Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 69, Number 2, Pages 1215–1220 (2020) DOI: 10.31801/cfsuasmas.630087 ISSN 1303-5991 E-ISSN 2618-6470

Received by the editors: October 07, 2019; Accepted: June 28, 2020

HARARY ENERGY OF COMPLEMENT OF LINE GRAPHS OF REGULAR GRAPHS

H. S. RAMANE and K. ASHOKA

Department of Mathematics, Karnatak University, Dharwad - 580003, INDIA

ABSTRACT. The Harary matrix of a graph G is defined as $H(G) = [h_{ij}]$, where $h_{ij} = \frac{1}{d(v_i, v_j)}$, if $i \neq j$ and $h_{ij} = 0$, otherwise, where $d(v_i, v_j)$ is the distance between the vertices v_i and v_j in G. The H-energy of G is defined as the sum of the absolute values of the eigenvalues of Harary matrix. Two graphs are said to be H-equienergetic if they have same H-energy. In this paper we obtain the H-energy of the complement of line graphs of certain regular graphs in terms of the order and regularity of a graph and thus constructs pairs of H-equienergetic graphs of same order and having different H-eigenvalues.

1. Introduction

Let G be a simple, undirected, connected graph with n vertices and m edges. Let the vertices of G be labeled as v_1, v_2, \ldots, v_n . The adjacency matrix of a graph G is the square matrix $A(G) = [a_{ij}]$, in which $a_{ij} = 1$ if v_i is adjacent to v_j and $a_{ij} = 0$, otherwise. The eigenvalues of A(G) are the adjacency eigenvalues of G, and they are labeled as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. These form the adjacency spectrum of G [4]. Two graphs are said to be cospectral if they have same spectra.

The distance between the vertices v_i and v_j , denoted by $d(v_i, v_j)$, is the length of the shortest path joining v_i and v_j . The diameter of a graph G, denoted by diam(G), is the maximum distance between any pair of vertices of G. A graph G is said to be r-regular graph if all of its vertices have same degree equal to r.

The Harary matrix [9] of a graph G is a square matrix $H(G) = [h_{ij}]$ of order n, where

Keywords and phrases. Harary eigenvalues, energy of a graph, equienergetic graphs.

²⁰²⁰ Mathematics Subject Classification. 05C50.

[□] hsramane@kud.ac.in-Corresponding author; ashokagonal@gmail.com

^{© 0000-0003-3122-1669; 0000-0002-0248-207}X.

$$h_{ij} = \begin{cases} \frac{1}{d(v_i, v_j)}, & \text{if } i \neq j \\ 0, & \text{if } i = j. \end{cases}$$

The Harary matrix was used in the study of molecules in the quantitative structure property relationship (QSPR) models [9].

The *Harary index* defined as the sum of the reciprocal of the distances between all pairs of vertices and it can be derived from the Harary matrix. It has interesting properties in structure-property correlations [11,16].

The eigenvalues of H(G) labeled as $\xi_1 \geq \xi_2 \geq \cdots \geq \xi_n$ are said to be the *Harary eigenvalues* or *H-eigenvalues* of G and their collection is called *Harary spectrum* or *H-spectrum* of G. Two non-isomorphic graphs are said to be *H-cospectral* if they have same *H*-spectra.

The Harary energy or H-energy of a graph G, denoted by HE(G), is defined as [5]

$$HE(G) = \sum_{i=1}^{n} |\xi_i| . \tag{1}$$

The Harary energy is defined in full analogy with the ordinary graph energy E(G), defined as [6]

$$E(G) = \sum_{i=1}^{n} |\lambda_i| . (2)$$

The ordinary graph energy has a relation with the total π -electron energy of a molecule in quantum chemistry [10]. Bounds for the Harary energy of a graph are reported in [3,5].

Two connected graphs G_1 and G_2 are said to be *Harary equienergetic* or H-equienergetic if $HE(G_1) = HE(G_2)$. The H-equienergetic graphs are reported in [12,13]. The distance energy of complements of iterated line graphs of regular graphs has been obtained in [8]. In this paper we use similar technique of [8] to obtain the H-energy of the complement of line graphs of certain regular graphs and thus construct H-equienergetic graphs having different H-spectra.

The complement of a graph G is a graph \overline{G} , with vertex set same as of G and two vertices in \overline{G} are adjacent if and only if they are not adjacent in G. The line graph of G, denoted by L(G) is the graph whose vertices corresponds to the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G. For $k = 1, 2, \ldots$ the k-th iterated line graph of G is defined as $L^k(G) = L(L^{k-1}(G))$, where $L^0(G) = G$ and $L^1(G) = L(G)$ [7].

If G is a regular graph of order n_0 and of degree r_0 then the line graph L(G) is a regular graph of order $n_1 = (n_0 r_0)/2$ and of degree $r_1 = 2r_0 - 2$. Consequently the order and degree of $L^k(G)$ are [1,2]

$$n_k = \frac{r_{k-1}n_{k-1}}{2} \tag{3}$$

and

$$r_k = 2r_{k-1} - 2, (4)$$

where n_i and r_i stands for order and degree of $L^i(G)$, $i = 0, 1, \ldots$

Therefore

$$r_k = 2^k r_0 - 2^{k+1} + 2 (5)$$

and

$$n_k = \frac{n_0}{2^k} \prod_{i=0}^{k-1} r_i = \frac{n_0}{2^k} \prod_{i=0}^{k-1} (2^i r_0 - 2^{i+1} + 2)$$
 (6)

We need following results.

Theorem 1. [4] If G is an r-regular graph, then its maximum adjacency eigenvalue is equal to r.

Theorem 2. [15] If $\lambda_1, \lambda_2, ..., \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the adjacency eigenvalues of L(G) are

$$\lambda_i + r - 2,$$
 $i = 1, 2, \dots, n,$ and $-2,$ $n(r-2)/2$ times.

Theorem 3. [14] Let G be an r-regular graph of order n. If $r, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of G, then the adjacency eigenvalues of \overline{G} , the complement of G, are n-r-1 and $-\lambda_i-1$, $i=2,3,\ldots,n$.

Theorem 4. [3] Let G be an r-regular graph of order n and let $diam(G) \leq 2$. If $r, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of G, then its H-eigenvalues are $\frac{1}{2}(n+r-1)$ and $\frac{1}{2}(\lambda_i-1)$, $i=2,3,\ldots,n$.

Lemma 5. [8] Let G be an r-regular graph of order n. If $r \leq \frac{n-1}{2}$, then diam $(\overline{L^k(G)}) = 2$, $k \geq 1$.

2. Results

Theorem 6. Let G be an r-regular graph of order n. If $r \leq \frac{n-1}{2}$, then

$$HE\left(\overline{L(G)}\right) = r(n-2).$$

Proof. Let the adjacency eigenvalues of G be $r, \lambda_2, \ldots, \lambda_n$. From Theorem 2, the adjacency eigenvalues of L(G) are

$$2r - 2, \quad \text{and}$$

$$\lambda_i + r - 2, \quad i = 2, 3, \dots, n, \quad \text{and}$$

$$-2, \quad n(r-2)/2 \text{ times.}$$

$$(7)$$

From Theorem 3 and Eq. (7), the adjacency eigenvalues of $\overline{L(G)}$ are

$$(nr/2) - 2r + 1,$$
 and $-\lambda_i - r + 1,$ $i = 2, 3, ..., n,$ and $1,$ $n(r-2)/2$ times. (8)

The graph $\overline{L(G)}$ is a regular graph of order nr/2 and of degree (nr/2) - 2r + 1. Since $r \leq \frac{n-1}{2}$, by Lemma 5, $diam\left(\overline{L(G)}\right) = 2$. Therefore by Theorem 4 and Eq. (8), the H-eigenvalues of $\overline{L(G)}$ are

$$(nr-2r)/2$$
, and
$$-(\lambda_i + r)/2$$
, $i = 2, 3, \dots, n$, and
$$0$$
, $n(r-2)/2$ times.
$$(9)$$

All adjacency eigenvalues of a regular graph of degree r satisfy the condition $-r \le \lambda_i \le r$ [4]. Therefore $\lambda_i + r \ge 0$, i = 1, 2, ..., n. Therefore by (9),

$$HE\left(\overline{L(G)}\right) = \frac{nr - 2r}{2} + \sum_{i=2}^{n} \frac{(\lambda_i + r)}{2} + |0| \times \frac{n(r-2)}{2}$$
$$= r(n-2) \quad \text{since} \quad \sum_{i=2}^{n} \lambda_i = -r.$$

FIGURE 1. Cycle C_6 and $\overline{L(C_6)}$.

Example 7. Consider the cycle C_6 . It satisfies the conditions of Theorem 6. Complement of $L(C_6)$ is shown in the Figure 1. The H-eigenvalues of $\overline{L(C_6)}$ are 4, 0, -0.5, -0.5, -1.5, -1.5. Hence $HE(\overline{L(C_6)}) = 8$ and by Theorem 6 also, $HE(\overline{L(C_6)}) = 8$.

Corollary 8. Let G be a regular graph of order n_0 and of degree r_0 . Let n_k and r_k be the order and degree respectively of the k-th iterated line graph $L^k(G)$, $k \ge 1$. If $r_0 \le \frac{n_0-1}{2}$, then

$$HE(\overline{L^k(G)}) = r_{k-1}(n_{k-1} - 2).$$

Proof. If $r_0 \leq \frac{n_0-1}{2}$, then by Eqs. (3) and (4), we have

$$r_1 = 2r_0 - 2 \le n_0 - 3 \le \frac{1}{2} \left(\frac{n_0 r_0}{2} - 1 \right) = \frac{n_1 - 1}{2}.$$

Hence

$$r_{k-1} \le \frac{n_{k-1} - 1}{2}.$$

Therefore by Theorem 6,

$$HE\left(\overline{L^k(G)}\right) = HE\left(\overline{L(L^{k-1}(G))}\right) = r_{k-1}(n_{k-1}-2).$$

Corollary 9. Let G be a regular graph of order n_0 and of degree r_0 . Let n_k and r_k be the order and degree respectively of the k-th iterated line graph $L^k(G)$, $k \ge 1$. If $r_0 \le \frac{n_0 - 1}{2}$, then

$$HE\left(\overline{L^k(G)}\right) = \left[\frac{n_0}{2^{k-1}}\prod_{i=0}^{k-1}(2^ir_0 - 2^{i+1} + 2)\right] - 2(2^{k-1}r_0 - 2^k + 2).$$

3. H-EQUIENERGETIC GRAPHS

If G_1 and G_2 are the regular graphs of same order and of same degree. Then $L(G_1)$ and $L(G_2)$ are of the same order and of same degree. Further their complements are also of same order and of same degree.

Lemma 10. Let G_1 and G_2 be regular graphs of the same order n and of the same degree r. If $r \leq \frac{n-1}{2}$, then $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are H-cospectral if and only if G_1 and G_2 are cospectral.

Proof. Follows from Eqs. (7), (8) and (9).

Lemma 11. Let G_1 and G_2 be regular graphs of the same order n and of the same degree r. If $r \leq \frac{n-1}{2}$, then for $k \geq 1$, $\overline{L^k(G_1)}$ and $\overline{L^k(G_2)}$ are H-cospectral if and only if G_1 and G_2 are cospectral.

Theorem 12. Let G_1 and G_2 be regular, non H-cospectral graphs of the same order n and of the same degree r. If $r leq \frac{n-1}{2}$, then for k leq 1, $\overline{L}^k(G_1)$ and $\overline{L}^k(G_2)$ form a pair of non H-cospectral, H-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 11 and Corollary 9. \Box

Acknowledgement. Authors are thankful to referee for helpful suggestions.

The work of author HSR is supported by the University Grants Commission (UGC), New Delhi, through UGC-SAP DRS-III Programme, 2016-2021: F.510/3/DRS-III /2016 (SAP-I). The work of another author AK is supported by the Karnatak University, Dharwad with URS fellowship No. URS/2019-344.

References

- [1] Buckley, F., Iterated line graphs, Congr. Numer., 33 (1981), 390-394.
- [2] Buckley, F., The size of iterated line graphs, Graph Theory Notes New York, 25 (1993), 33–36.
- [3] Cui, Z., Liu, B., On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem., 68 (2012), 815-823.
- [4] Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
- [5] Güngör, A. D., Çevik, A. S., On the Harary energy and Harary Estrada index of a graph, MATCH Commun. Math. Comput. Chem., 64 (2010), 280-296.
- [6] Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
- [7] Harary, F., Graph Theory, Addison-Wesley, Reading, 1969.
- [8] Indulal, G., D-spectrum and D-energy of complements of iterated line graphs of regular graphs, J. Alg. Stru. Appl., 4 (2017), 51-56.
- [9] Ivanciuc, O., Balaban, T. S., Balaban, A. T., Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices, *J. Math. Chem.*, 12 (1993), 309-318.
- [10] Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012.
- [11] Plavšić, D., Nikolić, S., Trinajstić, N., On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235-250.
- [12] Ramane, H. S., Manjalapur V. V., Harary equienergetic graphs, Int. J. Math. Arch., 6 (2015), 81-86.
- [13] Ramane, H. S., Jummannaver R. B., Harary spectra and Harary energy of line graphs of regular graphs, Gulf J. Math., 4 (2016), 39-46.
- [14] Sachs, H., Über selbstkomplementare Graphen, Publ. Math. Debrecen, 9 (1962), 270-288.
- [15] Sachs, H., Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau, 13 (1967), 405-412.
- [16] Xu, K., Das, K. C., Trinajstić, N., The Harary Index of a Graph, Springer, Heidelberg, 2015.