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Abstract

The eigenvalues and eigenvectors of («, g)-Bernstein operators are unknown and not stud-
ied in the literature. As the main result of this article, the eigenvalues and eigenvectors of
(c, q)-Bernstein operators are obtained. Moreover, we will give the asymptotic behaviour
of these eigenvalues and eigenvectors for all ¢ > 0. Some eigenvectors for various values of
a and g are depicted.
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1. Introduction

The well-known Weierstrass Approximation Theorem, proved by Karl Weierstrass in
1885, states that for any continuous function f defined in interval [a,b] and € > 0, there
exists a polynomial P such that | f(z)—P(z)| < e. Since the proof of the theorem is lengthy
and complicated, many researchers studied to find simple and effective proof. In 1912,
using probability theory, S.N. Bernstein developed Bernstein polynomials and published
rather simple and effective proof for Weierstrass Approximation Theorem [2].The short
proof given by Bernstein is mainly related to explicit form of sequence of polynomials
which converges uniformly to given functions. Consequently, many researchers began to
use and apply the Bernsteins proof especially in the field of probability theory. In 1987,
Lupas has defined g-analogue of the Bernstein polynomials for rational functions [12].
However, in 1997, Phillips has developed g-analogue of polynomial functions such that
for ¢ = 1, classical Bernstein operators are obtained [17]. After Lupag and Phillips work,
positive linear operators and g-analog of Bernstein operators have become the main study
area of approximation theory. Two of the famous ¢-Bernstein operators are g-Durmayyer
and g-Kantorovic type operators. After, many researchers studied ¢-Bernstein operators
and with the help of these operator, g-analogues of many other operators are obtained
[9,11,13-15,19,20].

Many researchers have studied the eigenstructure of the extensions of Bernstein and
g-Bernstein operators. See, for example, [6-8,10,21]. The present work is based on the
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study by S. Cooper and S. Waldron in 2000 related to the eigenstructure of the classical
and multi-variable Bernstein operators [4,5]. Eigenfunctions of the ¢g-Bernstein operators
and their asymptotic behavior are investigated by S. Ostrovska and M. Turan in 2013 [16].
In this study, eigenvalues and eigenfunctions of the («, ¢)-Bernstein operators introduced
by Qing-Bo Cai and Xiao-Wei Xu in [18] are found and their asymptotic behavior is
investigated. When ¢ = 1, one obtains the eigenvalues and eigenfunctions of the a-
Bernstein operator introduced by Chen et. al [3].

2. Preliminaries

The definitions and notations used in this article are adopted from [1, Ch.10]. Let ¢ > 0.
The ¢-integer is defined by

nlg:=1+q¢+¢+ - +¢" [0,:=0 (n=1,2,...), (2.1)
the g-factorial of n by
n]g! == [1]42]4. .- [n]g, [0]gl:=1 (n=1,2,...).
From (2.1), one can easily see that
[nlq — [dlq
q
For integers k and n with 0 < k < n, the g-binomial coefficient is

[n—ilg =

{n] _ [n]q!
klg  [Klgln — Klg!
The g-shifted product is defined by
k—1 (%9

(@:q)o:=1, (a;q)r = [J(1—0aq®), (a:q)0c = [J(1 = aq®).

s=0 s=0
We also need the ¢-Stirling numbers of the second kind Sy (k,r) given by

Solk,r) = W 2(_1)iqm;> [: L r—? (2.3)

Using induction on k, one can verify that
Sq(k+1,7) = Sy(k,r — 1)+ [r]gSq(k,7), E>0, r>1 (2.4)

with S4(0,0) =1, S4(k,0) =0 for k > 0 and Sy(k,r) =0 for k < r.
The a-Bernstein polynomial of f : [0,1] — R is introduced as in [3] as

Tualfio) =3 £ (5) 100 (25)

(a)

where p,
b

pgcfl) (x) =z and for n > 2,

Pl () = Kn ; 2) (I-a)z+ (?:5) (I-a)l-2z)+ (ZL) ax(l — :c)] 221 — )T

The a-Bernstein operator T}, , on C]0, 1] is given by
Tona:f—Thalf;:)

Using the forward difference operator, (2.5) can also be written as

Tnalf;z) = Zn: l(l —a) (n ; 1) Ago + oz(?:) Nfo] a”

r=0

(z) are the a-Bernstein polynomials of degree n given by pg%) (r) = 1—uz,
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= () w= (1) f

and Aofz = fi, A"f; = ATilfH_l - Arilfi for r > 1.
Lemma 3.1 in [3] states that the higher-order forward difference of g; can be expressed
as

where

) i+
ag= (1= ) AT+ A

The g-analogue of a-Bernstein operators, called («, q)—Bernsteln operators are defined in
(18] as Ty g0 ¢ f = Thga(f;.) such that

nqa fa zn: < ) n; (37)7

=

(a)

;(x) are the basis («, g)-Bernstein polynomials of degree n given by py ,o(z) =

1 -z, pj,1(z) =2 and, for n > 2,

pgzo,é;,i(x) = < " Z_ 2:| (1—-a)x+ |:Z :22] (1- a)q"‘i(l — q”—i—lx) + [?Lam(l - qn—i—1$)>
X

(@ @) i1

Like a-Bernstein polynomials, the (a, g)-Bernstein polynomials have the representation
using the forward difference operators as

% n—1 r n r r
Taalfin) =3 (0= |" ] jara 7] app)e (2:6)
r=0 r "lq
where Agfi = fi, Ayfi = Agilfi_l'_l — q’"*lAgflfi for r > 1. Also, the higher-order forward
difference of g; can be expressed as, see [18, Lemma 2.4],

n—i—1[; n—i—1—rjy,;
T _q [Z]q T q [Z""’”]q T
Alg; = (1 - ) Afit g, A (2.7)

3. Main results

Since the a-Bernstein polynomials are obtained from («, q)-Bernstein polynomials as
q — 1, we will present only the results for the latter one. Similar results can be derived
for a-Bernstein polynomials by taking the limit as ¢ — 1.

It is known that («,q)-Bernstein polynomials possess some properties of g-Bernstein
polynomials. For example, see [3] and [18], they have the endpoint interpolation property:

n,q,a(f;o):f(o), nq, (f 1) f( )a n:1727"'a
and leave the linear functions invariant:
Thgaolat+b;2) =ax+b, n=12,....

Moreover, they are degree reducing on polynomials, that is, Tn,q,a(tk ;) is a polynomial of
degree min{n, k}. This implies that, for k& < n, the subspace Py of polynomials of degree
at most k is invariant under T}, 4 .

To be specific, it is known (see [18]) that

Tn’qva(tkw) = akiﬁk + ak—mk_l +--tarz,

where
qk(k—l)/Q[n _ ]

[n = Klg![nlg

ar = = {1 —a)[n —Eklg[n — 1+ kg + alnfg[n — 1]}
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The above representation gives only an explicit formula for the leading coefficient. How-
ever, in our study, we need all coefficients explicitly which are given below.

Lemma 3.1. Let f(t) = t*. Then, forr <k andi=0,1,...,n, one has

AL fi = Tl Z )oqils /2 u i +r— 8]k, (3.1)
q s=0 q
Proof. Take f(t) = t* in [17, formula (2.1)]. O
Lemma 3.2. Forn >k > 1, one has
k
Tga(t;x) = Za(r, k)x"
r=0
where
qr('r;l) [n _ 2] |
a(r, k) = Q'{(1—a)[n—r] ([n—i—r— 0y So(k + 1,7+ 1)
g = 11, q o

4+ 1yl — 1],S, (k7 + 1)) +afnlyfn — 11,S,(k, r)}. (3.2)
Proof. From (2.6) one has
o) =(1-a)|" ]

For i =0, (3.1) becomes

n
Ajgo + { } Ay fo-
q Tlq

Abfo=

D M I W

lc
‘IsO q

r T q.q

As Agﬂfo = Ayfi — " Ay fo, we have
ALfi = Arﬂf +q" A fo

a2
= W([r + 1]gSq(k,m+ 1) + Sy(k, 7))
_ [T]q!‘f:;l)/zs (k+1,7r+1)
Also, i =0 in (2.7) results in
n—l—r r
Aggo = Ag fo + 1 i 1[] ]qAZﬁ
T L .
" (8atk.) + LS L D)
Therefore,
G RN CE g n
ofrik) = 0Ly {a-a|" L <Sq(/€,7“) + LS L 1)) ta quq(k,r)}

[n —1]q [n —rly!
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Using (2.4), the last equality becomes

r(r—1)

a(r, k) = ‘M{u — )fn =1yl — r]q<5’q(k L4 1) = [+ 1)y Syl + 1)
n—1 r
o _[1]]3 Sy(k -+ 1r 1)) + alulyln — 1ySy (k) }
r(r—1)
=ttt (= vl = 1l S G 1 )
— [r+1gln — 1]gSq(k, 7 + 1)) + afn]qn — 1]qu(kaT)}
r(r—1)
_ W{u _ a)[n—r]q<[n+r 1Sy (k4 1,r 4+ 1)
— [r+1g[n — 1gSe(k, 7 + 1)) + afn]q[n — 1]4Sq(k, 7’)}
which is (3.2) as claimed. O
Lemma 3.3. The numbers
¢ 7 [n-2),
/\](Crzn) _ W((l —a)[n—Fklgn—1+klg+an|gn—1]y), k=1,2,....,n
q- Mg

are distinct for o € [0, 1].
Proof. One can write

k-1
A <a+(1_a)[n—k]q[n+k—1 ) I ( }q) 53

[nlgln — 1 m=1

Dividing (3.3) by )\,(COL?ZI for j =1,2,...,k—1, we get

Aé?‘é"[( (1 = @)l — Klgln + k — 1], + afnlyln - 1], > i ( ])
aen) (1T —a)[n—k+jlyn+k—j—1],+ an]gn —1] L iy )

k—j.q
(1) <o

m=k—j [nlq

Obviously

To complete the proof, note that
n—klgn+k—1,<[n—k+jlgn+k—j—1]
S(1—¢" M1 =" < (1= ¢" M) (1 - gt
@ -7 =1 >0
forallg>0and j=1,2,...,k— 1. O
(a,n)

Remark 3.4. It is worth mentioning that the numbers )\k’ g are the leading coeflicients
of Tn,q,a(tk; .73) That is, A](Caqm) = a(k, k), and hence
Tnga(th,z) = A& ab + PO (2)

where Pk(gl" ) (z) is a polynomial of degree k — 1.
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4. Eigenvalues and eigenvectors of T}, , ,

In this part, the eigenvalues and the corresponding eigenvectors of T, ,, are found.
The coeflicients of the eigenvectors are given recursively. For some specific values of n,
the eigenvalues are plotted.

Lemma 4.1. For allq > 0 and o € [0, 1], the operator T,, 4 o has n+1 linearly independent
monic eigenvectors p;aén) (x) of degree k = 0,1,...,n corresponding to the eigenvalues
(or,m) ;
A = A% =1 and
k(k—l)[ 2] |
2 [n—2],!
PYCHQIN S Lk UL YC —k —-1+k -1
k,q [7’L _ k]q‘[n]}; (( a)[n ]q[n + ]CI + O‘[n]q[n ]q)
fork=23,....
Proof. The proof is clear for k =0 and k= 1. For k = 2,3, ..., we have

Tnyq,a(tk;ﬂf) _)\l(eq " +PI§ 1)( )7

where Pk(‘jl” ) (z) is a polynomial of degree k — 1. Let
p,(s;") (2) = 2" + By_12" P+ -+ Biw
stand for the monic eigenvector of 7T;, ; o corresponding to )\iﬁ;n), that is,
Tngalpily” (0:2) = N pily " @)

Since T}, 4.« is linear, this equality becomes

Trga(52) 4+ Bo1Tong a5 2) + -+ BiThgalt; 2) = NV (@8 4 B2 4o 4 Bra).

Comparing the coefficients of 2™, m =1,2,...,k — 1, we get the system in the unknowns
B1, B2, ..., Br—1, whose coefficient matrix is
A e 0 0 o 0
A\ ¥ A A 0 0
: CE, o
* * * . )\,(fq’n) — Aﬁ?‘q’”)
Clearly
det(A) = (" = NP = X5 - (Y = M) £ 0
by Lemma 3.3. Thus, there exist unique numbers f31,..., Br_1 and hence p,(w; )(a:) is an
eigenvector of T}, 4 o corresponding to the eigenvalue )\,E:qu’n). ([l

Theorem 4.2. The monic eigenvector p,(caq’n) (x) of Ty q,a associated with )\](€aq,n) s a poly-

nomial of degree k given by
k
V(@) = Y englis k),
=0

where p((fq’n) (z) =1, pg(z’n) () =x and

Cnglk — g, k) = ) chq —i,k)anq(k—j,k—1)

“(an)  ((an)
)‘kq _)‘k —j,q =0

forj=1,2,... )k, k=2,3,....



(a, q)-Bernstein operator 1117

Proof. Let us write the eigenvector p,(C ’ )( ) of T}, 4.0 in the form

k
o) x) = Z Cng(r k)"
r=0
By the assumption that ¢, 4(k, k) = 1, the relation

Tuga®icy” ) = N0l (@)

implies

k k
o) Z Cnyq(s, k)z® = Z Cnyg(1, k) T ga(t’; @)
s=0 r=0

k

- Z Cnyq(r; k) Z U q(i, 1)z’
r=0 i=0
k k
- Z Z Cn#](r’ k)an,q(s, ’I“)l‘s

s=0r=s

which leads to

k
/\,(g?‘q’n)cnq (s, k) chq T k)anq(s,r). (4.1)

r=s

Substituting s = k — j and r = k — i in (4.1), we obtain

)\Xyz]’n)anI(k_j? k) = chq anq(k_],k’—Z)
= cnglk = J, K)ang(k = j.k —j +chq k)an ok — j, k — ).

(4.2)

It is seen from (4.2) that

Cn’q(k_j’k): a,n) a,n) chq 7’ anq(k_jak_i)‘
)\k,q - >\k ] q ’L 0
The proof is completed. O
Example 4.3. As mentioned before pgaq’n) (z) =1 and pgaq’n) (x) = x for all n. Also, by the

endpoint interpolation, one can easily derive that p(a n)(:n) =22 —x for all n. For n = 3
and k = 3, one has

pg‘f‘j)( ) =23 + aga® + a1z
where
0 — (1-a)g" +(2-0a)¢® +3¢° + (2a +1)g +2
1-a)*+@P+2¢+(1+a)g+1
0 — 1-a)’+¢°+ag+1

1-a)@* +¢@+2¢2+(1+a)g+1°
The graph of pé?‘q’?’) (x) for a = 0.4 and various values of ¢ is plotted on Figure 1. Also, the

graph of p:(f‘q’g)(x) for fixed ¢ and variable « is depicted on Figure 2.
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0.15 T T T T

0.1

0.05

_0.05 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 1. The eigenvector pé?‘(;g) (z) for a = 0.4 and different values of q.

0.08 T x w y

0.06

0.04

0.02

-0.02

_0.04 1 1 1 1
0 0.2 0.4 0.6 0.8 1

(e,3)

3.g () for ¢ = 0.6 and different values of «.

Figure 2. The eigenvector p

4.1. The limit behavior of the eigenvalues and eigenvectors of T, ,

Lemma 4.4. For q € (0,1) and k =2,3,..., one has:

r(r—1)

(i) nh_)rgo Ang(r k) =q 2 (1— q)k_TSq(k,r), r=0,1,...,k

() Jim Aoy = D
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Proof. The proof follows, immediately, from the fact that lim, . [n], = 1/(1—¢), for all
€ (0,1). O

Theorem 4.5. Let 0 < g < 1 and pé?;n) (x), k =0,1,...,n be the monic eigenvectors of
T g, given in Theorem 4.2. Then

Wi e g5, K) = by )

holds for 0 < j <k, k=0,1,..., where

1, J=k,
_ 0, j=k—1=0,
be(j, k) = (1= q)is (i, k)

Z q=i)(k+i-1)/2 _ bq<i7k), otherwise.

In other words, when q € (0, 1), we have

k
Tim pi™ (@) = pr(x) = Y by(j, k)a?
=0

uniformly on [0, 1].

Proof. p(()?éq’n) (z) = po(r) =1 and pga n)( ) = p1(z) = x, by Theorem 4.2. So, it is enough
to consider the case k > 2. Suppose that lim,, o0 ¢y q(k—1%,k) = bg(k—i,k),i =0,...,5—1,
where 0 < 5 < k.

One can easily see that

i ang(k—j,k—i) (1 —q)?7"Sy(k — i,k — j)

nthoo RN A RS
Then
(1= @8, (k — ik — §) .
hm cnq Z T bg(k — i, k).

1=

Substituting j by k — j and ¢ by k — i, we obtain

k .
(1—q)98,(i,k) .
hm cnq 7,k E q(k D)z = b q (i, k)
=j+

which completes the proof. [l

Lemma 4.6. For g > 1, one has:
. . (ayn)
(i) r}grgoAk7q =1.

(ii) lim ang(k = j, k — 1) =0fori<j—1,75=12,...,k—1
n—00 /\(Oé n) )\(0477})
(--.) kq k_‘j’q
111
o ng(k =gk =G +1)  Sy(k—j+ 1Lk —j) + (1= a)g! [k = jlalk = j + 1],
e Y Y = 1]g + [k =2]g + -+ [k = 1],

forj=1,2,...,k—1.
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Proof. The proof of (i) is obvious. For the proof of (ii) and (iii), one can write

r(r—1)

q 2 [n]g! { [n —rlgln —r+1],
ang(m k) = 77— (1 -« Se(k+1,r+1
N O T R D A )
1 [n —rlq
(1 Oé) [n] [r+1]q5q(k,r+1)+a8q(k,r)
q
and
k(k—1)
A\ (@n) q 2z [n]g {( B )[n—k:]q[n+k—1]q }
k’q [n]’;[n — klg! [n]q[n —1]q
Then,
q(k,j)(g,j,l)[ L
. . g 2 @ Mg
an,q(k - k — Z) _ [”}I;ﬂ[n*k+j]q! An
(n,) (n,o) k(-1 (k—j)(k—j—1)
kg Mg ¢ 2 [nle'p  q 2 [n]q!
“ P Rk P T e T gy O
_ [n]gAn |
=kt Jly = b 1@ @02, — O,
where
[n—k+jlgln+k—j—1]g , ,
Ap=(1-« Selk—i+1,k—j+1
0 =1, o )
ka4
-~ —a)W[k—jJr 1,Sq(k — i,k — j + 1) + aS,(k — i,k — 5),
[n —klgln +k —1]q
B,=(1-« + «
0= -1,
and
n—k+jlgn+k—j—1]
C,=(1—« =+ .
e ACEET
Using (2.2), one can write
an,q(k—j,k—1) _ [n]éAn |
/\;(fén) - )\;(Coﬁ% ([nlq — [k = dlg)(Inlqg — [k =5 — 1) - - - ([n]q — [k — 1]¢) Bn — [n]gCh
[n]f]An

[P}y (Bn — Cn) = [nJy " ((k = 1g + [k = 20g + -+ + [k — 4lg) B + O([nfF )
Note that

lim Ay =(1-a)(Sg(k—i+Lk—j+1) - ¢k — G+ 1)S,(k — ik —j+1))

+aSy(k —i,k—j)
= Sq(k —j+ 1,k =)+ (1= a)g "k — jlylk — 5 + 1,
where (2.4) is used. Also, lim,, o B, = 1 and lim,,_,, C,, = 1. It is obvious now that if
i <j—1,then
i a”’{fy(i:)_ = ]:a;)Z)
Mg~ Mg

which is the claim in (ii). Moreover, if i = j — 1, then we have

po gk =gk =1) Sk =g+ 1k = )+ (1= a)q 49k — flyfk — j + 1],

D R Y k=1 + [k = 2)g+ - + [k = jlg

=0
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which completes the proof. O
Theorem 4.7. Forq > 1 and 0 < j <k, we have
nlggo cn#l(j’ k) = dQ(ja k)’

where

k=j —i _j _ —kti[y. o
d,(0,1) = 0, :H_Sq(k: P41k —i)+ (1 —a)g * ik — i [k —i+ 1],

k—=1g+---+ [k =il

Proof. For k = 0 and k = 1, there is nothing to prove. Assume that k& > 2, and use
strong induction on j. Since ¢, 4(k, k) = 1, the statement is true for j = k. Assume that
limy, o0 € g(k — 4, k) = dy(k — i, k) for i = 0,1,...,j — 1. Then, using Lemma 4.6 (i) and
(ii), we obtain

hm cnq Zd —i,k) h_}ngo an’ga(lz) j’](fa_n)z)
/\ k.q )‘k,q
Selk —j+1,k—j)+ (1 —a)g "k — jly[k — 5 + 1], .
__ dy(k—j+1,k).
FTot -+ i, AEm L

From the fact that

jﬁ_Sq(k‘ —i+1,k—i) 4+ (1—a)g "k — [k —i+1],

dg(k —j+1,k) = e —1g+-+ [k —i]

i=1
then we get

) Sk —i+1,k—1i)+ (1 —a)g k—ilglk —i+1
dq(]vk):H_ Q( ) ( ) [ ]Q[ }q
i=1 [k =1g+---+[k—ig
which completes the induction. O
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