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ABSTRACT

Objectives: Enoxaparin sodium, low-molecular weight heparin (LMWH) indicated for the prophylaxis deep
vein thrombosis. As far as we know, its cytotoxic, genotoxic and oxidative effects have never been studied on
any cell lines. The purpose of the present study is to evaluate the in vitro cytotoxic, genotoxic damage potential
and antioxidant/oxidant activity of enoxaparin sodium on primary human whole blood cultures.

Methods: After exposure to different doses (from 0.5 to 100 mg/L) of enoxaparin sodium, cell viability was
assessed by the cytotoxicity tests including MTT (3, (4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide)
and lactate dehydrogenase (LDH) release assays. The antioxidant activity was measured by the total antioxidant
capacity (TAC) and total oxidative stress (TOS) parameters. To determine the genotoxic damage potential, the
rate of chromosomal aberrations (CAs) and 8-ox0-2'-deoxyguanosine (8-0x0-dG) levels were also assessed.
Results: Cytotoxicity assays showed that treatment with enoxaparin sodium caused significant decreases in
the cellular viability in a clear dose-dependent manner. Also, it was found that enoxaparin sodium did not alter
the TAC and TOS levels. The genotoxicity assay showed that the formation of CAs was not observed in the
lymphocytes. Likewise, the levels of 8-oxo-dG did not change in treated cultures as compared to control values.
Conclusions: Enoxaparin sodium appeared to exhibit cytotoxic but not oxidative and genotoxic damage
potentials in cultured human blood cells.

Keywords: Enoxaparin sodium, low-molecular-weight heparin, cytotoxicity, oxidative stress, DNA damage,
human peripheral blood mononuclear cells

Venous thromboembolism (VTE), one of the most
causes of cardiovascular diseases, is the leading
preventable cause of mortality and morbidity in inpa-
tients, the incidence of which is estimated to double
in the future [1]. Heparins are commonly used drugs
for the prophylaxis and treatment of VTE [2]. Low-
Molecular-Weight Heparins (LMWHs) exert more
predictable effects and require less coagulation level
monitoring than that of unfractionated heparin (UFH)

[2]. Enoxaparin sodium, a type of LMWHs, is often
preferred due to its high bioavailability in the subcu-
taneous form [3, 4].

Anticoagulants have wide usage for preventing
and treating VTE. Surveys have shown that the most
widely used agent in therapeutic anticoagulation is
LMWHs [5-9]. LMWHs are an important class of an-
tithrombotic medications and derived from UFH by
depolymerization procedure [10]. LMWHs have wide
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usage in comparison with UFH because of its advan-
tages as pharmacokinetic profile and ease of use [11,
12]. The mean molecular weight of LMWHs is 4.0-
6.0 kD. It varies by manufacturing process, thus it was
influenced by its in vivo properties including pharma-
cokinetics, bioavailability, and plasma half-life [13,
14].

Among the LMWHs, enoxaparin sodium is one of
the most widely prescribed agents and has been used
since 1993 [5, 7, 15]. Enoxaparin sodium indicated for
the prophylaxis deep vein thrombosis. It is used com-
monly in orthopedic clinical practice. Interestingly, the
development of biosimilar versions of enoxaparin in-
creased medical concerns about their efficacy and
safety [16]. At this point, there is not sufficient data
for elucidating the toxicity potentials of these bio-sim-
ilar versions of the anticoagulants.

The enoxaparin sodium which is the most used
agent in the orthopedic clinic approach. This agent is
used by orthopedic patients during the long-time and
sometimes a few times a day. Therefore, this study was
aimed to research the potentials of the enoxaparin
sodium on the human peripheral blood mononuclear
cells (PBMCs) via determining cytotoxic, genotoxic
and oxidative damage potentials for the first time.

METHODS

Chemicals and Reagents

Enoxaparin Sodium (Oksapar 6000, IU/0.6 mL;
Kogak Farma, Turkey) was supplied in prefilled glass
syringes from the manufacturer and diluted with the
cell culture medium. All measurements by devices
were performed according to the protocol of the man-
ufacturer.

Mononuclear Cell Isolation

Whole blood samples were obtained from 5
donors (healthy, 22-25 aged, non-smoking, with no
genotoxic agent history, n=5). The equal volume of
Phosphate-buffered Saline (PBS) was used to dilute
the blood sample. Then, the blood samples were lay-
ered on Ficoll-Hypaque-Plus (GE Healthcare Bio-
sciences Corp., Piscataway, NJ, USA) and centrifuged
at 400xg for 30 minutes at 18-24°C.

The PBMC layer was carefully removed, trans-
ferred, and washed with three volumes of PBS for

twice and re-suspended in RPMI-1640 media
(GIBCO, USA) including 10%, v/v Fetal Bovine
Serum (FBS) (Sigma, USA) and 1% penicillin/strep-
tomycin (Sigma, USA). PBMCs were counted using
haemo-cytometer and 105 cells incubated each wheel
during the experiment. In all cell viability, oxidative
and genotoxic damage assays, the cultures without
enoxaparin sodium were chosen as negative control
groups [control (-)]. The cell cultures treated with Tri-
ton X-100 (1%, Sigma-Aldrich) were chosen as a pos-
itive control group [control (+)] for MTT and LDH
release assays. In addition, ascorbic acid (10 mg/L,
Sigma-Aldrich) and hydrogen peroxide (25 mg/L,
Sigma-Aldrich) treated cells were chosen as the posi-
tive control groups in the analyses as Total Oxidant
Status (TOS) and Total Antioxidant Capacity (TAC).
Mitomycin C (10 mg/L, Sigma-Aldrich, USA) treated
cells was also chosen as a positive control group in
chromosomal aberrations (CAs) and 8-OH-dG assays
[17].

MTT Assay

MTT assay is one of the most used colorimetric
assays for detecting cell viability. The cells were
placed in 96-well plates to perform the assay. They
were incubated in carbon dioxide incubator (37 °C,
5% CO2) and treated with different concentrations of
enoxaparin sodium (as 0.5, 1, 2.5, 5, 10, 25, 50 and
100 mg/L) for 72 h. MTT Cell Growth Assay Kit
(Merck Millipore, USA) was used to perform MTT
assay. 10 pl of MTT solution was added to well to in-
cubate for 4h. 100 pul of acid-isopropanol (isopropanol
with 0.04 N HCI) was added for the dissolving proce-
dure of the formazan crystals. Then, a microplate
reader (Synergy-HT; BioTek Winooski, VT, USA) was
used to detect the optical density at 570 nm. The cell
viability was expressed in percentages of viable cells.

LDH Release Assay

LDH assay is based on the measurement of the
amount of released LDH from cells is to assess cell
death [18]. The CytoSelect® LDH cytotoxicity assay
kit was used to perform the assay. The cells were
placed in 96-well plates and they were incubated in
carbon dioxide incubator (37 °C, 5% CO2). They
treated with enoxaparin sodium at selected concentra-
tions for 72 h. 96-well plate was centrifuged for 5 min-
utes at 400xg. 90 ul of the supernatant with negative
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control, positive control, and test groups was trans-
ferred to new plates. 10 ul of LDH as cytotoxicity
assay reagent was added into well. They were incu-
bated for 30 minutes at 37 °C. A microplate reader
(Synergy-HT; BioTek Winooski, VT, USA) was used
to measure the absorbance at 450 nm.

Total Antioxidant Capacity (TAC) Assay

TAC assay enables measurement of the capacity
of all types of antioxidants in experimental samples.
In brief, in this assay, the existing antioxidants in the
test sample reduce 2,2-azino-bis(3-ethylbenzothiazo-
line-6-sulfonic acid cation radical (ABTS) which is
dark blue/green colored to the reduced form of color-
less ABTS. Due to this reduction, the alteration of the
absorbance values at 660 nm has a relationship with
the total antioxidant amount of the sample [19, 20].
The plasma samples, obtained from the whole blood
cultures after 72h incubation with enoxaparin sodium
at different concentrations, were examined using the
TAC assay kit (Rel Assay Diagnostics®, Turkey). 30
ul of sample and 500 pl of reagent 1 were mixed. After
30 seconds, the absorbance was measured at 660 nm
by using a spectrophotometer (Synergy-HT; BioTek
Winooski, VT, USA). 75 ul reagent 2 was added and
after 10 minutes incubation at room temperature con-
dition, the absorbance was measured at 660 nm by
using a spectrophotometer (Synergy-HT; BioTek
Winooski, VT, USA). The same procedure was carried
out using deionized water and standard as well as ex-
amples. Trolox equivalent (I mmol / L), a vitamin E
analog, was used as standard. Results were expressed
in mmol / L (Erel 2004).

Total Oxidant Status (TOS) Assays

TOS assay provides the measurement of oxidants
existing in test samples which oxidize the complex
containing ferrous ion-chelator to ferric ion. The ferric
ion procures colorful complex by chromogen in the
medium at acidic conditions. The color intensity de-
termined as spectrophotometrically has a relationship
with the total amount of oxidants [21]. The plasma
samples, obtained from the whole blood cell cultures
after 72h incubation with enoxaparin sodium at diftfer-
ent concentrations, were examined using the TOS
assay kit (Rel Assay Diagnostics®, Gaziantep, Turkey).
75 ul of sample and 500 ul of reagent 1 were mixed.
After 30 seconds, absorbance at 530 nm was measured

using a spectrophotometer (Synergy-HT; BioTek
Winooski, VT, USA). 25 ul of reagent 2 was added
and incubated for 10 minutes at room temperature
condition. A second absorbance measurement was per-
formed at 530 nm by using spectrophotometer (Syn-
ergy-HT; BioTek Winooski, VT, USA). Hydrogen
peroxide (20 mmol / L) was used as a standard. Re-
sults were expressed in umol H202 Equiv/L [21, 22].

Chromosomal Aberrations (CA) Assay

Whole human blood samples were treated with
enoxaparin sodium at selected concentrations. They
were cultured for 72h. Before two hours of harvesting,
0.02 pg/ml of Colchicine (Sigma, USA) was given
into the culture. Hypotonic treatment (0.075 M
KCl1/37.4°C) was performed. The fixation (methanol
plus acetic acid) three times, cells were harvested by
centrifugation. The slides were prepared from each
fixed-cell suspension and they were air-dried. Then,
in phosphate buffer (pH 6.8), all slides were stained
with Giemsa. To score for each treatment, 30 well-
spread metaphases were analyzed for chromosome
aberration. All the aberrations (as chromatid/chromo-
some gap or/and chromatid/chromosome break) were
determined and classified according to the criteria of
Environmental Health Criteria 46 for Environmental
Monitoring of Human Populations [23, 24].

Determination of 8-OH-dG Level

DNA oxidation was determined by detecting the
amount of 8-OH-dG adducts. DNA was digested in the
incubation period with DNase I, alkaline phosphatase,
and endonuclease. The high-performance liquid chro-
matography (HPLC) was used to measure the amount
of 8-OH-dG with electrochemical detection as de-
scribed in the literature [25]. Waters S-3 4.6x150 mm
column [with 5% methanol/95% 100 mM sodium ac-
etate buffer (pH 5.2)] at a flow rate of 1.0 mL/min
were used to separate the compound. The four elec-
trochemical detector channels (at -100, 250, 475, and
875 mV) were set up.

Statistical Analysis

SPSS software (version 20.0, SPSS, Chicago, IL,
USA) was used to perform statistical analysis. The
Kruskall Wallis test was used for the statistical analy-
sis of values. Statistical decisions were given with sig-
nificance levels of 0.05 and 0.005.
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RESULTS

LDH and MTT release assays were used to deter-
mine the cell viability of human PBMCs against
enoxaparin sodium. The results for cytotoxicity meas-
ured by MTT assay were shown in Fig. 1. The cultured
human PBMCs exposed to relatively low concentra-
tions of enoxaparin sodium (as 0.5, 1, 2.5, and 5 mg/L)
did not exhibit any important changes for cell viability
over 72h (p > 0.05). However, 10 and 25 mg/L con-
centrations of enoxaparin sodium caused a weak cy-
totoxic effect on human PBMCs and there is no
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Fig. 1. Cell viability rates of human PBMCs after exposure
to various enoxaparin sodium concentrations for 72h. The
cells grown in media without enoxaparin sodium was used as
control (-) group. The cell cultures treated with Triton-X (1%)
was used as control (+) group. The results are given as the
means + SD from five independent repetitions. Statistical
comparisons were made with control (-) group at levels of **p
<0.05 and ***p < 0.001 (n =5).

statistical significance (p > 0.05). Enoxaparin sodium
leads to a decrease in the proliferation of human
PBMC:s, at higher concentrations than 25 mg/L (50
and 100 mg/mL) when compared to the control group
(p < 0.05). The cytotoxicity of enoxaparin sodium on
cultured human PBMCs by measuring the amount of
intracellular LDH release was assessed in Fig. 2. LDH
levels were not affected by low doses of enoxaparin
sodium, only 50 and 100 mg/L of enoxaparin sodium
caused to the significant increase of LDH level (p <
0.05). IC20 and IC50 values of enoxaparin sodium in
PBMCs were determined according to the results of
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Fig. 2. LDH levels of human PBMCs treated with different
concentrations of enoxaparin sodium for 72 h. The cells
grown in media without enoxaparin sodium was used as con-
trol (-) group. The cell cultures treated with Triton-X (1%)
was used as control (+) group. The results are given as the
means + SD from five independent repetitions. Statistical
comparisons were made with control (-) group at levels of **p
<0.05 and ***p < 0.001 (n =5)
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MTT assay and calculated as 25,647 and 93,416 mg/L,
respectively.

The oxidative status effects of various enoxaparin
sodium concentrations in human PBMCs cultures
were evaluated by using TAC and TOS analysis. 0.5,
I, 2.5, and 5 mg/L concentrations of enoxaparin
sodium exposure did not change TAC levels; but 10,
25, 50, and 100 mg/L concentrations of enoxaparin
sodium treatment caused to a slight decrease of TAC
levels, as shown in Fig. 3. Enoxaparin sodium did not
cause to increase of TOS levels in cultured human
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Fig. 3. The levels of TAC in cultured human PBMCs exposed
to enoxaparin sodium for 72 h. The cells grown in media with-
out enoxaparin sodium was used as control (-) group. Ascor-
bic acid (10 mg/L) treated cell culture was used as control (+)
group. The results are given as the means + SD from five in-
dependent repetitions. Statistical comparisons were made
with control (-) group at levels of **p < 0.05 and ***p < 0.005
(n=15).

PBMC:s at all tested concentrations. Also, it did not
change significantly both TAC and TOS levels when
compared to the negative control groups (p >0.05).

The genotoxic effects of enoxaparin sodium were an-
alyzed by CA assay in human PBMCs and it is shown
in Fig. 5. All tested concentrations of enoxaparin
sodium did not cause significant increases in the num-
ber of observed CAs (p > 0.05). Similarly, enoxaparin
sodium concentrations did not show an increase in the
levels of 8-OH-dG when compared to the control

group as seen in Table 1.
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Fig. 4. The levels of TOS in cultured human PBMCs exposed
to enoxaparin sodium for 72 h. The cells grown in media with-
out enoxaparin sodium was used as control (-) group. PBMCs
treated with hydrogen peroxide (25 mg/L) was used as control
(+) group. The results are given as the means + SD from five
independent repetitions. Statistical comparisons were made
with control (-) group at levels of **p < 0.05 and ***p < 0.005
(n=15).
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Fig. 5. Representative images of chromosomal aberrations observed in cultured human PBMCs exposed to different concen-
trations of enoxaparin sodium for 72h. a) Control (-): undamaged chromosomes are seen, b) treatment with IC50 concentra-
tion of enoxaparin sodium, c) treatment with MMC, chromosomal aberrations indicated by arrows (n = 5).

Table 1. The 8-OH-dG levels in cultured PBMCs after exposure to enoxaparine sodium

concentrations for 72h

Groups CAs/cell 8-0x0-dG level (pmol/micro g DNA)
Control (-) 0.20 +0.03 0.81 +0.08
Control (+) 2.59+0.18* 422 +0.35%
0.5 mg/L 0.20 +0.02 0.73 £0.06
1 mg/L 0.22+0.03 0.76 + 0.09
2.5 mg/L 0.16 £ 0.02 0.75+0.08
5 mg/L 0.18 +£0.03 0.72 £ 0.10
10 mg/L 0.20 £ 0.04 0.79 +£0.07
25 mg/L 0.24 £ 0.03 0.81+0.12
50 mg/L 0.26 + 0.04 0.83 +£0.07
100 mg/L 0.28 £ 0.03 0.88 £0.10

*Symbol presents significant statistical difference from the control (-) group. The cells grown in media without enoxaparin
sodium was used as control (-) group. Mitomycin C (10 mg/L) treated cell group was used as control (+) group. The results
are given as the means + SD from five independent repetitions. Enoxaparin sodium concentrations did not show an increase
in the levels of 8-0x0-dG on cultured human lymphocytes when compared with the control group

DISCUSSION

In this study, enoxaparin sodium was subjected to
an in vitro toxicity evaluation in order to reveal its
safety profile on human PBMCs. The performed MTT
assay in this investigation showed that higher concen-
trations of enoxaparin sodium lead to a decrease in the
viability of PBMCs. LDH release assay gave similar
results with MTT assay. In fact, LDH activity reached
the highest level at the concentrations as 25, 50, and
100 mg/L of enoxaparin sodium. In accordance with
our findings, it was reported that enoxaparin sodium
(lower concentrations than 0,024 mg/ml or 2.4 U/

mL) caused inhibition of proliferation whereas higher
concentrations impaired cell growth in the dose-de-
pendent manner [26]. Also, it was found that heparin
and its low molecular-weight fragments could inhibit
the proliferation of vascular smooth muscle cells
(SMCs) both in vivo and in vitro conditions [27-31].
On the contrary, it was previously executed that
enoxaparin did not show any significant effect on the
proliferation of PBMC [32, 33].

In this study, TOS and TAC assays were used to
detect the oxidative status of enoxaparin sodium. Re-
sults obtained from the assays demonstrated that
enoxaparin sodium caused a slight decrease in the
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TAC level but no significant changes in the TOS level.
There is no study about the oxidative potential of
enoxaparin sodium. It has been reported that LMWH
reduced oxidative stress in hemodialysis patients [34].
Additionally, it was propounded the presence of pro-
tective effects by LMWH on oxidative injuries. Again,
LMWHs led to decreases in lipid peroxidation in car-
diac and hepatic tissues [35].

Our study also evaluated the genotoxicity of
enoxaparin sodium on human PBMCs using CA and
8-OH-dG level assays. These assays revealed that
enoxaparin sodium did not lead to increasing of 8-OH-
dG levels and CA frequency. The results indicated that
enoxaparin sodium might not be genotoxic on human
PBMCs. On the contrary, the genotoxic damage po-
tentials of heparin, dalteparin, enoxaparin, and
nadroparin were reported using micronucleus (MN)
assay. Moreover, all these tested agents caused a sig-
nificant increase in the rates of MN in a dose-depen-
dent manner for rat embryonic blood cells as well as
inducing morphologic abnormalities [36].

CONCLUSION

The results of this study demonstrate that enoxa-
parin sodium does not cause genotoxicity but high
concentrations (25-100 mg/L) of enoxaparin sodium
exhibit cytotoxic action on PBMCs. Thus, it is sug-
gested that the dose management should be reconsid-
ered due to possible cytotoxic effects of enoxaparin
sodium. Also, further in vivo investigations are re-
quired in order to evaluate the safety of enoxaparin
sodium.
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