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ABSTRACT 
A practical implementation of the improved UMAC algorithm on hybrid crypto-code constructions of 

McEliece with damage was carried out in order to increase the cryptographic strength of hash codes in 

post-quantum cryptography. The algorithm is based on the formation of a pseudo-random substrate at 

the third level of hash code generation. The use of hybrid crypto-code constructions allows maintaining 

the universality of the hash code. This contributes to an increase in the speed of the hash code generation, 

which will lead to a quick search for information in large databases by hash identifiers. The proposed 

approach makes it possible to generate MAC codes with various modifications in hybrid crypto-code 

constructions, while providing the formation of authentication profiles of various strengths and lengths. 

 

Keywords: UMAC hashing algorithm, McElice hybrid crypto code constructions, elliptic codes. 

 

1. INTRODUCTION 

An important direction in the development of post-quantum cryptography is the use of crypto-

code constructions [1, 2]. Their formation is based on the use of algebraic codes disguised as 

the so-called random code [3]. They allow realizing fast cryptographic data transformations and 

ensuring the reliability of transmitted data based on resistant to interference coding [4, 5]. 

Despite all the advantages, the use of crypto-code constructions in modern software and 

hardware is hampered by their practical implementation with a given level of cryptographic 

stability and resistance to attacks. At the same time, according to the experts of NIST (USA), 

the use of these constructions when generating the message authentication code provides the 

necessary level of protection and increases the level of cryptographic strength [6]. Therefore, 

the expediency of approaches to the formation of a message authentication code in the form of 

a crypto-code structure using an algorithm that increases the collision properties of hash codes 

can be justified by the results of calculations and a comparison of the generated messages by 

the sending and receiving parties. 
 

2. MATERIAL AND METHOD 

The development of computational capabilities, namely full-scale quantum computers, has jeopardized 

the use of classical mechanisms not only for symmetric cryptography, public key cryptography 

(including algorithms using the theory of elliptic curves), but also algorithms for providing 

authentication services based on MDC and MAC codes, specialized hash functions [7, 8]. In such 

conditions, an increase in the level of cryptographic stability can lead to an increase in the length of key 

sequences and a decrease in the speed of cryptographic transformations. 

 

In articles [9] and [10] practical algorithms for crypto-code constructions are considered, which provide 

their practical implementation by reducing the power of the alphabet. Their use in the UMAC algorithm 

provides the required level of cryptographic stability of the generated hash code and preserves the 

universality of the entire message authentication code. 
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The use of a pseudo-random underlay can help to increase resistance to collisions in the formation of 

hash codes to the level of strict universality [11]. The results of the study, considered in article [11], 

showed that the practical application of the formation of a pseudo-random substrate on elliptic curves 

according to the McEliece scheme contributes both to an increase in the cryptographic strength of the 

message authentication code implementation and to an increase in the speed of operations related to it. 

The use of symmetric code-theoretic schemes on modified elliptic codes is based on algebraic codes, 

which makes it possible to obtain analytical expressions connecting the parameters of modified elliptic 

codes and symmetric crypto schemes. 

 

When implementing the UMAC algorithm to form a pseudo-random substrate, it was proposed to use 

the AES (Advanced Encryption Standard) block symmetric encryption algorithm [12]. But its use does 

not guarantee the preservation of the universality property of the message authentication result code. 

This leads to a deterioration in the collision properties of the UMAC algorithm. To eliminate this 

drawback, it was proposed to use modular transformations, which are implemented by the asymmetric 

RSA (Rivest, Shamir, Adleman) encryption algorithm [13]. This algorithm is based on elliptic curves 

and the computational complexity of the factorization problem for large numbers. Using a quantum 

computer, the discrete logarithm underlying the RSA algorithm can be computed in polynomial time. 

This will mean the practical unsuitability of the cryptosystems formed on its basis for long-term data 

protection. It was also proposed to form a pseudo-random substrate based on modular transformations 

using the MASH-1 keyless algorithm [14]. But this algorithm in practice had temporary resistance and 

was hacked. An alternative to it can be the MASH-2 keyless algorithm. Its use should lead to an increase 

in the level of collision resistance, but it reduces the rate of formation of a pseudo-random substrate in 

real time [15] due to the high computational complexity of the implementation of this algorithm. 

Therefore, the task of this study is to calculate by calculation the equality of the generated hash codes 

in the form of hybrid crypto-code constructions on the damaged McEliece codes when implementing 

the UMAC algorithm on the sender and receiver sides to confirm the authentication of the transmitted 

message. 

 

3. EXPERIMENTAL RESULTS  

3.1. Construction of a modified UMAC algorithm using McEliece's hybrid crypto-code constructs 

for a shortened modified elliptic code 

In articles [3] and [2], the mathematical model and block diagram of the hash code generation in the 

UMAC algorithm were considered using a pseudo-random substrate that ensures the cryptographic 

stability of the hash code. The use of various algebraic and multichannel cryptographic codes will allow 

the formation of various lengths of the hash code and provide the required level of its cryptographic 

strength. The main stages of creating a hash code are discussed in the article [1]. 

Let us consider an example of a practical implementation of the modified UMAC algorithm using a 

hybrid crypto-code construction on harmed codes. Input data for calculations are as follows: 

1) 1L IY  – universal hash value (UHASH-hash) of the first level of hashing; 

2) 3L IY  – hash value (Carter-Wegman-hash) of the third level of hashing; 

3) T – data block; 

4) Blocklen – data block length (bytes); 

5) K – secret key; 

6) Keylen – secret key length (32 bytes); 

7) Tag – integrity and authenticity control code; 

8) 1L IK – secret key of the first level of hashing, consisting of subkeys K1, K2, …, Kn; 

9) 3L IK – second-level hash secret key consisting of keys KL31 (subkeys K1, K2, …, Kn) and KL32 

(subkeys K1, K2, …, Kn); 

10) M  – length of the transmitted plaintext array І; 

11) 'K  – pseudo random key sequence; 

12) Numbyte – pseudo-random key sequence length (number of subkeys); 

13) Index – subkey number; 

14) І=11 – transmitted plaintext (k-bit information vector over GF (q)); 
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15) Xor ( ) – bitwise summation; 

16) x3+y2z+yz2=0 – algebraic curve over the field GF (22); 

17) e=00000200 – secret weight error vector 
1

(e) t
2

− 
 =  

 
h

d
w ; 

18) 
1 2

3 0
X

 
=  
 

 – nondegenerate k × k matrix; 

19) 

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

P

 
 
 
 
 
 =
 
 
 
 
 
  

 – permutation matrix of size n×n; 

20) 

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D

 
 
 
 
 
 =
 
 
 
 
 
  

 – diagonal matrix equal 1; 

21) 
2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0
G

 
=  
 

 – generating matrix; 

22) Taglen – the length of the integrity control code (authenticity) PadCx (4 bytes); 

23) Nonce – unique number for input message I (8 bytes); 

24) Numbyte – subkey length (equal to Keylen); 

25) Index – subkey number (0); 

26) Сx=23023322 – cryptogram; 

27) 1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

P−

 
 
 
 
 
 =
 
 
 
 
 
  

  
– matrix inverse to the permutation matrix (since its 

determinant is 1, then 
1−P =

TP ); 
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28) 1

1 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D−

 
 
 
 
 
 =
 
 
 
 
 
  

  
– the inverse of the diagonal matrix D – is a unipotent 

matrix (a square matrix, all eigenvalues are 1), which 

preserves the Hamming weight of the vector e; 

29) 
1 0 2

3 1
X −  

=  
 

– matrix inverse of a non-degenerate matrix X . 

 

The points of the algebraic curve are shown in Table 1. 

Table 1. Algebraic curve points. 

 Р1 Р2 Р3 Р4 Р5 Р6 Р7 Р8 Р9 

X 0 0 0 1 2 3 1 2 3 

Y 1 0 1 2 2 2 3 3 3 

Z 0 1 1 1 1 1 1 1 1 

 

3.1.1. Generating a hash code in the UMAC algorithm 

The creation of a hash code for an open message is performed in parallel with the generation of the 

codogram, but we will describe the computational transformations in accordance with these steps in 

order. In accordance with the block diagram of the iterative formation of Y, Pad and Tag for an open 

message from the sender using the UMAC algorithm [16, 17], we distinguish the following calculation 

stages. 

1st layer formation 

The value of the hash function of the first level UHASH-hash 1L IY  is calculated by the formula Eq. (1): 
 

( )1 1 1 ,=L I L L IY Hash K I               (1) 

 

To form it 1L IK  we represent it as a sequence of keys from four-byte blocks is calculated by Eq. (2-4):  
 

1 1 2|| || ... ||=L I I I nIK K K K ,                                      (2)

   

where || - concatenation (connection) of strings corresponding to subkeys. 
 

The amount of subkey data depends on the values Numbyte  and Blocklen: 
 

1024 16 3 1072
33,5 33

32 32

+  
= = = =  
 

Numbyte
n

Blocklen
1,2,...,33= =i .         (3) 

 

Since =iT Index i , then for the first level Index =1, => iT : 
 

T1 = 1 || 1 = 00000001 000000001=>K1I 

T2 = 1 || 2 = 00000001 000000010=> K2I 

T3 = 1 || 3 = 00000001 000000011=> K3I 

T4 = 1 || 4 = 00000001 000000100=> K4I 

T5 = 1 || 5 = 00000001 000000101=> K5I 

T6 = 1 || 6 = 00000001 000000110=> K6I 

T7 = 1 || 7 = 00000001 000000111=> K7I 

T8 = 1 || 8 = 00000001 000001000=> K8I 

T9 = 1 || 9 = 00000001 000001001=> K9I 

T17 = 1 || 17 = 00000001 00010001=>K17I 

T18 = 1 || 18 = 00000001 00010010=> K18I 

T19 = 1 || 19 = 00000001 00010011=> K19I 

T20 = 1 || 20 = 00000001 00010100=> K20I 

T21 = 1 || 21 = 00000001 00010101=> K21I 

T22 = 1 || 22 = 00000001 00010110 => K22I 

T23 = 1 || 23 = 00000001 00010111 => K23I 

T24 = 1 || 24 = 00000001 00011000 => K24I 

T25 = 1 || 25 = 00000001 00011001=> K25I                          (4)       



Havrylova/NTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY  4(2) (2020) 106-115 

110 
 

T10 = 1 || 10 = 00000001 00001010=> K10I 

T11 = 1 || 11 = 00000001 00001011=> K11I 

T12 = 1 || 12 = 00000001 00001100=> K12I 

T13 = 1 || 13 = 00000001 00001101=> K13I 

T14 = 1 || 14 = 00000001 00001110=> K14I 

T15 = 1 || 15 = 00000001 00001111=> K15I 

T16 = 1 || 16 = 00000001 00010000=> K16I 

 

T26 = 1 || 26 = 00000001 00011010 => K26I 

T27 = 1 || 27 = 00000001 00011011=> K27I 

T28 = 1 || 28 = 00000001 00011100 => K28I 

T29 = 1 || 29 = 00000001 00011101=> K29I 

T30 = 1 || 30 = 00000001 00011110=> K30I 

T31 = 1 || 31 = 00000001 00011111 => K31I 

T32 = 1 || 32 = 00000001 00100000=> K32I 

T33 = 1 || 33 = 00000001 00100001=> K33I 

  

 

Based on the length M of the input message (M = 3 bytes), the number of blocks is T = 1, so the number 

of subkeys at this level is the same, and 1 1 0000000100000001= =L IK T . 

The hash values for this layer are calculated using the following formula Eq. (5): 

 

1 1( ) mod 32= +L I L IY I K = (0100110+10000001) mod32 = 111          (5) 

 

2nd layer formation 

Since the length of M is less than 1024 bytes, this level of hashing will not be performed, but calculations 

will need to be performed using a third level hash code. 

 

3rd layer formation 

The number of subkeys 31LK  and 32LK  also depends on the values Numbyte  and Blocklen. 

The number of subkeys for 31L IK  (Eq. (6-11)) 

 

64 4
8

32

 
= = = 
 

Numbyte
n

Blocklen
 1,2,3,4,5,6,7,8= =i            (6) 

 

Therefore, to form it 31L IK , we represent it as a sequence of keys of eight four-byte blocks: 

 

31 1 2 3 4 5 6 7 8|| || || || || || ||=L I I I I I I I I IK K K K K K K K K            (7) 

 

For the third level Index =3, => iT : 

 

T1 = 3 || 1 = 00000011 00000001 => K1I 

T2 = 3 || 2 = 00000011 00000010 => K2I 

T3 = 3 || 3 = 00000011 00000011 => K3I 

T4 = 3 || 4 = 00000011 00000100 => K4I 

T5 = 3 || 5 = 00000011 00000101 => K5I 

T6 = 3 || 6 = 00000011 00000110 => K6I                (8) 

T7 = 3 || 7 = 00000011 00000111 => K7I 

T8 = 3 || 8 = 00000011 00001000 => K8I 

 

The number of subkeys for 32L IK : 

 

4 4
0,5 1

32

 
= = =  
 

Numbyte
n

Blocklen
1= =i            (9) 

 

To form it 32L IK , we represent it as a sequence of keys from 1 four-byte subblock, ( 32 1=L I IK K ) 

 

For the third level Index=4, => iT : 

 

iT  = 4 || 1 = 00000100 00000001 => 1IK            (10) 

 

The hash value of the third layer is calculated using the following formula: 
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36 32

3 1 32

36 32
1 32

(( mod(2 5))mod 2 )

(( )mod32)mod(2 5))mod 2 )

= − =

+ −

L I L I L I

I L I

Y Y xorY

I K xorY
         (11) 

36 32
3 ((11mod(2 5))mod2 ) 00000100 00000001 10000000010= − =L IY xor   

 

3.1.2. Formation of a cryptogram of an open message 

1) The recipient generates a public key, which in the McEliece cryptosystem is matrices (Eq. (12-16)): 

 

=   MEC EC
XG X G P D             (12) 

2 1 3 0 1 1 1 0

0 2 2 2 2 0 3 2

MEC
XG

 
=  
 

           (13) 

2) The cryptogram (codogram) formed from the information message I is a vector of length n, which is 

calculated by the following formula: 

 
* =  MEC
X XC I G e ,             (14) 

 

where the vector  MEC
XI G  – is the codeword of the masked code, that is, it belongs to the (n, k, d)-code 

with the generating matrix; vector e – one-time secret session key. 

 
* 23023322XC =              (15) 

 

3) We form the initialization vector IV = 00100000 for the recipient and the sender. This vector shows 

the location of the code sequence cut: 

 
*
XC  = 2323322              (16) 

 

4) Damage to the original text based on its transformation is shown in Table 2. 
 

                           Table 2. Damage. 

Word (shuffled) Residue length С(х) F(x) 

000 2 00 1 

001 2 01 1 

010 2 10 1 

011 2 11 1 

100 2 00 0 

101 2 01 0 

110 2 10 0 

111 2 11 0 

 

Original text (word): *
хC = 232332210 = 010 011 000 010 011 011 010 0102. 

 

5) The message with damage (flag) will be sent via the first channel to the recipient, the damaged code 

(remainder) will be sent via the second channel to the recipient. 

Got, that *
хC = 10110010111110102  

Convert the given value to decimal representation: 4581810 – we send to the first channel. 
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Got, that checkbox F(x)=111111112. 

Convert the given value to decimal representation: 25510 – we send to the second channel. 

 

3.1.3. Generating a pseudo-random pad ( Pad ) using the PDF function 

To ensure the cryptographic stability of the UMAC algorithm at the stability level of the used 

cryptographic algorithm, we form a pseudo-random block Pad from Cx to I using the PDF function (Eq. 

(17-19)): 

 

( , , )Pad PDF K Nonce Taglen=
            (17) 

 

In accordance with the procedure for forming a pseudo-random pad Pad  for I, it is necessary to generate 

the next subkey, represented as the KDF function: 

 

( , , ) =K KDF K Index Numbyte             (18) 

(0106,0, 4) =K KDF  

 

Pseudo-random pad Pad  will take the form: 

 

(0106,8,4) 1101010= =Pad PDF            (19)

          

As a result of the formation of the substrate, its various parts can be used as an additional initialization 

vector. 
 

3.1.4. Generating a validity code for a forwarded message 

Generation of authentication codes of the received message is possible by the Eq. (20-23): 

 

( )

3

, , , ( , , )

( , , )

= = 

 = L M

UMAC K I Nonce Taglen Hash K I Taglen

PDF K Nonce Tagl

Tag

en Y Pad
        (20) 

10000000010 1101010 10001101100=  =Tag          (21) 

 

To form a summary code of the authenticity of the transmitted text, we will use the found value of the 

hash code 3L MY  and the authentication Tag  code of the plaintext sender code: 

 

3= L MY Y Tag              (22) 

1010000000010 10001101100 1101110 110=  = =Y          (23) 

 

3.2. Decrypting a received message 

1) Recovering the received text 

The values obtained from the two channels are converted into a binary number system by the Eq. (24-

36): 

 
*
хC = 4581810 = 10110010111110102             (24) 

F(x) = 25510 = 111111112             (25) 

 

2) Damage recovery 

Using Table 2, we get the codeword: 

 
*
хC  = 010 011 000 010 011 011 010 0102= 232332210           (26) 
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3) To recover the closed text, the receiver adds null information characters at the location specified by 

the initialization vector IV: 

 
*
хC   = 2323322 → 23023322            (27) 

 

4) Remove the action of the secret permutation and diagonal matrices from the restored closed text Cx: 

 
* 1 1− −=  х хC С D P              (28) 

*
хC  = 22102221           

 

5) Find the syndrome and the error locator polynomial by the formula: 

 

*= 
TEC

хS C H               (29) 

 

We get the syndrome: 

S00= 1 

S10= 2+1+2+3+3=1 

S01= 2+3+3+1+1+3=1 

S20= 2+3+2+1+2=0             (30) 

S11= 3+2+1+2+2=0 

S02= 2+1+1+3+3+2=0 

S = (1,1,1,0,0,0); 

 

Finding the error locator polynomial  (х) = а00+а10х+у = 0 

 

00 10

10 20

S S

S S

 
 
  

×
00

01

a

a

 
 
  

=
01

11

S

S

 
 
  

 = 
1 1 1

1 0 0

 
 
 

          а00=0;    а10=1;                   (31)

  

 

 (ху) = х+у= 0 – polynomial locator error 
 

6) Finding error locators according to Chen's procedure: 
 

Р1 (0,0,1)  (х,у) =0+0=0 – error 

Р2 (0,1,1)  (х,у) =0+1=1 

Р3 (1,2,1)  (х,у) =1+2=3 

Р4 (2,2,1)  (х,у) =2+2=0 – error           (32) 

Р5 (3,2,1)  (х,у) =3+2=1 

Р6 (1,3,1)  (х,у) =1+3=2 

Р7 (2,3,1)  (х,у) =2+3=1 

Р8 (3,3,1)  (х,у) =3+3=0 – error 

 

е*= е100е4000е8 , knowing that: е*
TECH = S, and solving the system of equations, we get: е1 =0, е4 

= 2, е8 =3 

 

е*=00020003              (33) 

 

Find i* = e*+
*

хC                 (34) 
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i* = 00020003 22102221 = 22;           (35) 

 

7) Find the transmitted message: 

 

i = i*X-1, i = 11.             (36) 

 

Hence, the messages that were sent and received are the same. This means that no changes were made 

to them during the transfer. You also need to check if the sender's address is correct. To do this, we 

proceed to the implementation of paragraph. 3.3.  

 

3.3. Checking the hash code on the receiving side using the UMAC algorithm 

The next stage of the research is to verify the verification of the hash codes generated by the recipient 

and the sender of the authentication code of the sent message. For this, the authorized user (recipient) 

generates in accordance with paragraphs 3.1.1 – 3.1.4 a hash code from the message authentication code 

received from the sender. Verification is carried out by comparing received from the sender and 

generated by the recipient hash codes. If they match, the decision is made that the plaintext received 

through the open channel has not changed. 

 

4. CONCLUSION 

According to the results of the study, the cryptographic layer of the formation of message authentication 

codes both at the level of the transmitted cryptogram and at the level of the pseudo-random substrate 

satisfies the properties of universal hashing. The probability of a collision of the generated hash images 

does not exceed a given value. However, the provision of these requirements for the formation of hash 

codes is possible in the case of using the keyless modular transformation algorithm MASH-2. Therefore, 

the use of algorithms for the formation of hash codes and their verification on hybrid crypto-code 

constructions of McEliece with causing damage makes it possible to fulfill the universality condition, 

first of all, by increasing the level of cryptographic strength of the generated hash code of an open 

message transmitted over open telecommunication channels. Therefore, in the future, it is necessary to 

analyze the software implementation of the proposed algorithm to determine the speed level of the 

resulting hash codes and the probability of collisions. 
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