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Abstract: This paper provides a probabilistic study for the four compartmental leukemia mathematical model. Our study focuses
on the randomized endemic equilibrium state considering the proliferation rate of the immune cells due to the cancer relapse is
a continuous random variable. This treatment makes the presented model to be more realistic and efficient. Depending on the
Random Variable Transformation (RVT) technique, the first probability density functions (1-PDFs) for the solution processes of
susceptible blood cells, infected blood cells, cancer cells and immune cells are explicitly derived at the equilibrium state. These
PDFs are general and valid for any probabilistic distribution of the input random variable. Relying on the obtained PDFs, the main
statistical properties, specifically, the mean and the variance functions for the solution processes are conducted. To test the validity
of the theoretical findings associated to the proposed randomized leukemia model, some numerical results are presented through
an illustrative example.
Keywords: Leukemia mathematical model, Random Variable Transformation (RVT) technique, first probability density function
(1-PDF), randomized endemic equilibrium state, random proliferation rate.

1 Introduction

Random (or stochastic) differential equations are established as one of the supportive ways to describe most of physical problems, in
which the randomness arises, in various fields such as physics, chemistry, epidemiology, astrophysics, biology, engineering and social sciences.
This type of differential equations can be solved via different methods and techniques such as Fokker-Planck equation [1], Wiener-Hermite
expansion [2]-[3], and perturbation based methods [4], WHEP technique [5] and the random variable transformation (RVT) technique [6]-[7]-
[8]-[9]-[10]-[11]-[12]-[13].

The Random Variable Transformation (RVT) technique is a powerful technique that helps to get a full probabilistic description of the stochas-
tic solutions of some stochastic differential equations. The full stochastic solution means obtaining the first probability density function (1-PDF)
of the solution process then the mean, variance, covariance . . . etc. The RVT technique gives a general solution of the problem by allowing the
input random variable to have any probabilistic distribution. It is also treating discrete or continuous random differential equations that have
one or more random variables (RVs). In this paper, authors apply the RVT to study the statistical behavior of the randomized equilibrium state
of the leukemia. Leukemia is a type of cancer that starts in the blood forming tissues, such as the bone marrow. It is usually beginning in the
white blood cells and starts to make a lot of abnormal white blood cells which don’t function properly. Large number of leukemia cells can
enter the blood stream very quickly and crowd out the normal blood cells which may lead to Anemia, bleeding, and infections. Furthermore,
leukemia can spread to the lymph nodes or other organs and cause swelling or pain.

The dynamics and spread of endemic diseases in biology and medicine can be, in general, described by nonlinear ordinary and partial
differential equations. The dynamics of Leukemia can be modeled by such system of nonlinear differential equations. For more details on
leukemia mathematical models as well as some recent developments the readers can refer to references [14]-[15]-[16]-[17] and the references
within. However, in recent work, some new developments in modeling the nonlinear behavior of immunotherapeutic treatment of leukemia
using Adoptive T cell are addressed [18]-[19]. This model consists of four nonlinear ordinary differential equations for susceptible, infective,
cancer and immune cells. The stability theory of differential equations and numerical simulation are used to analyze this model and the analysis
reveals that the external re-infusion of immune cells reduces the concentration of cancer cells and infected cells in the blood.

In this article we study the four component Leukemia model, at endemic equilibrium state, from a statistical point of view. Specifically,
we consider the source of randomness is the proliferation rate of the immune cells due to the cancer relapse. It is considered as a continuous
random variable. However, the argument of this paper can be applied if we generalize the randomness to the other parameters of the leukemia
model.
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The layout of the paper is as follows, in section 2, the theory of RVT technique is presented. The formulation of the four component
mathematical model for leukemia and its deterministic solution at equilibrium point is given in section 3. Moreover, in section 4, the RVT
technique is applied to obtain the 1-PDF, the mean and the variance functions. Finally, for clarification the results and conclusions are illustrated.

2 The random variable transformation (RVT) technique

The RVT technique is based on the following general theorem [7]-[13] when we have multi-random variable problems.

Theorem 1. If we assume that X = (X1, . . . , Xn) is a random vector of dimension n with joint PDF, fX(x), and consider a deterministic
one-to-one mapping g : Rn −→ Rn, where Y = g(X), to be continuous with respect to each one of its arguments with continuous partial
derivatives. Then, if we can define s : Rn −→ Rn such that x = g−1(y) = s(y), where s(y) is the vector of inverse transformation, then the
random vector Y have a joint PDF fY(y) given by

fY(y) = fX(s(y))|Jn|, (1)

since, Jn is the jacobian of the transformation;

Jn = det(
∂x
∂y

) =


∂x1
∂y1

· · · ∂xn
∂y1

...
. . .

...
∂x1
∂yn

· · · ∂xn
∂yn

 6= 0. (2)

In (2), Xi(i = 1, 2, 3, n) are called the input random variables while Yi(i = 1, 2, 3, n) are the output random variables. Hence, the joint
PDF of the output random variables can be obtained if the joint PDF of the input random variables is defined in a closed form.

2.1 The case of one input random variable

Suppose the following one-to-one map between the input and output random variables,

Y = u(X), (3)

and fX(x) is the 1-PDF of the scalar input random variable X. Then the 1-PDF of output random variable Y can be given, in view of (1), as:

fY (y) = fX(u−1(y))|J |, (4)

where J is the Jacobian of the inverse transformation x = u−1(y), i.e.

Jn =
∂x

∂y
=
∂u−1(y)

∂y
6= 0. (5)

3 The leukemia model formulation and its solution in equilibrium state

The aim of this section is to present the leukemia model in the form of mathematical equations. In this model, there are four compartments.
Those compartments are the population of susceptible blood cells, s, the population of infected blood cells, i, the population of leukemic cells
(abnormal cells), c, and the population of white blood cells or immune cells, w, [18]-[19].
The leukemia mathematical model is formed by the following system of ordinary differential equations:

ds

dt
= A− a0s− βsc, (6a)

di

dt
= βsc− β0i− β1ci, (6b)

dc

dt
= k − k0c− k1cw, (6c)

dw

dt
= B + bc− b0w − b1cw. (6d)

In (6a)-(6d), A represents the source term of susceptible blood cells compartement entering into the circulatory blood from the bone marrow,
lymph nodes and thymus. The natural death rate of susceptible, infected, cancer, and immune blood cells are a0, β0, k0, and b0 respectively.
There is a loss of susceptible blood cells due to being infected by the cancer cells represented by the parameter, β. In addition, the parameter
β1, is the decay rate of infected cells because of the interaction with cancer cells. In (6c) the first term k represents the constant recruitment rate
of cancer cells into the blood system, while the parameter k1 is the lack rate of cancer cells due to the effect of immune cells. The parameter
b1 is the decay rate of some immune cells due to the existence of cancer cells in the blood. Immune cells in cancer patients have an external
infusion at a rate of B. If cancer relapses, the immune cells will be proliferated at a rate, b. The solution of the leukemia model, (6a)-(6d), in
the disease-free equilibrium (DFE) point or endemic equilibrium point can be performed as follows:
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S∗ =
A(1 + k1w

∗

k0
)

a0 + a0k1w∗

k0
+ βk

k0

, (7a)

I∗ =
β

β0 +
β1k/k0

1+k1w∗/k0

(
A

a0 + a0k1w∗

k0
+ βk

k0

)
k

k0
, (7b)

C∗ =
k/k0

1 + k1w∗/k0
, (7c)

W ∗ =
−(k0b0 + kb1 −Bk1) +

√
(k0b0 + kb1 −Bk1)2 + 4b0k1(kb+Bk0)

2b0k1
. (7d)

Here, S∗, I∗, C∗ and W ∗ are the population of susceptible, infected, leukemic and immune cells in DFE point (or endemic equilibrium
point), respectively.

4 Stochastic Leukemia model

In this section, we will treat the above mentioned leukemia model in DFE point and endemic equilibrium case by considering the random
nature in a significant parameter which is the proliferate rate, b. In this context, we use the RVT technique, discussed in Sec.2, in order to get
the stochastic solution which is represented by the 1- PDF, the mean and the variance functions of the solution process. This is the target of the
following subsections.

4.1 The statistical study of the population of susceptible blood cells, S∗

Fig. 1: The profile of the 1-PFD, fS∗(s∗), for different values of the decay rate, b1.

The proliferate rate, b, can be obtained in terms of s∗ by substituting (7d) into (7a) as

b(s∗) =
1

k1(A− a0s∗)2
(−A2b1k0 + 2Aa0b1k0s

∗ − a2
0b1k0s

∗2 +Ab1ks
∗β −Ab0k0s

∗β

−ABk1s
∗β − a0b1ks

∗2β + a0b0k0s
∗2β + a0Bk1s

∗2β + b0ks
∗2β2),

(8)

Then the jacobian is given by

Js∗ =
∂b

∂s∗
=
Aβ((b1k − b0k0 −Bk1)(A− a0s

∗) + 2b0ks
∗β)

k1(A− a0s∗)3
. (9)

According to eq.(4) the 1-PDF of s* is given by

fS∗(s∗) = |Aβ((b1k−b0k0−Bk1)(A−a0s∗)+2b0ks
∗β)

k1(A−a0s∗)3
| 1
Γ[α1]

exp(A2b1k0 +As∗(−2a0b1k0 + (−b1k + b0k0 +Bk1)β)

+s∗2(a2
0b1k0 + a0(b1k − b0k0 −Bk1)β − b0kβ2)/k1(A− a0s

∗)2γ1)( 1
k1(A−a0s∗)2

(−A2b1k0 +As∗(2a0b1k0 + (b1k − b0k0 −Bk1)β) + s∗2(−a2
0b1k0 + a0(−b1k + b0k0 +Bk1)β + b0kβ

2)))−1+α1 .

(10)
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Fig. 2: The variation of the mean, µS∗(b1), versus the decay rate, b1.

4.2 The statistical study of the population of infected blood cells, I∗

Fig. 3: The profile of the 1-PFD, fI∗(i∗), for different values of the decay rate, b1.

In a similar manner we can substitute from (7d) in (7b) to get b in terms of i∗ as

b(i∗) =
1

2a2
0i
∗2k2

1β
2
0

− k1(−Ab0kβ − a0b1i
∗kβ0 + a0b0i

∗k0β0 + a0Bi
∗k1β0 + b0i

∗kββ0 + a0b0i
∗kβ1)√

A2β2 − 2Ai∗β2β0 + i∗2β2β2
0 − 2Aa0i∗ββ1 − 2a0i∗2ββ0β1 + a2

0i
∗2β2

1k1(−A2b0kβ
2 −Aa0b1i

∗kββ0+

Aa0b0i
∗k0ββ0 +Aa0Bi

∗k1ββ0 + 2Ab0i
∗kβ2β0 + 2a2

0b1i
∗2k0β

2
0 + a0b1i

∗2kββ2
0 − a0b0i

∗2k0ββ
2
0−

a0Bi
∗2k1ββ

2
0 − b0i∗2kβ2β2

0 + 2Aa0b0i
∗kββ1 + a2

0b1i
∗2kβ0β1 − a2

0b0i
∗2k0β0β1−

a2
0Bi
∗2k1β0β1 − a2

0b0i
∗2kβ2

1),

(11)
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Fig. 4: The variation of the mean, µI∗(b1), versus the decay rate, b1.

Fig. 5: The variation of the variance, σ2
I∗(b1), versus the decay rate, b1.

Then the jacobian can be evaluated as

Ji∗ = (Aβ(−2A2b0kβ
2 +Aβ(a0i

∗(−b1kβ0 + b0k0β0 +Bk1β0 + 4b0kβ1)− 2b0k(−2i∗ββ0+√
β2(A− i∗β0)2 − 2a0i∗β(A+ i∗β0)β1 + a2

0i
∗2β2

1))− i∗(a2
0i
∗β1(−b1kβ0 + b0k0β0 +Bk1β0 + 2b0kβ1) + 2b0kββ0(i∗ββ0−√

β2(A− i∗β0)2 − 2a0i∗β(A+ i∗β0)β1 + a2
0i
∗2β2

1) + a0(i∗(−b1k + b0k0 +Bk1)ββ2
0

+ b1kβ0

√
β2(A− i∗β0)2 − 2a0i∗β(A+ i∗β0)β1 + a2

0i
∗2β2

1

− b0k0β0

√
β2(A− i∗β0)2 − 2a0i∗β(A+ i∗β0)β1 + a2

0i
∗2β2

1 −Bk1β0

√
β2(A− i∗β0)2 − 2a0i∗β(A+ i∗β0)β1 + a2

0i
∗2β2

1

− 2b0kβ1

√
β2(A− i∗β0)2 − 2a0i∗β(A+ i ∗ β0)β1 + a2

0i
∗2β2

1))))/(2a2
0i
∗3k1β

2
0√

A2β2 + i∗2(ββ0 − a0β1)2 − 2Ai∗β(ββ0 + a0β1)),

(12)

According to (4) the 1-PDF of i∗ is given by
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fI∗(i∗) = |ji∗ |
1

Γ[α1]
2(1− 1)exp(−A2b0kβ

2 −Aa0b1i
∗kββ0 +Aa0b0i

∗ββ0 +Aa0Bi
∗k1ββ0 + 2Ab0i

∗kβ2β0

+ 2a2
0b1i

∗2k0β
2
0 + a0b1i

∗2kββ2
0)− a0b0i

∗2k0ββ
2
0 − a0Bi

∗2k1ββ
2
0 − b0i∗2kβ2β2

0 + 2Aa0b0i
∗kββ1

+ a2
0b1i

∗2kβ0β1 − a2
0b0i

∗2k0β0β1 − a2
0Bi
∗2k1β0β1 − a2

0b0i
∗2kβ2

1

−
√
A2β2 + i∗2(ββ0 − a0β1)2 − 2Ai∗β(ββ0 + a0β1)(Ab0kβ − i∗(b0kββ0 + a0(−b1kβ0 + b0k0β0 +Bk1β0 + b0kβ1)))

/2a2
0i
∗2k1β

2
0γ1(1/(a2

0i
∗2k1β

2
0)(A2b0kβ

2 +Aa0b1i
∗kββ0 −Aa0b0i

∗k0ββ0 −Aa0Bi
∗k1ββ0 − 2Ab0i

∗kβ2β0 − 2a2
0b1i

∗2k0β
2
0−

a0b1i
∗2kββ2

0 + a0b0i
∗2k0ββ

2
0 + a0Bi

∗2k1ββ
2
0 + b0i

∗2kβ2β2
0 − 2Aa0b0i

∗kββ1 − a2
0b1i

∗2kβ0β1 + a2
0b0i

∗2k0β0β1 + a2
0Bi
∗2k1β0β1

+ a2
0b0i

∗2kβ2
1 + (A2β2 + i∗2(ββ0 − a0β1)2 − 2Ai∗β(ββ0 + a0β1))(Ab0kβ − i∗(b0kββ0 + a0(−b1kβ0 + b0k0β0 +Bk1β0

+ b0kβ1)))))−1+α1γ−α1
1 .

(13)

4.3 The statistical study of the population of the cancer cells, C∗

Fig. 6: The profile of the 1-PFD, fC∗(c∗), for different values of the decay rate, b1.

Similarly, substitute from (7d) in (7c) to get c∗ as a function of b, then we can evaluate b as follows

b(c∗) =
b0k + b1c

∗k − b0c∗k0 − b1c∗2k0 −Bc∗k1

c∗2k1
. (14)

Then the jacobian is given by

Jc∗ =
∂b

∂c∗
=
−2b0k − b1c∗k + b0c

∗k0 +Bc∗k1

c∗3k1
, (15)

According to (4) the 1-PDF of C∗ is given by

fC∗(c∗) = |−2b0k − b1c∗k + b0c
∗k0 +Bc∗k1

c∗3k1
| 1

Γ[α1]
exp(

b0(−k + c∗k0) + c∗(−b1k + b1c
∗k0 +Bk1)

c∗2k11
)

(
b0(k − c∗k0)− c∗(−b1k + b1c ∗ k0 +Bk1)

c∗k1
)−1+α1γ−α1

1

(16)

4.4 The statistical study of the population of the immune cells, W ∗

As we have done in the previous subsections, the proliferate rate, b, can be obtained in terms of w∗ from (7d) as
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Fig. 7: The variation of the mean, µC∗(b1), versus the decay rate, b1.

Fig. 8: The variation of the variance, σ2
C∗(b1), versus the decay rate, b1.

b(w∗) =
b1kw

∗ − (B − b0w∗)(k0 + k1w
∗)

k
. (17)

The jacobian is given by

JW∗ =
∂b

∂w∗
=
b1k + b0k0 −Bk1 + 2b0k1w

∗

k
, (18)

According to (4) the 1-PDF of W ∗ can be developed as

fW∗(w∗) = | b1k + b0k0 −Bk1 + 2b0k1w
∗

k
|((b1kw∗ − (B − b0w∗)(k0 + k1w

∗)/k)−1+α1γ−α1
1

exp(
−b1w∗ +

(B−b0w∗)(k0+k1w
∗)

k

γ1
)/Γ[α1]).

(19)
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Fig. 9: The profile of the 1-PFD, fW∗(w∗), for different values of the decay rate, b1.

Fig. 10: The variation of the mean, µW∗(b1), versus the decay rate, b1.

The 1-PDFs that obtained before help us to find the main statistical quantities such as the mean and variance functions of each compartments
(S∗, I∗, C∗ and W ∗) from the following relations respectively,

E[H] = µH =

∫∞
−∞

hfH(h)dh, (20a)

V [H] = (σH)2 =

∫∞
−∞

h2fH(h)dh− (µH)2, (20b)

where H stands for S∗, I∗, C∗ or W ∗ and h stands for the arguments: s∗, i∗, c∗ or w∗, respectively. The 1-PDFs fH(h) are given by (10),
(13), (16) and (19) in each case.

5 Numerical results and discussions

In this section, we introduce a numerical example to check the validity of our theoretical findings obtained in previous sections. In all
results, the random variable, b, is considered to obey a Gamma distribution, i.e b ~Gamma (α, β), with shape parameter α = 2.0 and rate
parameter β = 0.2. Also, the model deterministic parameters are taken, for clarification, as, k = 10; k0 = 5; k1 = 0.005;B = 15; b0 = 0.05;
β = 0.00005; β0 = 0.003; β1 = 0.005;A = 1.5; a0 = 0.01. Moreover, to assess our model, we discuss the effect of the decay rate of immune
cells due to the existence of cancer cells in the blood, b1, on the statistical behviour of the equilibrium states for all compartments. However,
the effect of other model parameters can be discussed in the same way.
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Fig. 11: The variation of the variance, σ2
W∗(b1), versus the decay rate, b1.

In Figs. 1, 3, 6 and 9, the 1-PDFs, of the equilibrium states for all compartments are presented at different values of the decay rate of
immune cells due to the existence of cancer cells in the blood, b1. Figs. 2,4,7 and 10 are plotted to show the behavior of the mean value of each
compartment as the decay rate, b1 increases. Finally, the same behavior for the variance values of each compartment is studied in Figs. 5,8 and
11.

In Fig.1, the profiles of 1-PDFs, fS∗(s∗), at different values of the decay parameter, b1, show the decrease of mean value of the equilibrium
state for the susceptible compartment as the value of b1 increases. This behavior can be noticed more clearly in Fig.2 where the mean µS∗ is
plotted versus b1.

In Fig. 3 the 1-PDF, fI∗(i∗), as given by (13), are also plotted at different values of b1. It is observed that the mean value and the dispersion
around the mean of the infected compartment increases as the decay rate increases. This can be observed more clearly from Fig. 4 ( for the
mean behavior) and Fig. 5 (for the variance behavior).

Also, in Fig.6 the profiles of 1-PDFs, fC∗(c∗) as given by (16), at different values of b1, show an increase of mean value while the dispersion
around the mean decreases at the equilibrium state for the cancer cells as the value of b1 increases. This behavior is presented more clearly in
Figs.7 and 8 where the mean µC∗ and the variance, σ2

C∗ , are respectively plotted versus b1.

In Fig.9 we presented the profile of the 1-PDF, fW∗(w∗), as given by (19), at different values of b1. One can observe the decrease in both
of the mean and the variance values of the equilibrium state for the immune cells as b1 increases which is confirmed in Figs.10 and 11 where
the mean µW∗ and the variance σ2

W∗ are plotted versus b1.

The above studied bahviours of the four compartments of the model are consistent with the physical nature of the problem, where, if the
decay rate of the immune cells increases, the susceptible population will decrease and consequently the susceptible cells will transform rapidly
to the infected cells. So, the infected cells will increase. In addition, the cancer cells will increase due to the decrase of immune cells. This
confirms the reliability of our proposed model.

6 Conclusion

In this article, one of the interesting models in biology, the so called Leukemia model, has been discussed in a randomized phase. To study
the randomized equilibrium state for each compartment of the model, the proliferation rate of the immune cells due to the cancer relapse is
considered as a continuous RV. A full probabilistic description of susceptible blood cells, infected blood cells, cancer cells and immune cells,
governed by this model, at the equilibrium state are developed. This description is based on the application of the RVT technique to get the
1-PDF, the mean and variance functions of the above mentioned random quantities. The numerical results show a consistency with the available
published results. This study may help doctors to diagnose, more accurately, Leukemia disease which is one of the most common types of
blood cancer among children.

Finally, we expect that our proposed model is a good realistic model since it considers the probabilistic behavior of one of the important
rates in the model. However, the methodology in this paper can be applied if we generalize the randomness to the other rates associated to the
leukemia model. It is also possible to assign arbitrary statistical distributions for these rates according to the nature of randomness in the model.
This matter is our goal in the future research.
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