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Abstract: An effective numerical method based on the boundary element formulation is presented to solve heat 

conduction equations which are governed by the Fourier equation, with nonlinear boundary conditions on one or more 

sections of the prescribed boundary. The solution involves the manipulation of the system matrices of the boundary 

element method and obtaining a smaller ranked matrix equation in which the unknown is only the temperature 

difference over the nonlinear boundary condition region. This way, the iterations to deal with the nonlinear conditions 

are performed faster. After finding the solution over the nonlinear boundary condition region, the solution over the 

entire boundary is obtained as a post-process through a prescribed relation. An example with a proven exact solution is 

employed to assess the results. 
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DOĞRUSAL OLMAYAN SINIR KOŞULLARINA SAHİP ISI 

TRANSFERİ PROBLEMLERİNİN SINIR ELEMAN YÖNTEMİ İLE ANALİZİNE 

YÖNELİK YENİ BİR FORMÜLASYON 
 

Özet: Bu çalışmada Fourier denklemi ile ifade edilen ısı transferi problemlerinin bir ya da daha fazla bölgesinde tanımlı 

doğrusal olmayan sınır koşulları altında çözümüne yönelik sınır eleman yöntemi tabanlı etkili bir sayısal çözüm 

sunulmaktadır. Çözüm, sınır eleman yöntemi sistem matrislerinin üzerinde yapılan matematiksel işlemler ile 

bilinmeyenleri sadece doğrusal olmayan sınır bölgesindeki sıcaklık farkı olan indirgenmiş matris denklemleri elde 

etmektedir. Bu sayede doğrusal olmayan sınır koşullarına dayalı iterasyonlar daha hızlı gerçekleştirilebilmektedir. 

Doğrusal olmayan sınır koşullarının tanımlı olduğu bölgelerde çözüm elde edildikten sonra tüm sınır çözümü tanımlı 

bir son-işlem ile gerçekleştirilebilmektedir. Gerçek çözümü elde edilmiş bir örnek kullanılarak elde edilen sonuçlar 

değerlendirilmiştir. 

Anahtar Kelimler: Sınır eleman yöntemi, ısı transferi, lineer (doğrusal) olmayan sınır koşulları 
 

INTRODUCTION 

 

It is an easy task to solve heat conduction equations with 

Dirichlet, Neumann or linear Robin type of boundary 

conditions (BC) using the boundary element method 

(BEM) (Becker, 1992). Thanks to its boundary-only 

nature, the BEM discretizes only the boundary of the 

domain, and due to its semi-analytical nature, it easily 

and accurately solves the heat conduction problems, for 

which the governing equation is a second order linear 

differential equation in one variable. It has been shown 

that for the same level of discretization, the BEM gives 

more accurate results when compared with FEM 

(Mukherjee and Morjaria, 1984). 

 

One of the main advantages of the BEM is the direct 

application of the boundary conditions through 

manipulations over the system matrices. In case of 

Neumann BC no action is required and for Dirichlet BC 

only a swapping of the respective columns would suffice 

to impose the boundary condition. In case of linear Robin 

type BC, a linear operation is employed combined with 

swapping, which leads to direct imposition of the 

corresponding BC (Beer et al., 2008). Since no 

approximation or penalty is in place, the boundary 

conditions are exact through the boundary of the domain. 

Yet, this is true for only linear boundary conditions. In 

case of the non-linear boundary conditions, iterations 

should be performed to obtain the solution (Bialecki and 

Nowak, 1981, Wrobel and Brebbia, 1992). In heat 

transfer problems, the non-linear boundary conditions 

may appear, for example, in case of radiative or 

combined convective-radiative heat transfer. Also, 

inverse problems assume nonlinear boundary conditions 

in which the coefficients are obtained through inverse 

analysis (Slodicka et al., 2010). Since the application of 

such non-linear algorithm would involve iterations and 

since the system matrices of the BEM are highly ill-

conditioned, there is a high possibility that the results 

would diverge or be not accurate. In cases where 

iterations converge to a value, the rate of convergence 

may be very low. 
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It should also be stated here that, the conventional 

iteration methods would require an initial solution - 

which is mostly very problematic in case of BEM since 

after the application of the boundary conditions, the 

known vector consists of two different field variables - 

the temperature difference and the heat flux - which are 

very different in order of magnitude (noting that flux is 

the gradient of temperature difference). Aside from 

assigning an initial value, also, finding a proper norm for 

the iterations is not an easy task, since the norm should 

involve the field variable, temperature difference along 

with its derivative quantity and the normal flux, which 

are, most probably, not in the same order of magnitude. 

 

A practical solution to this problem is given by (Chan, 

1993) where a local iteration scheme is proposed. The 

method first starts with an initial guess of the temperature 

field within the nonlinear portion of the domain (in the 

given study, this initial guess is assumed to be 1 over the 

nonlinear BC boundary) and solves the system equations 

of the BEM assuming temperature difference is 

prescribed over the nonlinear BC boundary. After 

obtaining the solution, using an exact derivative of the 

BEM equations over the domain which gives the partial 

derivative of the fluxes with respect to the potential (in 

this case, temperature difference), a local iteration is 

performed to obtain an updated guess on the temperature 

difference field over the nonlinear domain. This updated 

solution is re-inserted into the initial BEM equations and 

solved until a convergence is obtained. 

 

It should be noted that, for large systems, (Chan, 1993) 

proposes a two-domain solution. Large systems occur 

when the domain is discretized into a large number of 

elements, therefore, to obtain a lower number of elements 

and yet have a proper solution (Xu and Kamiya, 1997) 

proposed an adaptive mesh refinement over the nonlinear 

domain. In this study, the number of elements on the 

linear BC boundaries are kept constant whereas the 

element mesh is refined on the nonlinear BC boundaries. 

This way, convergence gets faster. 

 

Note also that, if the non-linear BC is affecting a small 

section of all the solution domain, as it can be in many 

3D complex geometries with a small part exposed to 

radiative heat transfer, an iterative solution that considers 

all the unknowns over the boundary would most probably 

have a very low convergence rate - or no convergence at 

all. A recent study in cathodic protection proposes a 

domain decomposition technique for such problems in 

3D (Santos et al., 2018). 

 

The procedure becomes more complex, if, for example, 

there exists more than one region with non-linear 

boundary conditions, each with different functions. 

Assume, for example, different regions of the body 

receiving radiative heat transfer from different sources 

and different emissivities. In this case, the iterations 

should be made for two -or more- regions with different 

parameters and nonlinearity, which makes the problem 

more complex. Also, problems with combined nonlinear 

conditions (such that, there exists linear BC resulting 

from convective heat transfer and a fourth order 

nonlinear BC from radiative heat transfer) the modeling 

requires special treatment (Dehghani et al., 2011, 

Mosayebidorcheh et al., 2014). Also, in case of inverse 

analysis, repeated runs to obtain the nonlinear 

coefficients are needed (Lesnic et al., 2009, Onyago et 

al., 2009). 

 

In this study, a novel method is proposed to impose 

nonlinear boundary conditions in the BEM. The method 

involves operations over the system matrices, in a similar 

way to the impedance method (Mengi and Argeso, 2006, 

Yalçın and Mengi, 2013, Karakaya et al., 2015). The 

resulting system is a smaller rank system of equations 

that involves only the field variable (and not its 

derivative) over the nonlinear boundary as boundary 

unknowns. Yet, in the impedance method the system of 

equations is reduced to an impedance-like relation in 

which solving the equation reveals a desired dependence 

(e.g., solving a unit-load or unit-displacement problem in 

interaction problems or the particle velocities in a 

particle-tracking problem). In the proposed method, 

however, the matrix manipulations are so arranged that 

the reduced system of equations are used to solve the 

nonlinear BC unknowns, which then reveals the total 

solution again using algebraic matrix equations. It is 

shown in this study that with such manipulations the 

resulting system is stable and the iterations are robust. 

The iterations are performed over only one field variable 

as unknowns, therefore a simple norm can easily be 

applied. The solution is obtained for the boundary nodes 

with the nonlinear BC only - and obtaining the solution 

at the other boundary nodes and also the internal solution 

is treated as a post-processing. One other major 

advantage of the formulation is the treatment of all non-

linear boundary conditions in a unified manner, so that, 

the iterations are performed over the same set of 

unknowns. 

 

The formulation is presented in steady-state, but is 

general in nature and can be easily applied to time-

dependent problems. 

 

To assess the formulation, two problems in 2D are 

considered. It has been found that the new algorithm 

proves well for the examples presented. 

 

FORMULATION 

 

The governing equation for the isotropic steady-state heat 

conduction is given by the Fourier’s equation (Nowacki, 

1967): 

 

𝑘∇2𝑢 = 0 (1) 

 

where 𝑘 is the heat conduction coefficient, ∇ is the 

Laplace operator with ∇2=
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
 , the double index 

implying summation over the range of the variable, and 

𝑢 is the field variable, in this case the temperature 

difference from the reference temperature. The flux 

associated with the field variable is given by 
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𝑞𝑖 = 𝑘
𝜕𝑢

𝜕𝑥𝑖

 (2) 

 

with the normal flux being 

 

𝑞 = 𝑞𝑖𝑛𝑖 = 𝑘
𝜕𝑢

𝜕𝑛
 (3) 

 

Here, 𝑛 denotes the outward unit normal direction, where 

𝑛𝑖 represents the components of the unit vector along this 

direction. This would seem contradictory to the heat 

equations, defining the flux in reverse direction, yet 

mathematically practical and the application to other 

problems with Laplace operators are straightforward. 

 

Obtaining the boundary element equation (BEE) for the 

Laplace’s equation is straight-forward, resulting in the 

integral equation given by 

 

𝐶(𝐴) ⋅ 𝑢(𝐴) + ∫ 𝐻(𝐴, 𝑃) ⋅ 𝑢(𝑃) ⋅ d𝐴 =

𝑆

 

∫ 𝐻(𝐴, 𝑃) ⋅ 𝑢(𝑃) ⋅ d𝐴

𝑆

 

(4) 

 

where 𝐴 is the source, 𝑃 is the field point, 𝐺(𝐴, 𝑃) and 

𝐻(𝐴, 𝑃) are the first and second fundamental solutions of 

the Laplace’s equation. In Eq.4, 𝐶(𝐴) is the free term that 

takes values depending on the location of the point 𝐴, eg., 

if A is on a smooth boundary C(A) = 1/2, if A is within 

the solution domain C(A) = 1 and if A is outside the 

solution domain, C(A) = 0. When discretized using N 

constant boundary elements, Eq.4 can be expressed in 

matrix form as: 

𝐇 ⋅ 𝐮 = 𝐆 ⋅ 𝐪 (5) 

Here, H is an 𝑁 × 𝑁 matrix involving the integrals from 

the second fundamental solution, augmented with 1/2 

across the diagonal, G is 𝑁 × 𝑁 matrix involving the 

integrals evaluated with the first fundamental solution, 

and u and q are 𝑁 × 1 vectors. 

Let us divide the boundary of the solution region, S into 

two regions: 

 

𝑆 = 𝑆𝑎 ∪ 𝑆𝑏 

𝑆𝑎 ∩ 𝑆𝑏 = ∅ 
(6) 

 

where  

 

𝑆𝑎 = 𝑆𝑑 ∪ 𝑆𝑛 

𝑆𝑑 ∩ 𝑆𝑛 = ∅ 
(7) 

 

Here, 𝑆𝑑 and 𝑆𝑛 represent the sections of the boundary 

with Dirichlet and Neumann type boundary condition 

respectively. Over 𝑆𝑏 , on the other hand, the boundary 

conditions are defined as: 

𝑞 = 𝑓(𝑢) (8) 

 

where the single valued function f can be linear or non-

linear. If,  f  is linear, the solution is straightforward. In 

this study, we will assume that the function  f  takes a 

non-linear form. 

 

We first subdivide the matrix equation given in Eq.5 as 

 

[
𝐇𝑎𝑎 𝐇𝑎𝑏

𝐇𝑏𝑎 𝐇𝑏𝑏
] ⋅ [

𝐮𝑎

𝐮𝑏
] = [

𝐆𝑎𝑎 𝐆𝑎𝑏

𝐆𝑏𝑎 𝐆𝑏𝑏
] ⋅ [

𝐪𝑎

𝐪𝑏
] (9) 

 

where the index a refers to the elements belonging to the 

𝑆𝑎 boundary and b refers to those belonging to the 𝑆𝑏 

boundary. If the number of nodes on 𝑆𝑎 boundary is 𝑁𝑎, 

and the number of nodes on 𝑆𝑏 boundary is 𝑁𝑏, 𝐇𝑎𝑎 is 

𝑁𝑎 × 𝑁𝑎, 𝐇𝑎𝑏  is 𝑁𝑎 × 𝑁𝑏, and etc.  

 

Note that, over 𝑆𝑎 the boundary conditions will be 

applicable through proper column changes; thus Eq.9 can 

be re-written after the application of Dirichlet and 

Neumann boundary conditions as: 

 

[
𝐊𝑎𝑎 𝐇𝑎𝑏

𝐊𝑏𝑎 𝐇𝑏𝑏
] ⋅ [

𝐱𝑎

𝐮𝑏
] = [

𝐌𝑎𝑎 𝐆𝑎𝑏

𝐌𝑏𝑎 𝐆𝑏𝑏
] ⋅ [

𝐛𝑎

𝐪𝑏
] (10) 

 

where K and M represents the left- and right- coefficient 

matrices that would appear after column changes 

respectively, b is the column vector containing the 

boundary conditions and x is the column vector with the 

unknowns. Note that, since there is a one-to-one relation 

between the flux and the temperature difference as in 

Eq.8, for all nodes on 𝑆𝑏 boundary, one can write: 

 

𝐪𝑏 = 𝐃𝑏𝑏 ⋅ 𝐮𝑏 (11) 

 

where 𝐃𝑏𝑏 is a diagonal square matrix of dimensions 

𝑁𝑏 × 𝑁𝑏 where the components are determined by a non-

linear relation with 𝐮𝑏. The evaluation of the matrix 

𝐃𝑏𝑏(𝐮𝑏) is simple: Assume, for example, that the 

nonlinear function is given in the form: 

 

𝑞 = 𝑚 × 𝑢𝑛 (12) 

T 

hen, it is obvious that at all points on the 𝑆𝑏 boundary, 

one would have 

 

𝑞𝑖 = 𝑚 × 𝑢𝑖
𝑛 = 𝑚 × 𝑢𝑖

𝑛−1 × 𝑢𝑖 (13) 

 

which results in the matrix equation: 

 

[

𝑞1

𝑞2

⋮
𝑞𝑁𝑏

]

=

[
 
 
 
 
𝑚 × 𝑢1

𝑛−1 0 0 0

0 𝑚 × 𝑢1
𝑛−1 0 0

0 0 𝑚 × 𝑢1
𝑛−1 0

0 0 0 𝑚 × 𝑢1
𝑛−1]

 
 
 
 

[

𝑢1

𝑢2

⋮
𝑢𝑁𝑏

] 

(14) 

 

Similar expressions can be derived with all forms of 

explicit functions, noting that 

𝑞 = 𝑓(𝑢) =
𝑓(𝑢)

𝑢
× 𝑢 (15) 
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where, in such a case, the diagonal components of the 

𝐃𝑏𝑏 matrix are determined through the augmented 

function 𝑓(𝑢) 𝑢⁄ . 

 

The first row of Eq.10 reads: 

 

𝐊𝑎𝑎 ⋅ 𝐱𝑎 + 𝐇𝑎𝑏 ⋅ 𝐮𝑏 = 𝐌𝑎𝑎 ⋅ 𝐛𝑎 + 𝐆𝑎𝑏 ⋅ 𝐪𝑏  (16) 

 

from which, one can write, for 𝐱𝑎: 

 

𝐱𝑎 = 𝐊𝑎𝑎
−1 ⋅ (𝐌𝑎𝑎 ⋅ 𝐛𝑎 + 𝐆𝑎𝑏 ⋅ 𝐪𝑏 − 𝐇𝑎𝑏 ⋅ 𝐮𝑏) (17) 

 

Inserting this to the second row of Eq. 10 we have: 

 

(𝐇𝑏𝑏 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐇𝑎𝑏) ⋅ 𝐮𝑏 − 

(𝐆𝑏𝑏 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐆𝑎𝑏) ⋅ 𝐪𝑏 = 

(𝐌𝑏𝑎 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐌𝑎𝑎) ⋅ 𝐛𝑎 

(18) 

 

With Eq. 11, Eq.18 becomes: 

 

(𝐐𝑏𝑏 + 𝐑𝑏𝑏 ⋅ 𝐃𝑏𝑏) ⋅ 𝐮𝑏 = 𝐛𝑏 (19) 

 

Where 

 

𝐛𝑏 = (𝐌𝑏𝑎 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐌𝑎𝑎) ⋅ 𝐛𝑎 (20) 

 

is a known load vector which is constant throughout the 

iteration process, and similarly, 

 

𝐐𝑏𝑏 = 𝐇𝑏𝑏 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐇𝑎𝑏 

𝐑𝑏𝑏 = 𝐆𝑏𝑏 − 𝐊𝑏𝑎 ⋅ 𝐊𝑎𝑎
−1 ⋅ 𝐆𝑎𝑏  

(21) 

 

are constant matrices. Thus, the solution of the problem 

can be obtained through an iterative process on Eq. 19. 

Once the solution is obtained for 𝐮𝑏, the rest of the 

solution can be easily obtained using Eq.17 through 

matrix multiplications. 

 

After model input, the solution algorithm involves an 

iterative nature. In this study, the simplest iteration 

method, namely the fixed-point iteration, is employed. 

The general procedure can be itemized as below: 

 

1. Evaluate the system matrices G and H 

2. Apply Dirichlet BCs through column changes  

3. Subdivide the modified matrices G and H to 

obtain 𝐊𝑎𝑎, 𝐊𝑏𝑎, 𝐇𝑎𝑏 , 𝐇𝑏𝑏, 𝐌𝑎𝑎, 𝐌𝑏𝑎, 𝐆𝑎𝑏 and 

𝐆𝑏𝑏 

4. Evaluate the constant system matrices 𝐐𝑏𝑏, 𝐑𝑏𝑏 

and the load vector 𝐛𝑏 

5. Assign an initial value to the vector 𝐮𝑏 

6. While a selected error norm, e, is less than a 

prescribed value, 𝑒̅, 

a. Evaluate 𝐃𝑏𝑏 (Eq.11) 

b. Solve Eq.19 for the new value of 𝐮𝑏
𝑛 

c. Obtain the error norm e using 𝐮𝑏
𝑛 and 𝐮𝑏 

d. Set 𝐮𝑏 = 𝐮𝑏
𝑛 

7. Obtain the boundary solution 𝐱𝑎 from Eq.17 

8. If required, obtain the internal solution as post-

processing 

 

NUMERICAL EXAMPLES 

 

The formulation presented in the previous section is 

general for 3D and 2D problems. For simplicity, without 

losing generality, the numerical examples will be given 

in 2D and a MATLAB program is coded for evaluating 

BEM results. The numerical examples will be discussed 

through a thick-walled infinite tube example. The 

geometry is shown in Figure 1. 

 

 
Figure 1. The infinite cylinder problem 

 

If axially symmetric boundary conditions are imposed, a 

planar quarter model would suffice to solve the problem 

(Figure 2). The inner radius, 𝑟𝑖 = 𝑎 and the outer radius 

𝑟𝑜 = 𝑏 are selected as 𝑎 = 10mm and 𝑏 = 20mm. The 

boundaries at y=0 and x=0 lines are the symmetry planes, 

so the normal flux, 𝑞𝑛, is zero. To simplify the analysis, 

the inner surface temperature difference at 𝑟𝑖 is given as 

Dirichlet BC with 𝑢𝑟=𝑎 = 𝑇. Note that, since the 

potential u is the temperature difference in the problems 

that are considered, its unit depends on the selection of 

the temperature scale (it can be Celcius, Kelvin or 

Fahrenheit or any other scale that is selected), thus, will 

not mentioned in the presented analyses explicitly. All 

other dependent quantities, like normal flux, k, etc., will 

have units consistent with the selected unit of the 

potential, u, and in the text will not be explicitly stated. 

The outer boundary will be exposed to nonlinear heat 

flux, which will be given in the form: 

 

𝑞𝑟=𝑏 = 𝑘 (
𝜕𝑢

𝜕𝑛
)

𝑟=𝑏
= 𝑁 ⋅ 𝑢𝑛 (22) 

 

where N and n are constants. Note that the unit of N 

depends on the order n, therefore, in the following 

discussion, its unit will not be mentioned explicitly. Note 

also that, n = 0 results in Neumann BC and n = 1 results 

in Robin BC and higher values, negative values and non-

integer values of n imposes nonlinearity in the BC. It is 

noted here that, for simplicity but without losing 

generality, constant elements are used in the analysis. 

The number of elements used on the symmetry sides (A 

and B) is 𝑁𝑠, on the temperature side is 𝑁𝑡 and on the 

nonlinear flux side is 𝑁𝑛. This mesh results in 𝑁𝑎 = 2 ×
𝑁𝑠 + 𝑁𝑡 and 𝑁𝑏 = 𝑁𝑛. The problem, since posed as 

axisymmetric, can be given in radial coordinates as (with 

constant k): 

 

3 N umer ical Examples

The formulat ion presented in the previous sect ion is general for 3D and 2D problems.

For simplicity, without losing generality, the numerical examples will be given in 2D and

a MATLAB program is coded for evaluat ing BEM results. The numerical examples will

be discussed through a thick-walled infinite tube example. The geometry is shown in

Figure 1.

Figure 1: The infinite cylinder problem.

If axially symmetric boundary condit ions are imposed, a planar quarter model would

suffice to solve the problem (Figure 2) . The inner radius, r i = a and the outer radius

ro = b are selected as a = 10mm and b = 20mm. The boundaries at y = 0 and x = 0

lines are the symmetry planes, so the normal flux, qn , is zero. To simplify the analysis,

the inner surface temperature di↵erence at r i is given as Dirichlet BC with ur = a = T .

Note that , since the potent ial u is the temperature di↵erence in the problems that are

considered, its unit depends on the select ion of the temperature scale (it can be Celcius,

Kelvin or Fahrenheit or any other scale that is selected), thus, will not ment ioned in the

presented analyses explicit ly. All other dependent quant it ies, like normal flux, k, etc.,

will have units consistent with the selected unit of the potent ial, u, and in the text will

not be explicit ly stated. The outer boundary will be exposed to nonlinear heat flux,

which will be given in the form:

qr = b = k

✓
@u

@n

◆

r = b

= N · un (22)

where N and n are constants. Note that the unit of N depends on the order n, therefore,

in the following discussion, its unit will not be ment ioned explicit ly. Note also that ,

n = 0 results in Neumann BC and n = 1 results in Robin BC and higher values, negat ive

values and non-integer values of n imposes nonlinearity in the BC. It is noted here that,

for simplicity but without losing generality, constant elements are used in the analysis.

Thenumber of elements used on thesymmetry sides (A and B) is Ns, on the temperature

side is N t and on the nonlinear flux side is Nn . This mesh results in Na = 2⇥Ns + N t and

Nb = Nn . The problem, since posed as axisymmetric, can be given in radial coordinates

7
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𝑘 (
𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
) = 0 

(23) 

 

which had the solution 

 

𝑢(𝑟) = 𝐶1 ln(𝑟) + 𝐶2 (24) 

 

with 𝑢𝑟=𝑎 = 𝑇 

 

𝐶2 = T − C1 ln(𝑎) (25) 

 

At this point we assume that on the inner boundary the 

temperature condition is so assigned as 

 

T = C1 ln(𝑎) (26) 

 

which results in 𝐶2 = 0. On the inner and outer surfaces, 

the boundary is circular, therefore, on the outer boundary 

 

𝑞 = 𝑘
𝜕𝑢

𝜕𝑛
= 𝑘 (

𝜕𝑢

𝜕𝑟
)

𝑟=𝑏
= 𝑘

𝐶1

𝑏
 (27) 

 

The outer boundary condition results in, with above 

discussion, 

 

𝑘
𝐶1

𝑏
= 𝑁 ⋅ [𝐶1 ⋅ ln(𝑏)]𝑛 (28) 

 

Note that if n = 1 this equality will not reveal a solution 

for 𝐶1, thus this value of n is excluded from the presented 

solution. Cancelling the trivial solution of 𝐶1=0: 

 

𝐶1 = [
𝑘

𝑏 ⋅ 𝑁 ⋅ [ln(𝑏)]𝑛
]

1
𝑛−1

 (29) 

 

It follows from Eq.26 that the inner temperature is 

assigned as 

 

𝑇 = [
𝑘

𝑏 ⋅ 𝑁 ⋅ [ln(𝑏)]𝑛
]

1
𝑛−1

ln (𝑎) (30) 

 

and the outer flux is defined as in Eq.22. The solution 

within the domain would be given by 

 

𝑢(𝑟) = [
𝑘

𝑏 ⋅ 𝑁 ⋅ [ln(𝑏)]𝑛
]

1
𝑛−1

ln (𝑟) (31) 

 

for all 𝑛 ∈  ℝ − {+1}. 
 

Note that, a very simple form of solution is possible for 

all possible values of n if the value of k is assigned as 

 

𝑘 = 𝑏 ⋅ 𝑁 ⋅ [ln(𝑏)]𝑛 (32) 

 

which sets 𝐶1 = 1 and 𝑇 = ln (𝑎). The solution will be 

given by 

 

𝑢(𝑟) = ln (𝑟) (33) 

 

 

 
Figure 2. The quarter model for solution of the problem 

The numerical results will be presented in three cases,  

with n = 2, n = −1 and n = 4. 

 

To be general in the solutions, k given as in Eq.32 will 

not be considered; rather, explicit values of k will be 

imposed. Assuming N = 1 with proper units, for n = −1, 

k = 0.12 is selected which gives T ≈ 17.1742, for n = 2, 

k = 2000 is selected which gives T ≈25.6565 and for n=4, 

k=3×106 is selected which gives T ≈28.3289. 

 

The comparison between exact and BEM results are 

presented in Figure 3 along with the percent error in Figure 

4. In these analyses, 𝑁𝑠 = 50, 𝑁𝑡 = 70 and 𝑁𝑛 = 100 

which totals up to 270 elements. The results are presented 

with the absolute error norm of 𝑒̅ = 10−5. It can be seen 

that the maximum percent error does not exceed 0.045%. 

 

 
Figure 3. Comparison of exact and BEM results for n = −1,  

n = 2 and n = 4. 

 

Another analysis follows for the number of iterations for 

obtaining the solution. Note that the simplest iterative 

algorithm is used in this study which has a constant 

convergence rate is used in the analysis. The number of 

iterations with respect to prescribed error norm is given 

in Figure 5. From the graph, the constant convergence 

nature of the iteration algorithm can easily be detected for 

all three n values. It is at this point necessary to note that 

the slowest solution time on a Macbook Pro computer 

with Intel i7 processor and 16 GB RAM for the presented 

problems is less than a second. Also note that, as an 

extreme case, 𝑒̅ = 10−10, the solution is obtained in 206 

iterations for n = 4. Yet, the solution time is 0.71 seconds 

and the maximum percent error is 0.04%. 
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Figure 4. Comparison of exact and BEM results for n = −1,  

n = 2 and n = 4 

 

 
Figure 5. Number of iterations to obtain solution for n = −1,  

n = 2 and n = 4 

 

A last analysis will be on the selection of the initial 

vector. The method is robust in the sense that selection of 

the initial vector does not affect convergence. A special 

note is placed for negative odd powers, since in this case 

𝐶1, in Eq.29, yields two solutions, a negative and a 

positive solution, and the results converge to the one that 

the initial vector is closer. To be comparable with all n 

selections previously stated, the results will be presented 

in terms of Δ where 

 

𝐮𝑏 = (𝑇 − Δ
𝑇

100
) ⋅ 𝐢𝑏 (34) 

 

with T being the corresponding inner temperature 

condition from Eq.30 and 𝐢𝑏 is the identity vector of 

dimension 𝑁𝑏 × 1. In the analysis, to see the effect of 

initial vector more clearly, 𝑒̅ = 10−10 is selected. The 

results are presented in Figure 6 with scaling the % error 

by a factor of 1000. It can easily be seen that the method 

provides robust and stable solution independent of the 

selection of the initial vector. Note that ∆ > 75 is excluded 

from the figure for n = −1 since after that value the values 

converges to the second solution. 

 

As a second benchmark problem, the square plate 

analysis from (Xu and Kamiya, 1997) is reproduced. The 

square domain with 5m sides is subjected to the boundary 

conditions as given in Figure 7. Since the thermal 

conduction coefficient used in the cited reference is not 

explicitly given, four different values are employed in the 

present study: k = 2.3, 3.0, 5.0 and 10.0 W/m◦K. The 

lower values of k do not converge, which is most 

probably because a very simple iterative algorithm, the 

fixed-point iteration method, is employed in the present 

study. In presenting the results, as in the cited reference, 

a measured distance from the lower left corner is used as 

a reference distance value (denoted by s, in Figure 7). 
 

 
Figure 6. Sensitivity of the solution accuracy (% Error x 1000) 

and the number of iterations to obtain the solution with respect 

to ∆ 

 

The square plate is discretized using 50 elements per side 

which totals up to 200 nodes. A short sensitivity analysis 

shows that increasing the elements more does not result 

in cost-effective better solutions. 

 

 
Figure 7. The square plate domain with dimensions and 

boundary conditions 

 

The temperature difference distribution with respect to 

the measured distance, s, is given in Figure 8. The 

dependence of the temperature difference is the same as 

in the cited reference. Since the cited reference does not 

explicitly give the thermal conduction coefficient it is not 

possible to make a quantitative comparison. 

 

It can be noted that, as the thermal conduction coefficient, 

k, increases, the average temperature in the plate 

decreases, as expected. This is mainly because, in steady 

state, the right side is kept at 300◦C which enforces this 

boundary condition more as the thermal conduction 

coefficient increases. 
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Figure 7: The square plate domain with dimensions and boundary condit ions

nodes. A short sensit ivity analysis shows that increasing the elements more does not

result in cost-e↵ect ive better solut ions.

The temperature di↵erence dist ribut ion with respect to the measured distance, s, is

given in Figure 8. The dependence of the temperature di↵erence is the same as in the

cited reference. Since the cited reference does not explicit ly give the thermal conduct ion

coefficient it is not possible to make a quant itat ive comparison.

It can be noted that , as the thermal conduct ion coefficient , k, increases, the average

temperature in the plate decreases, as expected. This is mainly because, in steady state,

the right side is kept at 300◦C which enforces this boundary condit ion more as the

thermal conduct ion coefficient increases.

In Figure 9 the dependence of normal flux with respect to the measured distance is

displayed. Again, it can be concluded that the dependence is the same as in the cited

reference.

4 Conclusion

A new method to solve steady-state heat t ransfer equat ions with nonlinear boundary

condit ions is proposed which is based on the Boundary Element Method. The method

involvesmatrix manipulat ions over thesystem matricesof theBEM and reduces the total

system of equat ions into a smaller rank system where iterat ions involve only the tem-

perature di↵erence over the boundary that the nonlinear boundary condit ion is imposed.

Iterat ive solut ion of the system reveals the temperature di↵erence along that boundary

which then can be used to obtain the total solut ion of the problem.

The method is applicable to 2D and 3D problems in heat t ransfer, as well as other

problems that involves the Laplace’s equat ion as the governing equat ion. It is a simple

task to extend the capability of the method through t ime-dependent problems of thermal

conduct ion since the t ime-dependent kernels are known in literature.

In this study, an example problem with a proven exact solut ion is employed to assess

the efficiency of the proposed algorithm. The given exact solut ion is applicable to all

polynomial order input funct ions and presented for the first t ime in literature. It has

been seen that the method proves well both in accuracy and stability when compared

with the presented exact solut ion.

12



235 

In Figure 9 the dependence of normal flux with respect to 

the measured distance is displayed. Again, it can be 

concluded that the dependence is the same as in the cited 

reference. 

 

 
Figure 8. The temperature difference distribution with respect 

to the measured distance, s. 

 

 
Figure 9. The normal flux with respect to the measured  

distance, s. 

 

Figure 10 shows the temperature distribution of the 

square plate. Note that, the internal solution for such 

problems are obtained as a post processing. 

 
Figure 10. Temperature distribution for the square plate 

 

 

 

CONCLUSION 

 

A new method to solve steady-state heat transfer 

equations with nonlinear boundary conditions is 

proposed which is based on the Boundary Element 

Method. The method involves matrix manipulations over 

the system matrices of the BEM and reduces the total 

system of equations into a smaller ranked system where 

iterations involve only the temperature difference over 

the boundary that the nonlinear boundary condition is 

imposed. Iterative solution of the system reveals the 

temperature difference along that boundary which then 

can be used to obtain the total solution of the problem. 

 

The method is applicable to 2D and 3D problems in heat 

transfer, as well as other problems that involves the 

Laplace’s equation as the governing equation. It is a 

simple task to extend the capability of the method 

through time-dependent problems of thermal conduction 

since the time-dependent kernels are known in literature. 

 

In this study, an example problem with a proven exact 

solution is employed to assess the efficiency of the 

proposed algorithm. The given exact solution is 

applicable to all polynomial order input functions and 

presented for the first time in literature. It has been seen 

that the method proves well both in accuracy and stability 

when compared with the presented exact solution. 

 

To assess the formulation further, another example from 

a cited research is employed. It has been seen in this 

example also that the method gives comparable results 

with the reference. The only drawback of the study stems 

from the fact that in the code a very simple iterative 

algorithm, namely the fixed-point iteration, is used. This 

is the main reason why the results diverged for values of 

k less than 2.3. 

 

The advantages of the proposed method lie in the 

following lines: 

 

 Since the iterations are reduced to a system of 

equations that involve only the temperature 

difference along 𝑆𝑏, the method provides a robust 

and stable solution 

 

 Assuming the geometry is fixed along with the 

discretization, the system matrices 𝐐𝑏𝑏, 𝐑𝑏𝑏 and 

the load vector 𝐛𝑏 is evaluated once and does not 

change within the iterations. This is a very 

advantageous property if repeated runs are 

required with different boundary conditions, 

which is in the case of an inverse analysis. 

 

 

 The method is readily applicable for mesh 

refinement procedures over 𝑆𝑏. Note that, the 

main time-consuming step in the algorithm is 

obtaining the inverse of the sub-matrix 𝐊𝑎𝑎, 

especially if the number of elements in 𝑆𝑎 is 

sufficiently large. But if the elements in this 
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region are fixed, then it is not required to re-

evaluate 𝐊𝑎𝑎
−1, instead other sub-matrices are re-

evaluated with the new set of elements. Rest of the 

method is only matrix manipulations 

(multiplication and summation) which are 

sufficiently fast in nowadays computer 

architectures. 
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