
Araştırma Makale/ Research Article

 URL: https://dergipark.org.tr/ij3dptdi

FORMATION OF HASH CODES BASED ON THE UMAC

ALGORITHM ON HYBRID CRYPTO-CODE

CONSTRUCTIONS OF McELICE ON DAMAGED CODES

Yazarlar (Authors): Alla HAVRYLOVA *

DOI:10.46519/ij3dptdi.744251

Bu makaleye şu şekilde atıfta bulunabilirsiniz (To cite to this article): Havrylova A.“
Formation Of Hash Codes Based On The Umac Algorithm On Hybrid Crypto-Code
Constructions Of Mcelice On Damaged Codes”, Int. J. of 3D Printing Tech. Dig. Ind., 4(2):
106-115, (2020).

Erişim Linki: (To link to this article): https://dergipark.org.tr/en/pub/ij3dptdi/archive

https://dergipark.org.tr/ij3dptdi
https://orcid.org/0000-0002-2015-8927
https://dergipark.org.tr/en/pub/ij3dptdi/archive

106

FORMATION OF HASH CODES BASED ON THE UMAC

ALGORITHM ON HYBRID CRYPTO-CODE CONSTRUCTIONS OF

McELICE ON DAMAGED CODES

Alla HAVRYLOVAa *

a*Simon Kuznets Kharkiv National University of Economics, Department of Cyber Security and Information

Technology, UKRAINE

*Corresponding Author: alla.gavrylova@hneu.net

(Received: 28.05.2020; Revised: 08.06.2020; Accepted: 24.07.2020)

ABSTRACT
A practical implementation of the improved UMAC algorithm on hybrid crypto-code constructions of

McEliece with damage was carried out in order to increase the cryptographic strength of hash codes in

post-quantum cryptography. The algorithm is based on the formation of a pseudo-random substrate at

the third level of hash code generation. The use of hybrid crypto-code constructions allows maintaining

the universality of the hash code. This contributes to an increase in the speed of the hash code generation,

which will lead to a quick search for information in large databases by hash identifiers. The proposed

approach makes it possible to generate MAC codes with various modifications in hybrid crypto-code

constructions, while providing the formation of authentication profiles of various strengths and lengths.

Keywords: UMAC hashing algorithm, McElice hybrid crypto code constructions, elliptic codes.

1. INTRODUCTION

An important direction in the development of post-quantum cryptography is the use of crypto-

code constructions [1, 2]. Their formation is based on the use of algebraic codes disguised as

the so-called random code [3]. They allow realizing fast cryptographic data transformations and

ensuring the reliability of transmitted data based on resistant to interference coding [4, 5].

Despite all the advantages, the use of crypto-code constructions in modern software and

hardware is hampered by their practical implementation with a given level of cryptographic

stability and resistance to attacks. At the same time, according to the experts of NIST (USA),

the use of these constructions when generating the message authentication code provides the

necessary level of protection and increases the level of cryptographic strength [6]. Therefore,

the expediency of approaches to the formation of a message authentication code in the form of

a crypto-code structure using an algorithm that increases the collision properties of hash codes

can be justified by the results of calculations and a comparison of the generated messages by

the sending and receiving parties.

2. MATERIAL AND METHOD

The development of computational capabilities, namely full-scale quantum computers, has jeopardized

the use of classical mechanisms not only for symmetric cryptography, public key cryptography

(including algorithms using the theory of elliptic curves), but also algorithms for providing

authentication services based on MDC and MAC codes, specialized hash functions [7, 8]. In such

conditions, an increase in the level of cryptographic stability can lead to an increase in the length of key

sequences and a decrease in the speed of cryptographic transformations.

In articles [9] and [10] practical algorithms for crypto-code constructions are considered, which provide

their practical implementation by reducing the power of the alphabet. Their use in the UMAC algorithm

provides the required level of cryptographic stability of the generated hash code and preserves the

universality of the entire message authentication code.

mailto:alla.gavrylova@hneu.net
https://orcid.org/0000-0002-2015-8927

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

107

The use of a pseudo-random underlay can help to increase resistance to collisions in the formation of

hash codes to the level of strict universality [11]. The results of the study, considered in article [11],

showed that the practical application of the formation of a pseudo-random substrate on elliptic curves

according to the McEliece scheme contributes both to an increase in the cryptographic strength of the

message authentication code implementation and to an increase in the speed of operations related to it.

The use of symmetric code-theoretic schemes on modified elliptic codes is based on algebraic codes,

which makes it possible to obtain analytical expressions connecting the parameters of modified elliptic

codes and symmetric crypto schemes.

When implementing the UMAC algorithm to form a pseudo-random substrate, it was proposed to use

the AES (Advanced Encryption Standard) block symmetric encryption algorithm [12]. But its use does

not guarantee the preservation of the universality property of the message authentication result code.

This leads to a deterioration in the collision properties of the UMAC algorithm. To eliminate this

drawback, it was proposed to use modular transformations, which are implemented by the asymmetric

RSA (Rivest, Shamir, Adleman) encryption algorithm [13]. This algorithm is based on elliptic curves

and the computational complexity of the factorization problem for large numbers. Using a quantum

computer, the discrete logarithm underlying the RSA algorithm can be computed in polynomial time.

This will mean the practical unsuitability of the cryptosystems formed on its basis for long-term data

protection. It was also proposed to form a pseudo-random substrate based on modular transformations

using the MASH-1 keyless algorithm [14]. But this algorithm in practice had temporary resistance and

was hacked. An alternative to it can be the MASH-2 keyless algorithm. Its use should lead to an increase

in the level of collision resistance, but it reduces the rate of formation of a pseudo-random substrate in

real time [15] due to the high computational complexity of the implementation of this algorithm.

Therefore, the task of this study is to calculate by calculation the equality of the generated hash codes

in the form of hybrid crypto-code constructions on the damaged McEliece codes when implementing

the UMAC algorithm on the sender and receiver sides to confirm the authentication of the transmitted

message.

3. EXPERIMENTAL RESULTS

3.1. Construction of a modified UMAC algorithm using McEliece's hybrid crypto-code constructs

for a shortened modified elliptic code

In articles [3] and [2], the mathematical model and block diagram of the hash code generation in the

UMAC algorithm were considered using a pseudo-random substrate that ensures the cryptographic

stability of the hash code. The use of various algebraic and multichannel cryptographic codes will allow

the formation of various lengths of the hash code and provide the required level of its cryptographic

strength. The main stages of creating a hash code are discussed in the article [1].

Let us consider an example of a practical implementation of the modified UMAC algorithm using a

hybrid crypto-code construction on harmed codes. Input data for calculations are as follows:

1) 1L IY – universal hash value (UHASH-hash) of the first level of hashing;

2) 3L IY – hash value (Carter-Wegman-hash) of the third level of hashing;

3) T – data block;

4) Blocklen – data block length (bytes);

5) K – secret key;

6) Keylen – secret key length (32 bytes);

7) Tag – integrity and authenticity control code;

8) 1L IK – secret key of the first level of hashing, consisting of subkeys K1, K2, …, Kn;

9) 3L IK – second-level hash secret key consisting of keys KL31 (subkeys K1, K2, …, Kn) and KL32

(subkeys K1, K2, …, Kn);

10) M – length of the transmitted plaintext array І;

11) 'K – pseudo random key sequence;

12) Numbyte – pseudo-random key sequence length (number of subkeys);

13) Index – subkey number;

14) І=11 – transmitted plaintext (k-bit information vector over GF (q));

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

108

15) Xor () – bitwise summation;

16) x3+y2z+yz2=0 – algebraic curve over the field GF (22);

17) e=00000200 – secret weight error vector
1

(e) t
2

− 
 =  

 
h

d
w ;

18)
1 2

3 0
X

 
=  
 

 – nondegenerate k × k matrix;

19)

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

P

 
 
 
 
 
 =
 
 
 
 
 
  

 – permutation matrix of size n×n;

20)

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D

 
 
 
 
 
 =
 
 
 
 
 
  

 – diagonal matrix equal 1;

21)
2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0
G

 
=  
 

 – generating matrix;

22) Taglen – the length of the integrity control code (authenticity) PadCx (4 bytes);

23) Nonce – unique number for input message I (8 bytes);

24) Numbyte – subkey length (equal to Keylen);

25) Index – subkey number (0);

26) Сx=23023322 – cryptogram;

27) 1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

P−

 
 
 
 
 
 =
 
 
 
 
 
  

– matrix inverse to the permutation matrix (since its

determinant is 1, then
1−P =

TP);

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

109

28) 1

1 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D−

 
 
 
 
 
 =
 
 
 
 
 
  

– the inverse of the diagonal matrix D – is a unipotent

matrix (a square matrix, all eigenvalues are 1), which

preserves the Hamming weight of the vector e;

29)
1 0 2

3 1
X −  

=  
 

– matrix inverse of a non-degenerate matrix X .

The points of the algebraic curve are shown in Table 1.

Table 1. Algebraic curve points.

 Р1 Р2 Р3 Р4 Р5 Р6 Р7 Р8 Р9

X 0 0 0 1 2 3 1 2 3

Y 1 0 1 2 2 2 3 3 3

Z 0 1 1 1 1 1 1 1 1

3.1.1. Generating a hash code in the UMAC algorithm

The creation of a hash code for an open message is performed in parallel with the generation of the

codogram, but we will describe the computational transformations in accordance with these steps in

order. In accordance with the block diagram of the iterative formation of Y, Pad and Tag for an open

message from the sender using the UMAC algorithm [16, 17], we distinguish the following calculation

stages.

1st layer formation

The value of the hash function of the first level UHASH-hash 1L IY is calculated by the formula Eq. (1):

()1 1 1 ,=L I L L IY Hash K I (1)

To form it 1L IK we represent it as a sequence of keys from four-byte blocks is calculated by Eq. (2-4):

1 1 2|| || ... ||=L I I I nIK K K K , (2)

where || - concatenation (connection) of strings corresponding to subkeys.

The amount of subkey data depends on the values Numbyte and Blocklen:

1024 16 3 1072
33,5 33

32 32

+  
= = = =  
 

Numbyte
n

Blocklen
1,2,...,33= =i . (3)

Since =iT Index i , then for the first level Index =1, => iT :

T1 = 1 || 1 = 00000001 000000001=>K1I

T2 = 1 || 2 = 00000001 000000010=> K2I

T3 = 1 || 3 = 00000001 000000011=> K3I

T4 = 1 || 4 = 00000001 000000100=> K4I

T5 = 1 || 5 = 00000001 000000101=> K5I

T6 = 1 || 6 = 00000001 000000110=> K6I

T7 = 1 || 7 = 00000001 000000111=> K7I

T8 = 1 || 8 = 00000001 000001000=> K8I

T9 = 1 || 9 = 00000001 000001001=> K9I

T17 = 1 || 17 = 00000001 00010001=>K17I

T18 = 1 || 18 = 00000001 00010010=> K18I

T19 = 1 || 19 = 00000001 00010011=> K19I

T20 = 1 || 20 = 00000001 00010100=> K20I

T21 = 1 || 21 = 00000001 00010101=> K21I

T22 = 1 || 22 = 00000001 00010110 => K22I

T23 = 1 || 23 = 00000001 00010111 => K23I

T24 = 1 || 24 = 00000001 00011000 => K24I

T25 = 1 || 25 = 00000001 00011001=> K25I (4)

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

110

T10 = 1 || 10 = 00000001 00001010=> K10I

T11 = 1 || 11 = 00000001 00001011=> K11I

T12 = 1 || 12 = 00000001 00001100=> K12I

T13 = 1 || 13 = 00000001 00001101=> K13I

T14 = 1 || 14 = 00000001 00001110=> K14I

T15 = 1 || 15 = 00000001 00001111=> K15I

T16 = 1 || 16 = 00000001 00010000=> K16I

T26 = 1 || 26 = 00000001 00011010 => K26I

T27 = 1 || 27 = 00000001 00011011=> K27I

T28 = 1 || 28 = 00000001 00011100 => K28I

T29 = 1 || 29 = 00000001 00011101=> K29I

T30 = 1 || 30 = 00000001 00011110=> K30I

T31 = 1 || 31 = 00000001 00011111 => K31I

T32 = 1 || 32 = 00000001 00100000=> K32I

T33 = 1 || 33 = 00000001 00100001=> K33I

Based on the length M of the input message (M = 3 bytes), the number of blocks is T = 1, so the number

of subkeys at this level is the same, and 1 1 0000000100000001= =L IK T .

The hash values for this layer are calculated using the following formula Eq. (5):

1 1() mod 32= +L I L IY I K = (0100110+10000001) mod32 = 111 (5)

2nd layer formation

Since the length of M is less than 1024 bytes, this level of hashing will not be performed, but calculations

will need to be performed using a third level hash code.

3rd layer formation

The number of subkeys 31LK and 32LK also depends on the values Numbyte and Blocklen.

The number of subkeys for 31L IK (Eq. (6-11))

64 4
8

32

 
= = = 
 

Numbyte
n

Blocklen
 1,2,3,4,5,6,7,8= =i (6)

Therefore, to form it 31L IK , we represent it as a sequence of keys of eight four-byte blocks:

31 1 2 3 4 5 6 7 8|| || || || || || ||=L I I I I I I I I IK K K K K K K K K (7)

For the third level Index =3, => iT :

T1 = 3 || 1 = 00000011 00000001 => K1I

T2 = 3 || 2 = 00000011 00000010 => K2I

T3 = 3 || 3 = 00000011 00000011 => K3I

T4 = 3 || 4 = 00000011 00000100 => K4I

T5 = 3 || 5 = 00000011 00000101 => K5I

T6 = 3 || 6 = 00000011 00000110 => K6I (8)

T7 = 3 || 7 = 00000011 00000111 => K7I

T8 = 3 || 8 = 00000011 00001000 => K8I

The number of subkeys for 32L IK :

4 4
0,5 1

32

 
= = =  
 

Numbyte
n

Blocklen
1= =i (9)

To form it 32L IK , we represent it as a sequence of keys from 1 four-byte subblock, (32 1=L I IK K)

For the third level Index=4, => iT :

iT = 4 || 1 = 00000100 00000001 => 1IK (10)

The hash value of the third layer is calculated using the following formula:

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

111

36 32

3 1 32

36 32
1 32

((mod(2 5))mod 2)

(()mod32)mod(2 5))mod 2)

= − =

+ −

L I L I L I

I L I

Y Y xorY

I K xorY
 (11)

36 32
3 ((11mod(2 5))mod2) 00000100 00000001 10000000010= − =L IY xor

3.1.2. Formation of a cryptogram of an open message

1) The recipient generates a public key, which in the McEliece cryptosystem is matrices (Eq. (12-16)):

=   MEC EC
XG X G P D (12)

2 1 3 0 1 1 1 0

0 2 2 2 2 0 3 2

MEC
XG

 
=  
 

 (13)

2) The cryptogram (codogram) formed from the information message I is a vector of length n, which is

calculated by the following formula:

* =  MEC
X XC I G e , (14)

where the vector  MEC
XI G – is the codeword of the masked code, that is, it belongs to the (n, k, d)-code

with the generating matrix; vector e – one-time secret session key.

* 23023322XC = (15)

3) We form the initialization vector IV = 00100000 for the recipient and the sender. This vector shows

the location of the code sequence cut:

*
XC = 2323322 (16)

4) Damage to the original text based on its transformation is shown in Table 2.

 Table 2. Damage.

Word (shuffled) Residue length С(х) F(x)

000 2 00 1

001 2 01 1

010 2 10 1

011 2 11 1

100 2 00 0

101 2 01 0

110 2 10 0

111 2 11 0

Original text (word): *
хC = 232332210 = 010 011 000 010 011 011 010 0102.

5) The message with damage (flag) will be sent via the first channel to the recipient, the damaged code

(remainder) will be sent via the second channel to the recipient.

Got, that *
хC = 10110010111110102

Convert the given value to decimal representation: 4581810 – we send to the first channel.

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

112

Got, that checkbox F(x)=111111112.

Convert the given value to decimal representation: 25510 – we send to the second channel.

3.1.3. Generating a pseudo-random pad (Pad) using the PDF function

To ensure the cryptographic stability of the UMAC algorithm at the stability level of the used

cryptographic algorithm, we form a pseudo-random block Pad from Cx to I using the PDF function (Eq.

(17-19)):

(, ,)Pad PDF K Nonce Taglen=
 (17)

In accordance with the procedure for forming a pseudo-random pad Pad for I, it is necessary to generate

the next subkey, represented as the KDF function:

(, ,) =K KDF K Index Numbyte (18)

(0106,0, 4) =K KDF

Pseudo-random pad Pad will take the form:

(0106,8,4) 1101010= =Pad PDF (19)

As a result of the formation of the substrate, its various parts can be used as an additional initialization

vector.

3.1.4. Generating a validity code for a forwarded message

Generation of authentication codes of the received message is possible by the Eq. (20-23):

()

3

, , , (, ,)

(, ,)

= = 

 = L M

UMAC K I Nonce Taglen Hash K I Taglen

PDF K Nonce Tagl

Tag

en Y Pad
 (20)

10000000010 1101010 10001101100=  =Tag (21)

To form a summary code of the authenticity of the transmitted text, we will use the found value of the

hash code 3L MY and the authentication Tag code of the plaintext sender code:

3= L MY Y Tag (22)

1010000000010 10001101100 1101110 110=  = =Y (23)

3.2. Decrypting a received message

1) Recovering the received text

The values obtained from the two channels are converted into a binary number system by the Eq. (24-

36):

*
хC = 4581810 = 10110010111110102 (24)

F(x) = 25510 = 111111112 (25)

2) Damage recovery

Using Table 2, we get the codeword:

*
хC = 010 011 000 010 011 011 010 0102= 232332210 (26)

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

113

3) To recover the closed text, the receiver adds null information characters at the location specified by

the initialization vector IV:

*
хC = 2323322 → 23023322 (27)

4) Remove the action of the secret permutation and diagonal matrices from the restored closed text Cx:

* 1 1− −=  х хC С D P (28)

*
хC = 22102221

5) Find the syndrome and the error locator polynomial by the formula:

*= 
TEC

хS C H (29)

We get the syndrome:

S00= 1

S10= 2+1+2+3+3=1

S01= 2+3+3+1+1+3=1

S20= 2+3+2+1+2=0 (30)

S11= 3+2+1+2+2=0

S02= 2+1+1+3+3+2=0

S = (1,1,1,0,0,0);

Finding the error locator polynomial  (х) = а00+а10х+у = 0

00 10

10 20

S S

S S

 
 
  

×
00

01

a

a

 
 
  

=
01

11

S

S

 
 
  

 =
1 1 1

1 0 0

 
 
 

 а00=0; а10=1; (31)

 (ху) = х+у= 0 – polynomial locator error

6) Finding error locators according to Chen's procedure:

Р1 (0,0,1)  (х,у) =0+0=0 – error

Р2 (0,1,1)  (х,у) =0+1=1

Р3 (1,2,1)  (х,у) =1+2=3

Р4 (2,2,1)  (х,у) =2+2=0 – error (32)

Р5 (3,2,1)  (х,у) =3+2=1

Р6 (1,3,1)  (х,у) =1+3=2

Р7 (2,3,1)  (х,у) =2+3=1

Р8 (3,3,1)  (х,у) =3+3=0 – error

е*= е100е4000е8 , knowing that: е*
TECH = S, and solving the system of equations, we get: е1 =0, е4

= 2, е8 =3

е*=00020003 (33)

Find i* = e*+
*

хC (34)

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

114

i* = 00020003 22102221 = 22; (35)

7) Find the transmitted message:

i = i*X-1, i = 11. (36)

Hence, the messages that were sent and received are the same. This means that no changes were made

to them during the transfer. You also need to check if the sender's address is correct. To do this, we

proceed to the implementation of paragraph. 3.3.

3.3. Checking the hash code on the receiving side using the UMAC algorithm

The next stage of the research is to verify the verification of the hash codes generated by the recipient

and the sender of the authentication code of the sent message. For this, the authorized user (recipient)

generates in accordance with paragraphs 3.1.1 – 3.1.4 a hash code from the message authentication code

received from the sender. Verification is carried out by comparing received from the sender and

generated by the recipient hash codes. If they match, the decision is made that the plaintext received

through the open channel has not changed.

4. CONCLUSION

According to the results of the study, the cryptographic layer of the formation of message authentication

codes both at the level of the transmitted cryptogram and at the level of the pseudo-random substrate

satisfies the properties of universal hashing. The probability of a collision of the generated hash images

does not exceed a given value. However, the provision of these requirements for the formation of hash

codes is possible in the case of using the keyless modular transformation algorithm MASH-2. Therefore,

the use of algorithms for the formation of hash codes and their verification on hybrid crypto-code

constructions of McEliece with causing damage makes it possible to fulfill the universality condition,

first of all, by increasing the level of cryptographic strength of the generated hash code of an open

message transmitted over open telecommunication channels. Therefore, in the future, it is necessary to

analyze the software implementation of the proposed algorithm to determine the speed level of the

resulting hash codes and the probability of collisions.

REFERENCES
1. Korol, Olha, Havrylova, Alla and Yevseiev Serhii, “Practical UMAC algorithms based on crypto code

designsˮ, Przetwarzanie, transmisja I bezpieczenstwo informacji, Tom 2, Pages 221 – 232, Bielsko-Biala:

Wydawnictwo naukowe Akademii Techniczno-Humanistycznej w Bielsku-Bialej, 2019.

2. Король, Ольга и Гаврилова, Алла, “Реализация алгоритма UMAC на крипто-кодовых конструкцияхˮ,

M.Sc. thesis, [Implementation of the UMAC algorithm on crypto-code constructions], [Thesis in Ukraine],

Національний авіаційний університет, Kiev, 2020.

3. Гаврилова, А.A., “Применение алгоритма UMAC на крипто-кодовых конструкциях в блокчейн-

технологияхˮ, [Application of the UMAC algorithm on crypto-code constructions in blockchain

technologies], [article in Ukraine], Науковий журнал “ScienceRiseˮ, Issue 12(65), Pages 20 – 23, 2019.

4. Korol, O.G., Yevseiev, S.P. and Dorokhov, A.V., “Mechanisms and protocols for protecting information in

computer networks and systemsˮ, Scientific Journal of the Ministry of Defense of Republic of Serbia.

Military Technical Gazette, Belgrade, Issue 4, Pages 15 – 30, 2011.

5. Yevseiev, Serhii and Havrylova, Alla, “Improved UMAC algorithm with crypto-code mceliece’s schemeˮ,

Modern Problems Of Computer Science And IT-Education: collective monograph, Pages 79 – 92, Premier

Publishing s.r.o., Vienna, 2020.

6. Hryshchuk, R., Yevseiev, S. and Shmatko, A., “Construction methodology of information security system of

banking information in automated banking systems: monographˮ, Pages 134 – 156, Premier Publishing s. r.

o., Vienna, 2018.

Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 4(2) (2020) 106-115

115

7. Wegman, M.N. and Carter, J.L., “New hash functions and their use in authentication and set equalityˮ,

Journal of Computer and System Scince, Issue 22, Pages 265 – 279, 1981.

8. Regenscheid, Andrew, Perlner, Ray, Chang, Shu-jen, Kelsey, John, Nandi, Mridul and Souradyuti, Paul,

“Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm Competitionˮ,

http://www.nist.gov/index.html, March 3, 2005.

9. Korol, O.G. and Yevseiev, S.P., “The method of universal hashing on the basis of modular transformations,

Information processing systemsˮ, Information Technology and Computer Engineering, Issue 7(97), Pages

131 – 132, 2011.

10. Chung-Wei Phan Raphael, “Mini Advanced Encryption Standard (Mini-AES): A testbed for Cryptanalysis

Studentsˮ, Cryptologia, Issue 26(4), Pages 283 – 306, 2002.

11. Korol, O.G. and Yevseiev, S.P., “Results of the statistical test security hash algorithms-candidates tender to

select standard hash algorithm SHA-3ˮ, News of higher technical educational institutions of Azerbaijan, Issue

2, Pages 73 – 78, 2012.

12. Yeseiev, S., “The use of flawed codes in crypto-code systems”, Information processing systems, Issue 5(151),

Pages 109 – 121, 2017.

13. Yevseiev, S.P., Korol, О.H., and Ogurtsov, V.V., “Усовершенствованный алгоритм UMAC на основе

модулярных преобразований” [Enhanced UMAC Modular Transformation Algorithm], Восточно-

европейский журнал передовых технологий, Issue 1/9 (67), Pages 16 – 23, 2014.

14. Yevseiev, S.P., Ostapov, S.E. and Korolev, R.V., “Use of mini-versions for evaluation of the stability of

block-symmetric ciphersˮ, Scientific and Technical Journal “Information Securityˮ, Vol. 23, Issue 2, Pages

100 – 108, 2017.

15. Yevseiev, S. and Bilodid, I., “The use of unprofitable codes in hybrid crypto-code designsˮ, Fifth

International Scientific and Technical Conference “Problems of Informatizationˮ, Page 11, Cherkasy – Baku

– Bielsko-Biala – Poltava, 2017.

16. Yevseiev, S.P., Yokhov, O.Y. and Korol, O.G., “Data Gaining in Information Systems: monographˮ. pub.

KhNUE, Pages 213, Kharkiv, 2013.

17. Yevseiev, S., Rzayev, H. and Tsyganenko, A., “Analysis of the software implementation of direct and inverse

transformations using the non-binary balanced coding method”, Science and Technology Journal “Security

Without Information”, Vol. 22, Issue 2, Pages 196 – 203, 2016.

http://www.nist.gov/index.html

