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Abstract

In this paper, we are studied m-dimensional
vectorial diffusion equation with jump conditions
inside a finite interval. We obtain some conclusions
about multiplicity of the eigenvalues based on the
estimation of solutions. Asymptotic formules of
eigenfunctions in each interval are obtained. Also,
properties related to the characteristic function of the
problem are given and proven. We prove that, under
certain conditions on potential matrix, the problem
can only have a finite number of eigenvalues with
multiplicity m.
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1. Introduction

Consider the m -dimensional vectorial singular
diffusion equations

—y"+[22p(x)+q(x)]y = 2"y,

(1)
xe(0,7)\{a,a,}

y'(0)=6 (2)
y'(z)=6 (3)

y(a +0)=0a,y(a -0) (4)
y'(a,+0)=4y'(a -0)+iiyy(a, -0) (5)
y(a,+0)=a,y(a,-0) (6)

y'(a,+0)=Ay'(a,-0)+ily,y(a,-0).(7)
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Where A is the spectral parameter and
y=(y,,y,,..y,) is an m-dimensional vector
qx)eL,[0,7], px)eW'[0,z]
a,a,¢€(0r),a<a,,

function,

|a1_1|2+712 =0,
1

|, =1 +7, # 0'(ﬂi =—(i=1 2)) . The potential
a

matrix (24p(x)+q(x))is an mxm symmetric

matrix function. & denotes the m -dimensional zero
vector.

Differential operators are defined as singular and
regular. In 1946, Titchmarsh studied spectral theory
of second order singular differential operators
(Titchmars 1932). In 1984, the studies on the spectral
theory of singular differential operators were
conducted by Levitan (Levitan 1984). Singular
differential operators with conditions of discontinuity
are often used in mathematical physics, geophysics
and natural sciences. Some studies were performed
for the diffusion equation (Gasymov 1981-
Koyunbakan 2007). In general, these problems are
associated with discontinuous material properties. For
example; it is used to in determining the parameters
of the electricity line in electronics (Vakanas 1994).
It is used to determine geophysical models for the
release of the earth (Muller 1985). The discontinuity
here is the reflection of the shear waves at the base of
the earth’s crust. In 1999, Kong, Wu and Zettl studied
equivalence between the algebraic and geometric
multiplicities of any eigenvalue of regular Sturm-
Liouville problems. C. L. Shen and C.T. Shies (Shen
and Shies 1999) studied the multiplicity of
eigenvalues of the m-dimensional vectorial Sturm-
Liouville problem

-y"+Q(x)y =4y, y(0)=y(1)=6
where Q is continuous mxm Jacobi matrix-valued

function defined on 0 < x<1.

Q. Kong (Kong 2002) generalized to the case when Q
is real symmetric. In 2007, C.F Yang, Z.Y. Huang
and X.P. Yang (Yang, Huang and Yang 2007)
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extended the result of paper by Shen and Shies, 1999
to the Sturm-Liouville equations with a weight
function, a leading coefficient and general seperation
conditions. However, there are no such result for the

discontinuous problem (1)—(7). In this study, we
first define the characteristic function of the
eigenvalues  of  vectorial  problem(1)-(7).

Following this, we prove the conclusion that the
eigenvalues of the problem coincide with the zeros of
characteristic function. Then, we show the asymptotic
forms of the solutions. We obtain some results about
multiplicity of the eigenvalues.

2. Characteristic Function and Asymptotics of
Solution

Denote H =L, (I,u m) the Hilbert space of
vector-values functions with the scalar product

(f,g)=Tg;f1dx+6jg;f2dx+jgjfrdx=jg*fdx,

a, 0
where f=(f,f,..f),9=(g,0,.9,) and
fi’giELz(I)’ fl(X):f(X)(O,a)'
f,(x)=f(x),., and f (x)=f(x), . Wecan
define an operator L associated with the problem
(1)-(7) on H

L:—y"+[24p(x)+a(x)]y=2"y, ye D(L)

D(L)={yeH;y.yeAc[1u" ]}, Lye’[1,0"]

y(0)=y'(x)=0

y(a, +0)=ay(a -0) ,
y'(a,+0)=4y'(a -0)+idyy(a -0)
y(a,+0)=a,y(a,-0),
y'(a,+0)=Ay'(a,-0)+ily,y(a,-0).

Lemma 2.1. The operator L is self-adjoint.

Proof. The proof is similar to the scaler case in
(Wang, Sun and Zettl 2007). We consider the

problem on the three intervals (0,a,) , (a,,a,) and
(a,, ) respectively. Where 6, denotes mxm zero

matrix and E_denotes mxm identify matrix. On

(0,a,), the matrix initial value problem

-Y"+(24p(x)+q(x))Y =4°Y , xe(0,a)
4.(0.2)=E, . ¢/(0,2) =0,

(8)

has a unique solution @ (X, 1). What’s more, for any

fixed xe(0,a), ¢(x,4) is an entire matrix

function in A (Agranovich 1963, pp. 17). By
variation of constants, we have

¢, (X, A1) =Ccos AXE,
15 ©)
+zj‘sm A(x-t)(2ap(t)+a(t)) g (t 2)dt.
On (a,,a,) the matrix initial value problem
YY"+ (24p(x)+q(x))Y =2%Y , xe(a,a,)
¢2(a1+0):a1¢2 (al_o) (10)
¢2' (a1 + 0) = ﬂ1¢2’ (a'l _0) + m’71¢2 (ai _0)
has a unique solution ¢, (x, ). What’s more, for any

fixed xe(a,,a,), ¢,(x,4)is an entire matrix

function in A . By variation of constants, we have
(Ergilin and Amirov 2019)

X'ﬂ = a+ +£ ei/lx + a’ _ﬁ eil(zal—x)
Al
2 2

al

+a+J-sin/12x—t)

0

J(t)g,(t,2)dt

_la,i’fsini(xH—Zal)

» J(t)g,(t,2)dt

a —t
_iﬁfcos/l(x )

) . J(t)g,(t,2)dt

0

+i£]-cosﬂ(x+t—2a1)

2) i J(t)g, (t,2)dt

+j5‘”(ﬂ—x‘t% (1), (1 2)dt

WherEa;(x)=%(alJ_r,Bl),J (t)=24p(t)+q(t),

or
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¢2(X,ﬂ)=0!1 COS/’L(X_al)Q(al_O)Em
+y,sini(x-a )¢ (a -0)E,

+%sin/1(x—al)¢l'(al—0)Em (12)

X

+JW(MP(I)+Q(I))¢Z (t,4)dt.

On (a,, ) the matrix initial value problem
-Y"+(22p(x)+q(x))Y =2%Y , xe(a,x)
¢3 (az + O) = a2¢3 (az - 0) (13)
¢a, (az + 0) = ﬂ2¢3’ (az _0)+ iﬂ’7/2¢3 (az _0)

has a unique solution @, (X, 4). What’s more, for any

fixed vxe(a, z), ¢,(x 4A)is an entire matrix
function in A . By variation of constants, we have

_ + o+ iAx - - iA(2a1—2a2+x)
g, (x, 1) =c'a,e” +a ae

i),(Zafx) + al—a;ei/l(Za;x) + 71a2 eilx
2

+a a,e

_ }/1(2; eiﬂ(2a1—2a2+x) n 71(2; eil(zaz—x)
2 2

_ 7/10’/24r eil(za,—x) _ }/1}/2 eilx _ 71}/2 eii(za,—2a2+x)
2 4 4

_ }/20.’1 ei/}(Zafx) _ }/za; ei},(Zal—x) + }/zal ei/lx
2 2 2

;/za; eil(zal—2a2+><) _ 71}/2 eil(Zaz—x) + }/1}/2 ei/l(Zal—x)
2 4 4

+_i_&jisinxl(x—t)
4

.
a, a,
A

+

+ J(t)g, (t,2)dt

1
0

+ - a

J(t)g, (t,2)dt

2

.y, \psinA(x+t-2a,)
_ 2 J ,A)d
+( a a, + . j! /1 (t)¢3(t ) t

] +_&r‘-sin/1(x+t—2al)
4 A

0

]isin /1(x+t—2a2)J (1), (t.2)

2

+(a1a2 _&j]lsin A(2a -2a, + x—t)J (1)4, (6, 1)t

4 A

0

+
2

js'”ﬂ“g—x‘% ()6 (8. 2)

a

i . L\ fCOSA(x—t
_5(71052 —7% )!%‘] (t)¢3(t,l)dt
i ; _\#cosA(x+t-2a
+E(_71a2 —72% )!%
i . \EcosA(x+t-2
+E(7’1az +72a2)£¥
Tcosﬂ(x+t—2a2)

A

J(t)g(t,2)dt

J(t)¢(t,A)dt

L

> J(t)g(t,2)dt

a

2

+12(71a2_ +72a2_)‘|~cos/1(2a1—2a2 +x-t)

A

J(t)g(t,2)dt

al%a (t)6 (t, 1)t

tsinA(x—t)
1 i

_iﬁafcos/l

J(t)g(t,2)dt

(12)

where ¢, (x) = %(a2 tp) or

¢, (x,A)=a,cos1(x-a,)¢,(a,-0,1)E,
+y,sinA(x-a,)¢,(a,-0,1)E,

+%sin/w(x—az)¢z’(az—o,/z)Em (15)
4@(%(0”@))@(u)dt.
Leic

¢ (x,1), xe(0,a)
$(x,1)=14,(x,4),xe(a,a,).
¢3(X,/1),Xe(a2,7r)

Then, any solution of the equations (1) satisfying

boundary condition (2)and jump conditions
(4)-(7) can be expressed as
¢ (x,A)k, xe(0,a)
y(x,2)=¢(x,2)c, =<¢,(x,A)k, xe(a,a,) (16)
¢3(X,/I)kl, Xe(az,ﬁ)
where Kk is an arbitrary m-dimensional constant

vector. If A is an eigenvalue of the problem

(1)-(7), then k, #6 and y(x,4) satisfies the
boundary condition at X = 7, that is,



The multiplicity of eigenvalues of a vectorial singular diffusion equations
with discontinuous conditions

EAJS, Vol. VI Issue Il

|25

y (7 4)=¢'(z.2)k =g, (7, 2)k =0
Thus we get
det(¢, (7, 1)) =0.
Similarly, on(a,, 7 ), consider the matrix initial value
problem

{—Y”+(2/‘tp(x)+q(x))Y =Y, xe(a, r)

v, (7,2)=E, .y (7.2)=0,
(17)

The problem (17) has a unique solution y, (x,4).
What’s more, for any fixed X e (az,zr),y/3 (X,ﬂ,) is

an entire matrix functionin A4 .
Consider the matrix initial value problem on

(a,a,),

-Y"+(22p(x)+q(x))Y =4%Y , xe(a,a,)

!//2’ (az _O’/l):azy/;(az +O’A)_M’a2yzl//2(az _0’/1)

v,(a,-0,2) =By, (a,+0,1)
(18)
The problem (18) has a unique solution w, (x, 1) .
What’s more, for any fixed X € (av az) W, (x, /1) is
an entire matrix function in 4.
Consider the matrix initial value problem on (0,a,),

Y"+(2ap(x)+q(x))Y =2%Y , xe(a,7)
l//l’(al—o,ﬂ)=(le//;(al+0,ﬂ)—m,0!1}/1!//1(a1—0,/1)

V/1(a‘1 _0’/1) :/B1l//z(a1 +0’l)
(19)
The problem (19) has a unique solution y, (x,1).

What’s more, for any fixed x(0,a,), v, (x 4)is
an entire matrix functionin 4. Let
v,(x.2), xe(0,a)

w(xa)=qw,(x4).xe(a,a,)
w,(x,4),xe(a,,x)
Then, any solution of the equations (1) satisfying
boundary condition (3) and jump conditions
(4)-(7) can be expressed as
v, (x,4)k,, xe(0,a)
y(x,A) =y (x2)c, =4y, (x,A)k,,xe(a,a,) (20)
w,(x, 1)k, xe(a,,7)

where K, is an arbitrary m-dimensional constant
vector. If A is an eigenvalue of the problem
(1)-(7), then k, #60 and y(x,1) satisfies the
boundary condition at x =0, that is,
y'(0,2)=y'(0,2)k, =y, (0,2)k, =0

Thus, we get

det(y, (0,2)) =0.
Let A (A1)=W(g,(x.4).w,(x.4)) be the
Wronskian of solution matrices ¢ (x,4) and

v, (x4), j=1,23, thatis,

¢ (xA) wi(xA)

&) #(x 1) Z{(x,ﬂ)"
s e e
b (X, A) wi(x4)

As(i)zszﬁ;(x,ﬂ) Z;(x,ﬂ)"

Lemma2.2. Forany A ell
Al(}“) =A, (’1) = As(ﬂ“) .

Proof. Because the Woronskian of the solution
matrices ¢, (x,4)and y, (x, 1) is independent of x

¢.(a,+0,4) v,(a,+0,1)
#.(a,+0,4) vy.(a,+0,1)

x=a,+0

A, (2)=4,(2)

=a,py,(a,-0,4)¢,(a,-0,2)
+ida,y,w,(a,-0,1)¢,(a,-0,1)
—a,B,¢4,(a,-0,1)y,(a,-0,2)
-ila,y,¢,(a,-0,4)y,(a,-0,1)
¢,(a,-0,4) w,(a,-0,4)
¢.(a,-0,4) w.(a,-0,1)
$,(x1) w,(x2)
g (x2) v,(x )|, .,

4,(a +0,4) w,(a +0,1)
¢,(a,+0,2) w,(a+04)

-4,(2)

A (2)=4,(A),, =
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= a1ﬂ1‘//1'(a1 -0, ﬂ“)¢1 (8.1 _0'/1)
+iﬂ,0!1711//1 (a1 -0, /1)¢1 (a1 _O'ﬂ’)
_a1ﬂ1¢1,(a1 —0,/1)l//1 (al _O’A)
—ilay 4, (a1 -0, A)l/ll (ai -0, A)
¢1(a1_0’ﬂ') l//1(a1_0’ﬂ’)
#(2-0.2) vl(a-0.2)
4(x4) v, (x2)
#(x2) v(x2)
the proof is completed.
DenoteA(4)=A, (2)=A,(1)=A,(1), we have
the following lemma.

Lemma 2.3. A is an eigenvalue of (1)—(7)if any

only if A(1)=0.

-a (1)

x=a,-0

Proof. Necessity. Assume that 4, is an eigenvalue of
(1)-(7). y(x,4,) is the eigenfunctions corresponding
to 4,, then by (16) we have

$.(x,4,)k,, xe(0,a)
y(x4,)=0(x2)k =24, (x4 )k, xe(a,a,)(22)

¢3(x,lo)k3, Xe(az,ﬂ)

v, (%, 4,)k,, xe(0,a)
y(x4)=w(x4)k =w,(x1)k, xe(a,a,)

v, (0 4)k, x<(a, )
(23)
k,, k, are m-dimensional nonzero constant vector.

So from (22) and (23) we have
8,06 2,)K, = v, (0.4,)K,
8 (%2, )k = (% 4 )k,

By direct simplification, we get
(e
#(x2) vi(x4)) k) o)

Because K,, k, # 0, the coefficient determinant of

above linear siystem of equations
g (x4,) v (x4)
#(x %) —vi(x4)
I CEANACES
#(x %) v (x4)

}Xe(o,al).

:(_1)m Al(ﬂ’o) :Az (ﬂ’o) :As (AO):A(AO) =0
Sufficiency. If for some A, € DL, A(4,)=0. Then
the linear siystems of equations

¢ (x4) w,(x4)) (k 0

#(x2) w;(x.zo)j(ka(aj

6,(x4) w,(x4)) (K 0

(x4,) w;(x,%))[ka(ej

g.(x4) w,(x4)) (K 0

#(x4,) w;(x,mj(m}@

have nonzero solutions. By a direct computation, we
get

¢,(x. 4, )k, = v, (%, 2,)k,
#(% 4, )k, ==y (x.2,)K,
¢, (%, 2, )k, = v, (x4 )k,
¢, (%, 2, )k, ==, (% 4 )k,
¢, (%, 2,)k, ==y, (x.2,)K,

}x e(a, 7).

¢3’(X'ﬂ’o)k3 = _l//; (X'ﬂ’o)k
Denote

}Xe(o,al)
}xe(ag,az)

¢1(X'ﬂ’o)k3 =_W1(X’Ao)k4’ Xe(o’al)
y(X'ﬂo): ¢z(x’ﬂ’o)k3:_wz(x'ﬂ“o)k4'Xe(a1’a2)
¢3(X'ﬂ’o)k3:_l/lz(x’lo)k4' Xe(az’ﬂ-)

We note that y(x,A,)satisfies the boundary
condition (2), (3) and jump condition (4)-(7).
That is, y(x,/lo) is the eigenfunctions corresponding

to A,. Thus 4, is an eigenvalue of the problem

1)-(7).

Remark 2.4. As two especial case

S v

- '; Z}E&jz;‘:det(w;(o,z))

sfors) vl
) | g ()
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Definition 2.5. A(4) will be called the
characteristic function of the eigenvalues of the
problem (1)—(7).

Definition 2.6. The algebraic multiplicity of an
eigenvalue A is defined to be the order of A4 as a

zero of A(4). The geometric multiplicity of A as

an eigenvalue of the problem (1)—(7) is defined to

be the number of linearly independent solutions of
the boundary value problem.
If we denote 2mx 2m matrices

— ¢1(X’j“0) wl(X'lO)
A(X'AO)_£¢1’(X’/10) l/lll(x’/lo)],
4,(x.4,) "’Z(X'%)j

#(xk) v (x4)

B(x,lo)=(

and
C(X,%)z(;ﬁs(x,ﬂo) y/s(x,/io)j

§(02) vi(n)
the rank of matrix A(x,4,)as R(A(x,4,)).
Similarly, B(x,4,) as R(B(x,4,))and C(x,4,)
as R(C(x,4,)).
Corollary 2.7. The geometric multiplicity of A, as
an eigenvalue of the problem (1)-(7)is equal to
2m-R(A(x,4,)) or 2m-R(B(x,4,)) or
2m-R(C(x,4,)).
Corollary 28. R(A(x,4,)),R(B(x,4,)) or
R(C(x,4,)) is at least equal to m, so the

geometric multiplicity of A, varies from 1 to m.

When the geometric multiplicity of an eigenvalue is
m, we say the eigenvalue has maximal (full)
multiplicity. In this study, we refer multiplicity as the
geometric multiplicity.

An entire function of non-integer order has an infinite
set of zeros. The zeros of an analytic function which
does not vanish identically are isolated (Boas 1954).

w!(0,4) and ¢, (x,A) are entire function of order

1
E matrices. The sums and products of such functions

1
are entire of order not exceeding E Hence, the

determinants of (0,4) and ¢.(x,4), that is, the
characteristic functions are also non-integer.

Lemma 2.9. Eigenvalues for (1) —(7) are real. The

boundary value problem (1)—(7)has a countable

number of eigenvalues that grow unlimitedly, when
that are ordered according to their absolute value.

The norm of a constant matrix as well as the norm of
amatrix function A is denoted by ||Al.

A(x)=(a, )mJ1 ‘1—>M’ ,, for any xel, the

mxm ?

norm of A(x) may be taken as
[AG=max Y la,| (24)
ciem 4=

Let A =s?,s =0 +i1,0,7 € R. | have the following
three lemmas.

Lemma 2.10. When [4|—>o, the following
asymptotic formulas holdon 0 < x < a,,

4 (% 2)=cos(Ax)E, +O(|2]"¢™)  (25)

#(x 2) = -asin(1x)E, +O (&) 26)

Proof. See the paper by Agranovich 1963.
Lemma 2.11. When [i| >, ¢ (x,4) and

¢, (x,4) have the following asymptotic formulas on

i)

(s B ot pe, (10 1))

#,(x2)= o

%(al* +%]( p(x)-2)iexp(-i(Ax-B(x)))E, +0(2)
(28)

where B(x) = j p(t)dt.

Proof. Since ¢,(x,4) is the solution of boundary

value problem (10) , we have
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4, (% 4) = [a; +%)cos(/1x—ﬂ(x)) E,
+(a1 —%jcos(/l(Zal—x)—,B(x)) e, +oGew)

1 o
e e

X (29)
Lo (al _ ﬁ) efl(l(Zajx)*ﬁ(X)) Em +0 (_ egx j

2 2 A

Let f(x,ﬂ)::o(%e”) and note that
¢, (x l)_l(a+ +£)e'(“’”(x))E +(1+9(x,4))
2 ’ - 2 1 2 m g '

From at simple computation at equation (29) , We get

2 ezixla‘ Em
2

2 2i[1(x7a,)+/i(x)]E
2

la(x,2) <|e

g(x2) =" E 4

ei(leﬁ(X))

m +—
2

m

‘ RETO)
g0 WIE |y f(x1)E,
. yl)
a ++
2

)
)

|

3y

= 2)
[+2)

Furthermore

e—Zch + —ax rer

m

o>¢ld] ,e>0 in D. Thus,

—ng

~o<-¢|i| and e’ <e

. X X
Since — — 0, x<ce"(c>0). Thus,
e

20X C
e < . We get
g|/1| X

g(x,l):o(%j A — o0 . Hence,

¢,(x.2)=

%(af +%jexp(—i (2x-B(x)))E, (“OGD

|| = oo . Derivativing both sides of (27) and using
the first formula (29), we could get the formula of
(28) similarly.

Lemma 212. When || -, ¢(x 1) and
¢, (x, 1) have the following asymptotic formulas on

¢, (x, 1) = Aexp (—iAT (x))E, (HOGD (30)
#(x2)=
A(p(x)—2)iexp(-iAT (x))E, +0O(1)

i (7 1,
where A:E(az (0@ —%D 2, 25(0‘2“‘,32)
T(x)=((2a8,—2a,+x)—B(x)).

Proof. Since ¢,(x,4) is the solution of boundary value

(1)

problem (13) , we have
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¢, (x,1)=A cos(A((2a —-2a, +x)-B(x)))E,
-A cos(/1(2a1 —2a,-w' (x))) E,
+A cos(l(2a1+w’(x))) E,

+A, cos(ﬂL(Zal +W (x))) E + O(%e”(z“aﬂ**)j

(32)

We get
4,(x.2) =

A giCr s A g a2

2

i(/l((za‘fzajx)fw‘ (x))) E
(

m m

_ﬁe _ﬁe—i(i((za;zazérx)fw‘(x)))E
2 2
+ﬁei(i (Za‘—x)+w (x)))E + ﬁefi(i((Za;xﬁw (x)))E

m m

2
+%ei(l((2a‘x)+w (x)))Em +%ei(}»((2a‘x)+w (x)))Em

1
+0 (_ ea(za‘—ZaZer))
A

(33)

where w* (x) =j. p(t)dti} p(t)t,

1
Let f(x,1):= O(— e"(“‘-'“”x)) and note that
A

¢3 (X,ﬂ,) _ %ei(l((zalzaz+x)ﬁ(x)))Em +(1+ g (X,ﬂ,))

From at simple computation at equation (32) , We get
g(x,4)=

e2i(/1((2a1—2aZ +X)-5(x))) E ﬁ ei(Zl((Zai—Zaz+x)—(w*(x)+,8(x))))

m - Em
A
A G Al
A
+ % ei((21a2+2/1x+(ﬂ(><)fw (X)))) E,+ i ei((“afzaﬁ("" (X)*ﬂ(x)))) E

m

|29
+iei((zlaz+22x+(/}(x)—w (x)))) Em
A,
2ei(i((2a‘72az+x)fﬁ(x)))
- f(x,A)E,
A,
. 1
Let’s examine g(x,4)=0| — | accuracy.
A
l9(x.2)]
< eZi(l((Za;Zaﬁx)fﬁ(x)))Em + iei(M((Za,fZaﬁX)f(W‘(X)+/?(X))))Em
A
i ﬁei(w‘(x)—ﬁ(x))Em n ﬁei((4ia;2aA+(w’(x)+ﬁ(x))))Em
A
N A (222250 (x>)))Em N A oi((a2-2a, (o (x)m(x))))Em
A A,
+ iei((zza)+2Ax+(ﬂ(x)—W'(x))))Em
A
2ei(/1((2a7—2a2+x)—ﬂ(x)))
+ f(xA)E,
A
Se—ZG(Za;Za7+x)E + iefza(zarza#x)E + ﬁe—ZUxE
i i efzg(2a72a7+x)Em 4 ﬁ efzoai Em 4 i e—Zg(Za,—Zaﬁx)Em
A A A
+ i e—20a7 Em+Eefza(za‘72a?+x)e20(2a,72a7+x)Em
A A
Furthermore , o >¢|l| ,e>0 in D. Thus,

o< —6‘|ﬂ,| and e*ZU(Za;ZaAX) < e*E‘Z‘(Za;Zafx)

Since -0, x<ce®™ ™™ (c>0). Thus,

e(2a‘72a1 +X)

—25(2a;2a2+x) c

£]4|(2a, - 2a, +x)

. We get

g(x,l):o(%j A — 0 . Hence,

1

¢, (x, 1) = Aexp(—iAT (x))E, (HO(ID :

|4| = o . Derivativing both sides of (30) and using
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the first formula (32), we could get the formula of
(31) similarly.

3. Multiplicities of Eigenvalues of the Vectorial
Problem

This section of the paper includes the conditions of
the potential matrix function (24p(x)+q(x)),
under certain conditions, the problem that presented
with (1)-(7) equations have only a finite number
of eigenvalues with multiplicity m. Where

p(x) eW, [0,71'], p(x):{pij(x)}rjzl’

4() € L,[0,7] and q(x) = {g, (x)}" -
Theorem 3.1. Let m=>2. Assume that, for some

i, je{l2,...,m}with i = jeither

(i)

} p, (x)dx + Mj p, (x)dx+ MZI p, (x)dx =0
o
.[qij (x)dx + Mquij (x)dx+ sz‘qij (x)dx =0

(i)
a“pn (x)=p, () Jax+ Mlaf[pn (x)-p, (x)]dx

0
k4

+M2J.[pii (x)-p, (x)]dx =0

az

iif[qii (x)=a, (x)Jdx + M:f[qii (x)-q, (x)]dx

+sz[q”(x)—qjj(x)]dx¢0

(35)

Then, with finitely many exceptions. The
multiplicities of the eigenvalues of the problem

(1)-(7) are at most m-1.

Proof. (i) We assume that (34) holds. Suppose to
the contrary, that there exists a sequence of
eigenvalues {4 }” whole multiplicities are all m.

Obviously, 4, — o as n—oo. From the equations
in (13). Denoting ¢,(x,4)={y; (x)}mJ1 when
A=4 forn=12,.., we get

v () +(2- (24, (x)+a, (). (x)
—>(22p, (x)+9, (x)) ¥, (x) =0

k=i

and
v, () + (2= (22p, () +4,(x))y; (x)
_g(zﬂ‘pii (X)+qii (X)) yk+j (X) =0

Multiplying (36) and (37) by yi}’(X) and

@37

yg(x) respectively, then subtracting one from the

other and using (30), nothing that the eigenvalues of
the problem are all real, we have

(HOMHORROIO)]

= %(Zﬂpik (x)+a, ()) (% () y; ()=, () v, (x))
= (220, (x)+0, 0))[y; () y; () =y, () y, ()]
+z(2ﬂ’pij (X)+qij (X))(y; (X) yi; (X)_ y: (X) y; (X))

k=i, j

=—(22p, (x)+a, (x))M, exp(=iaT () E, (“OGD

(38).
Similarly, from the equations in (10), denoting

g, (x.2)={y, (x)}; . we get
(v ()%, ()-v; ()’ (X))' =
_(2/1pij (x)+q, (x)) M, exp(-i(Ax-B(x)))E, (1+O(%D

(39).
Similarly, from the equations in (8), denoting

b (x2)={y COF . v g



The multiplicity of eigenvalues of a vectorial singular diffusion equations
with discontinuous conditions

EAJS, Vol. VI Issue Il

[31

(5 ()% ()~ %, (0¥ ()
N
=—(22p, (x)+4q, (x))[ cos” (ax) ]+0 (;j

When A is an eigenvalue with multiplicity m, we
have ¢ (7,A)=0_. By integrating both sides of
(38) from a, to z, for A — A and n— oo, we
obtain

(v )y (0-%; () (%) =
- i[_s“ (x)M, cos” (AT (x))E, (1+ ¢ Gjﬂdx

(41)
By integrating both sides of (39) froma, to a, and
applying the boundary condition

_(yi;' )y, () =y, (x)y, (X)) -
- omen an- e[ )

(42)
By integrating both sides of (40) fromO to a_ and

applying the boundary condition ¢/(0,4)=0_, we

obtain, for A, —» 4 and n —» o,

(% () v ()= v (9)¥ (%)) =
_HS” () cos’ ()] +oGﬂdx

Sum the above (41),(42)and (43), then use the

boundary conditions at point x =a, and x=a,, we
get

(43)

0- -z[s“ (x)[cos” (4x) ]+ O(%)}dx
T, 0L, o5 (ax-0) o
+I[_S” (x)[M2 cos” (AT (x))]]dx+o(%)

By a simple computation, we see that

}(Zﬂpij (x)+q, (x))dx + M:f(z/lpij (x)+q, (x))dx

T

+M2_‘.(2/1pij (x)+a, (x))dx

= —I [, (x)cos 22 Jdx

[ls, (0T, c0s2(ax - (x)) o

S EITEIEON 1 I
- 24 p, (x)cos(2x)dx— [ g, (x)cos(24x) dx
—qu p, (x)cos24xcos 23 (x dx

—qu” (x)cos 24xcos 28 (x )dx

—2/1M:f p, (x)22xsin 23 (x dx

—qu” (x)sin24sin 23 (x)dx

—2/1sz p, (x)cos22(2a, —2a, + x)cos 23 (x )dx
—quu (x)cos24(2a, —2a, + x)cos 23 ( x )dx
—2/1sz p, (x)sin 22 (2a, —2a, + x)sin 23 (x )dx

—szqij (x)sin24(2a, —2a, +x)sin 23 (x)dx

Then, we obtain, for 4, — o and n — oo,
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= —Zij p, (x)cos(22x)dx
—Zllep“(x)00322xc032ﬂ(x)h

—2/1MJ p, (x)22xsin 23 (x )dx
—2/1sz p, (x)cos24(2a, —2a, +x)cos 23 (x )dx

—ZﬂMZJ p, (x)sin24(2a, - 2a, +x)sin 28 (x )dx

By Riemann-Lebesgue Lemma, the right side of
(44) approaches 0 as A =4 and n—oo. This
implies that

} p, (x)dx + Mj p, (x)dx+ MZI p, (x)dx =0

}qij (x)dx + Ml]éqij (x)dx+ sz‘qij (x)dx=0

We have reached a contradiction. The conclusion for
this case is proved.

(ii) Next, we assume that

aw

I(Zﬂ p, (x)+q, (x))dx+ Mj(z/lpiJ (x)+a, (x))dx

+Mj(2&pn (x)+q,(x))dx=0

or

}sij (x)dx + M:fsij (x)dx+ Mjsij (x)dx =0,Vi # j
where s; (X)=(22p; (x)+ 0 (x)) and

][sii (x)-s, (x)Jax + M:‘:[Sn (x)-s, (x)]x
+M2:|i[5ii (x)=s, (x)jx =0

Without loss of generality, we assume that for
i=1j=2

i‘r[s11 (x)—s,, (x)]ox + Mj[s11 (x)—s,, (x)Jx

r

+M2J‘[s11 (x)-s, (x)Jdx =0

a

1

1

NI NP~

1
and y =T z. Then, the problem (1) —(7) becomes

z”+(/12 - R(x))z =0
2(0)=2'(r)=0
z(a,+0)=az(a -0)

7'(a, +0)=p17'(a -0)+ilyz(a -0)
z(a, +0)=a,z(a,-0)
7'(a,+0)=B,2'(a,-0)+idy,z(a, - 0)

where R(x)=T"S(x)T . By a simple computation,
we get

1
_(sll + SZZ)Jr le
2

1
_(SZZ _Sll) *
2

1 1
_(SZZ _Sll) _(Su+szz)+slz *
2 2

R(x)=
* * a,
* *
* *

We note that the two problems (1)—-(7)and (45)
have exactly the same spectral structure. Denote

R(x)={r, (x)} . Since
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qu (x)dx + Ml];ru(x)dx+ Mjr12 (x)dx =
]L[SM(X)—S22 (x)Jdx + Ml];[s11 (x)-s,, (x)Jx

+sz[[su(x)—s22 (x)Jax =0

By part (i), the conclusion of the theorem holds for
the problem (45), and hence holds for the problem
(1) = (7). The proof is completed.

4. Discussion

In this study vectorial singular diffusion
equations  with  discontinuous  conditions s
considered. Firstly, important definitions and lemmas
which are used frequently in characteristic function
and asymptotics of solutions of vectorial singular
diffusion equations with discontinuous conditions
operators are given. Finally, the theorem about
multiplicity of eigenvalues of a vectorial singular
diffusion equations with discontinuous conditions is
given and proved.

References

AGRANOVICH, Z.S.,, MARCHENCO, V.A,
(1963). The inverse problem of scattering
theory, Gordon and Breach Science Publisher,
New York-London,.

AMIROV, R.K., (2006). On Sturm-Liouville
operators with discontiniuity conditions inside
an interval, Journal of Mathematical Analysis
and Applications, 137, 163-176.

BELLMANN, R, (1970). Introduktion to matrix
analysis (2nd ed.) McGraw-Hill.

BOAS, R.P., (1954). Entire functions, Academic
press, New York,.

CARVENT, JM., DAVISON, W.D. (1969).
Oscillation  theory and  computational
procedures for matrix  Sturm-Liouville
eigenvalue problems with an application to the
hydrogen molecular ion, Journal of Physics A
Mathematical and General. (2) 278-292.

ERGUN, A., AMIROV, R.K, (2019). Direct and
Inverse problem for Diffusion operator with
Discontinuoity points, TWMS J. App. Eng.
Math. 9, 9-21.

GASYMOV, M.G., GUSEINOV, G.Sh, (1981).
Determination diffusion operator on spectral
data, SSSR Dokl. 37, 19-23.

GUSEINOV, G.Sh. (1985). On the spectral analysis
of a quadratic pencil of Sturm-Liouville
operators, Soviet Mathematics Doklayd. 32,
859-862.

KAUFFMAN, R.M., ZHANG, H.K, (2003). A class
of ordinary differential operators with jump
boundary conditions, Evolution equations,
Lecture notes in Pure and Appl. Math. 234,
253-274.

KONG, Q. (2002). Multiplicities of eigenvalues of a
vector-valued  Sturm-Liouville ~ Problem,
Mathematica. 49, (1-2), 119-127.

KOYUNBAKAN, H., PANAKHOV, E.S. (2007).
Half inverse problem for diffusion operators
on the finite interval, J. Math. Anal. Appl. 326,
1024-1030.

LEVITAN, B. M. (1984). Inverse Sturm-Liouville
Problems, Moscow: Nauka, (Engl.Transl.1987
(Utrecth: VNU Science Press).

LEVITAN, B.M., SARGSYAN, LS. (1975).
Introduction to Spectral Theory, Amer. Math.
Soc.

MARCHENCO, V.A., (1986). Sturm-Liouville
Operators and Applications. AMS: Chelsea
Publishing,

MUKHTAROV, O., YAKUBOV, S. (2002). Problem
for ordinary differential equations with
transmission conditions, Appl. Anal. 81, 1033-
1064.

MULLER, G. (1985). The reflectivity method: a
tutorial, J. Geophys. 58, 153-174.

SHEN, C. L., SHIEH, C. (1999). On the multiplicity
of eigenvalues of a vectorial Sturm-Liouville
differential equations and some related
spectral problems, Proc. Amer. Math. Soc.
127, 2943-2952.



34] A. Ergiin EAJS, Vol. VI Issue |1

TITCHMARSH, E.C. (1932). The Theory of
Functions, Oxford at the clarendon press,
London, 1932.

VAKANAS, L.P. (1994). A scattering parameter
based method for the transient analysis of
lossy coupled nonlinearly  terminated
transmission line systems in high-speed
microelectronic circuits. IEEE Transactions
on Components Packaging and Manufacturing
Technology Part B. 17, 472-479-

WANG, A.P., SUN, J.,, ZETTL, A. (2007). Two-
interval Sturm-Liouville operators in modified
Hilbert spaces, Journal of Mathematical
Analysis and Applications. 328, 390-399.

YANG, C.F., HUANG, Z.Y., YANG, X.P. (2007).
The multiplicity of spectra of a vectorial
Sturm-Liouville differential equation of
dimension two and some applications, Rock
Mountain Journal of Mathematics, 37 , 1379-
1398.

YURKO, V. A. (2007). Introduction to the Theory of
Inverse Spectral Problems. Russian: Fizmatlit.



