
1

                  
xp

1
e 0

l, im exp
B

x n
k BG

BG kG
n

k

K x

v x f x

s ss d



 








 
 
 







 

      
1

   , 
x

BG
BGf x K x s v s ds    

by Theorem 7. This completes the proof. 

Remark.2. Under the hypothesis of Theorem 8, 
the series in (4) BG -convergences and equals to 
solution  v x  of the equation (1). For this reason, 

the solution of (1) also can be determined by aid 
of the system (3)-(4). 

Theorem.9. Under the hypothesis of Theorem 8, 
the BG -Volterra integral equation (1) has an 
unique solution on   exp1,a   . 

Proof. Assume that  v x  and  u x  are different 

solutions of the equation (1). Then, it is written 

       
1

,
x

BG
BGv x f x K x s v s ds

 
  

 
   
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       
1

,
x

BG
BGu x f x K x s u s ds

 
  

 
  . 

If we set      xx v x u   , then 

     

   

 

exp

exp exp

exp
1

exp

exp exp exp

1

1

,

              ,

              

x
BG

BG

x
BG

BG
exp

x
BG

BG

K x s s ds

K x s s ds

s s

x

M d

  

 

 





 





 

 

 

  

from (6). If it is taken  

    expex
1

p
1,

x
BG

BG s dsh x                                  (7)                    

then we find  

   

    
    

exp

exp

expexp

expexp

ep xpex

1

1BG

M h x

M h x

M x

x

h

x

h x

















 

 

 





 

from first fundamental theorem of BG -calculus. 

By multiplication with 
ln ln Mxe


 both sides of this 
inequality 

 
ln ln

exp 1.
M BG

xe h x
 

 
                                          (8) 

We find 

 
ln ln

exp 1
Mxe h x



                                                

by BG -integration both sides of the inequality (8) 
according  from 1 to x . Thereby, we write 

  exp 1h x                                                           (9) 

From (7) and (9) we obtain 

    
1

exp
1

x
BG

BG sh x ds  .  

Hence it must be  
exp

1

1
x

BG
BG dss  . Therefore 

 

 

 

e

1

x

1

p
ln

ln

1

1

1

ln
0.

x

x

ds
s

d

x

s

s

s

s

e

e

ds
s

s















 

Thus, we find 
 ln

0
s

s


  for all 

  exp1,s x   , i.e.,   1s   for all 

exp exp1 s x  . As a result of this    v x u x  for 

all   exp1,x a   . 

3.1. Numerical Examples 

Example 1. Find the solution of BG -Volterra 
integral equation  

     
1

x
BG

BG s x dsv x se v      

by aid of the series (4). 

Solution. Proceeding with the recurrence relation 
in (3), that gives 

 0 x e    

     1 0
1

x
BG

BG s x dsx s     

  1

ln ln

1

         

x
s xx ds

sBG
BG s x eds e




    
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 

  
2 11ln

ln 2!ln2!         
x

xxe e


  

  
  

 

    
exp

2!

11 2
ln ln

exp

exp

         1
2!

x e x
x e


 

  
  

  

     2 1
1

x
BG

BG s x dsx x   

   
exp2

exp

exp1

   1
2!

      
x

BG
BG

s
s x e ds

 
  
 

   

 
 2
ln

1

2         
sx

BG
BG s x e ds


  

   3

1

2
ln ln ln1

2
         

x s s x
ds

s
e


 


 4

expln 4

4! exp

exp

         
4!

x
x

e   

and so on. The solution of the integral equation is 
obtained as a series form is given by 

   

 

 
 

 

 

exp exp

exp exp

exp

exp

2 4

exp exp

exp exp

6 8

exp exp

2

exp

e

exp

1

exp

1

xp

1
2! 4!

1
6! 8!

1
2 !n

n

n

n

n

v x e

e x

x x
e

x x
e

x
e e

n











 

 

 

 

 







 









 

and the closed form by  

  cos ln xev x    

obtained upon using the geometric Taylor 

expansion for cos ln xe . 

Example 2. Solve the BG -Volterra integral 
equation 

     
1

x
BG

BG s x dsv x sx v     

by using successive approximations method. 

Solution. Taking the zero approximation as 

 0v x x . 

Substituting this equality into  v x  under the

BG -integral in the iteration formula (2),  we find 
the first approximation as 

   

1
1

2

3
exp

ln ln

ln ln ln

3ln

6 exp .

exp

1

1

        

       
3!

x
x

x
BG

BG

s
s

x ds s s xs ds
s

x

s x sds

x e x e

v x x

x
x e x

 
 
   
        



 
   

  

   



  

 
Then, we find the second approximation as  

   
exp3

exp

exp
2

1 3!

x
BG

BG
s

sv sx dsx x
 
  
 

      

 
3

4 3
2

3

1

5 3 5

exp e

1

xp

ln
ln ln ln

6

ln ln
ln ln ln ln

6 6

ln ln ln ln

6 60 3! 5!

3 5

exp exp .

exp exp

        

        

       

       
3! 5!

x

x

s
s x s

ds
s

s s
s x s x

ds
s

x x x x

x e

x e

x e x e e

x x
x

  
      

 
 
 
 

 
   

 
 
 
 

 



 


 

  

 

 



 

Proceeding the same manner we get the n -th 
approximation by 

 

 
 

 

exp exp

exp

exp

3 5

exp exp

exp exp

2 1

exp

exp

3! 5!

           1
2 1 !

n
n

n

x x
x

x
e

n

v x



 




 






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for 1n  .  Since the function  nv x  is n -th partial 

exp -sum of the series 

 
 

 
exp

exp

2 1
sin ln

exp

0

exp

exp

1
2 1 !

x

n

n
n

e
x

e
n








   

this implies that   sin lnlim x
BG n

n
v x e


 .  As a result, 

the solution is obtained by   sin ln xv x e . 

 
By using the relation bigeometric and classic 
calculus, we can find the iterations with Maple as 
follows: 
 
> k:=9; lambda:=exp(1); u0:=x-> x; 
a:=1; f:=x->x;K:=(x,t)->t/x; 
> for n from 1 to k do 

u||n:=f(x)*(exp(1)^(ln(lambda)*in
t((1/t)*ln(K(x,t))*ln(u||(n-
1)(t)),t=a..x)))assuming x>1; 

u||n:=unapply(f(x)*(exp(1)^(ln(la
mbda)*int((1/t)*ln(K(x,t))*ln(u||(n
-1)(t)),t=a..x))),x)assuming x>1; 
od; 
 
 

    
 
Here, we plot the successive approximations. In 
this figure, n  is the number of iterations 
performed.  
 

4. CONCLUSION 

In this paper, the successive approximations 
method is constructed in the bigeometric calculus. 
The exact solution of linear bigeometric Volterra 
integral equations of the second kind is presented 
by using this analytical method. Also, we get the 

result that the solution of the linear bigeometric 
Volterra equation of the second kind can be found 
by aid of the series which is obtained in 
Proposition 1. Moreover, the necessary conditions 
for the bigeometric continuity and uniqueness of 
the solution of these equations are given. Finally, 
some applications are presented to explain the 
procedure of solutions of these equations by using 
these methods and how to find the approximations 
by using Maple are expressed. 
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