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Abstract − In the present paper, we prove the two best proximity point results on
strong b-metric spaces with coefficient λ by introducing two new concepts which are
named as BW b-contraction and proximal BW b-contraction. Thus, we generalise
and improve many results available in the literature. To support our main results,
some nontrivial and illustrative examples are given.
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1. Introduction and Preliminaries

In 1922, Banach [1] proved a fundamental theorem as named the Banach contraction principle, which
is considered the beginning of fixed point theory on metric space. Due to its applicability, this principle
has been extended and generalized by many authors in various ways [2–11]. In this sense, Boyd and
Wong [12] obtained a fixed point theorem, a well-known generalization of the Banach contraction
principle, as follows:

Theorem 1.1. Let (0, ϑ) be a complete metric space and T : 0→ 0 be a mapping such that

ϑ(Tς, T%) ≤ ψ (ϑ(ς, %))

for all ς, % ∈ 0 where ψ : [0,∞) → [0,∞) is an upper semicontinuous from the right function such
that ψ(γ) < γ for all γ > 0. Then, T has a unique fixed point ξ ∈ 0.

The set of functions ψ is denoted Ψ.
On the other hand, Czerwik [13, 14] introduced the notion of a b-metric which is a generalization

of a metric with a view of generalizing the Banach contraction principle.

Definition 1.2. Let 0 be a non-empty set and ϑ : 0 × 0 → [0,+∞) be a function such that for all
ς, %, ξ ∈ 0,

(1) ϑ(ς, %) = 0 if and only if ς = %,
(2) ϑ(ς, %) = ϑ(%, ς),
(3) ϑ(ς, ξ) ≤ λ[ϑ(ς, %) + ϑ(%, ξ)].
Then ϑ is called a b-metric on ς and (ς, ϑ) is called a b-metric space.
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It is clear that every metric space is a b-metric space, but not conversely. Indeed, let us consider
the set 0 = R is endowed with the b-metric defined as ϑ(ς, %) = (ς − %)2 for all ς, % ∈ 0. Then, (0, ϑ)
is a b-metric space, but it is not a standard metric space. Note that b-metric may not be continuous.
To remedy this deficiency, Kirk and Shahzad [15] introduced a strong b-metric space as follows:

Definition 1.3. [15] Let 0 be a nonempty set. A map ϑ : 0×0→ [0,∞) is a strong b-metric on 0

if for all ς, %, ξ ∈ 0 and λ ≥ 1 the following conditions hold:
(i) ς = % if and only if ϑ(ς, %) = 0;
(ii) ϑ(ς, %) = ϑ(%, ς);
(iii) ϑ(ς, ξ) ≤ ϑ(ς, %) + λϑ(%, ξ).
Moreover, the triple (0, λ, ϑ) is called a strong b-metric space.

Lemma 1.4. [15] Every strong b-metric is continuous.

Let (0, ϑ) be a strong b-metric space with coefficient λ. Each strong b-metric ϑ on 0 generates T0
topology τϑ, which has, as a base, the family open p-balls

B(ς, ε) = {% ∈ 0 : ϑ(ς, %) < ε}

for all ς ∈ 0 and ε > 0 A sequence {ςn} in ς is said to be a Cauchy sequence if

lim
n,m→∞

ϑ(ςn, ςm) = 0.

A sequence {ςn} converges to a point ς in 0 if and only if

lim
n→∞

ϑ(ςn, ς) = 0.

(0, ϑ) is said to be complete if every Cauchy sequence {ςn} in 0 converges with respect to τϑ to a
point ς ∈ 0.

Recently, the fixed point theory has been extended and generalized in different ways for nonself
mappings T : Γ → Λ, where Γ and Λ are the subsets of a metric space (0, ϑ). Indeed, if Γ ∩ Λ = ∅,
it cannot have a solution of equation Tς = ς. Hence, it is sensible to investigate if there is a point ς
such that ϑ(ς, T ς) is minimum. The concept of best proximity point has been emerged with this idea.
A point ς is called a best proximity point if ϑ(ς, T ς) = ϑ(Γ,Λ). Since every best proximity point is a
natural generalization of fixed point, many authors have studied this topic [16–19].

Now, we recall some fundamental definitions and results on strong b-metric spaces which are useful
for our main results.

Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty subsets of 0.
We denote the following subsets of Γ and Λ, respectively,

Γ0 = {ς ∈ Γ : ϑ(ς, %) = ϑ(Γ,Λ) for some % ∈ Λ}

and
Λ0 = {% ∈ Λ : ϑ(ς, %) = ϑ(Γ,Λ) for some % ∈ Γ}

where ϑ(Γ,Λ) = inf {ϑ(ς, %) : ς ∈ Γ and % ∈ Λ} .

Definition 1.5. [20] Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty
subsets of 0 with Γ0 6= ∅. Then, the pair (Γ,Λ) is said to exhibit the weak p-property if

ϑ(ς1, %1) = ϑ(Γ,Λ)
ϑ(ς2, %2) = ϑ(Γ,Λ)

}
=⇒ ϑ(ς1, ς2) ≤ ϑ(%1, %2)

for all ς1, ς2 ∈ Γ0 and %1, %2 ∈ Λ0.
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Definition 1.6. [21] Let (0, ϑ) be a strong b-metric space with coefficient λ, a mapping T : Γ → Λ
is said to be a proximal contraction if there exists a nonnegative number α < 1 such that, for all
u1, u2, ς1, ς2 in Γ,

ϑ(u1, T ς1) = ϑ(Γ,Λ)
ϑ(u2, T ς2) = ϑ(Γ,Λ)

}
=⇒ ϑ(u1, u2) ≤ αϑ(ς1, ς2)

Definition 1.7. Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty
subsets of 0. If every sequence {%n} in Λ satisfying the condition ϑ(ς, %n) → ϑ(ς,Λ) for some ς in Γ
has a subsequence {%nk

} such that %nk
→ % ∈ Λ, then Λ is called an approximately compact with

respect to Γ.

In the present paper, we prove two best proximity point results on strong b-metric spaces with
coefficient λ by introducing two new concepts which are named as BW b-contraction and proximal
BW b-contraction. Thus, we generalize and improve many results avaliable in the literature. Besides,
to support our main results, some nontrivial and illustrative examples are given.

2. Best Proximity Point Results with Weak p-Property

We begin the following new concept of BW b-contraction mapping in this section.

Definition 2.1. Let (0, ϑ) be strong b-metric space with coefficient λ, Γ and Λ be nonempty subsets
of 0 and T → Γ→ Λ be a mapping. T is called BW b-contraction mapping if there exists ψ ∈ Ψ such
that

ϑ(Tς, T%) ≤ ψ (ϑ(ς, %))

for all ς, % ∈ Γ

Theorem 2.2. Let Γ and Λ be closed subsets of complete strong b-metric space (0, ϑ) with Γ0 6= ∅
and T : Γ→ Λ be a BW b-contraction mapping. Assume that the pair (Γ,Λ) has the weak p-property
and T (Γ0) ⊆ Λ0. Then, T has a best proximity point in Γ.

Proof. Let ς0 ∈ Γ0 be an arbitrary point. Since Tς0 ∈ T (Γ0) ⊆ Λ0, there exists ς1 ∈ Γ0 such that

ϑ(ς1, T ς0) = ϑ(Γ,Λ)

Similarly, there exists ς2 ∈ Γ0 such that

ϑ(ς2, T ς1) = ϑ(Γ,Λ)

Since (Γ,Λ) has the weak p-Property, we have

ϑ(ς1, ς2) ≤ ϑ(T0, T ς1)

Continuing this process, we can construct a sequence {ςn} such that

ϑ(ςn+1, T ςn) = ϑ(Γ,Λ) (1)

and
ϑ(ςn, ςn+1) ≤ ϑ(Tςn−1, T ςn) (2)

for all n ∈ N. If there exists n0 ∈ N such that ςn0 = ςn0+1, then the proof is done. Assume that
ςn 6= ςn+1 for all n ∈ N. Using contractivity of T, we get

ϑ(ςn, ςn+1) ≤ ϑ(Tςn−1, T ςn) (3)

≤ ψ (ϑ(ςn−1, ςn))

< ϑ(ςn−1, ςn)
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for all n ≥ 1. Thus, {ϑ(ςn, ςn+1)} is a nonincreasing sequence in R. Therefore, the sequence
{ϑ(ςn, ςn+1)} is convergent. Hence, there is u ∈ R+ such that

lim
n→∞

ϑ(ςn, ςn+1) = u.

We want to show that u = 0. Suppose that u > 0.

0 < u = lim
n→∞

ϑ(ςn, ςn+1)

≤ lim
n→∞

ϑ (Tςn−1, T ςn)

≤ lim
n→∞

ψ(ϑ(ςn−1, ςn))

≤ lim sup
n→∞

ψ(ϑ(ςn−1, ςn))

≤ ψ(u)

< u.

This is a contradiction. Therefore, we have limn→∞ ϑ(ςn, ςn+1) = 0. After that, we want to show that
limn,m→∞ ϑ(ςn, ςm) = 0. Assume the contrary. Hence, there is two subsequences {ςnk

} and {ςmk
} with

mk > nk ≥ k and ε > 0 such that
ϑ(ςnk

, ςmk
) ≥ ε (4)

for all k ≥ 1, where mk is the smallest natural number satisfying (10) corresponding nk. Therefore,
we get

ϑ(ςnk
, ςmk−1) < ε.

Hence, we have

ε ≤ ϑ(ςnk
, ςmk

) (5)

≤ ϑ(ςnk
, ςmk−1) + λϑ(ςmk−1, ςmk

)

< ε+ λϑ(ςmk−1, ςmk
)

Letting k →∞ in (5), limk→∞ ϑ(ςnk
, ςmk

) = ε. Also, we have

ϑ(ςnk
, ςmk

) ≤ λϑ(ςnk
, ςnk+1) + ϑ(ςnk+1, ςmk+1) + λϑ(ςmk+1, ςmk

) (6)

and
ϑ(ςnk+1, ςmk+1) ≤ λϑ(ςnk+1, ςnk

) + ϑ(ςnk
, ςmk

) + λϑ(ςmk
, ςmk+1). (7)

Taking limit as k →∞ in (6) and (7), we get

lim
k→∞

ϑ(ςnk+1, ςmk+1) = ε.

Then, we have

ε = lim
k→∞

ϑ(ςnk+1, ςmk+1)

≤ lim sup
n→∞

ψ(ϑ(ςnk
, ςmk

))

≤ ψ(ε)

< ε.

This is a contradiction. Hence, limn,m→∞ ϑ(ςn, ςm) = 0 and so {ςn} is a Cauchy sequence in Γ.
Similarly, it can be seen that {Tςn} is a Cauchy sequence in Λ. Since (0, ϑ) is a complete strong
b-metric space with coefficient λ and Γ and Λ are closed subsets of 0, there exist ς∗ ∈ Γ and %∗ ∈ Λ
such that

lim
n→∞

ϑ(ςn, ς
∗) = 0
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and
lim
n→∞

ϑ(Tςn, %
∗) = 0

From Lemma 1.4, letting n→∞ in (1), we have

ϑ(ς∗, %∗) = ϑ(Γ,Λ). (8)

Now, assume that ς∗ 6= ςn for all n ∈ Ṅ. Then, we have

ϑ(%∗, T ς∗) = lim
n→∞

ϑ(Tςn, T ς
∗)

≤ lim sup
n→∞

ψ(ϑ(ςn, ς
∗))

< ϑ(ςn, ς
∗)

Assume that ς∗ = ςn for some n ∈ N. Then, we can find a subsequence {ςnk
} of {ςn} such that

ς∗ 6= ςnk
for all k ∈ N and so we can consider this subsequence in the above steps. Hence, we have

ϑ(%∗, T ς∗) = 0 and so %∗ = Tς∗. Thus, ς∗ is a best proximity point of T.

Example 2.3. Let 0 = N and ϑ : 0× 0→ R be a function defined by

ϑ(ς, %) =


0 , ς = %
3 , ς, % ∈ {2n− 1 : n ≥ 1} and ς 6= %
1 , otherwise

It is clear that (0, ϑ) is a strong b-metric space with coefficient λ ≥ 2. Now, we will show that (0, ϑ)
is complete. Indeed, let {ςn} be a Cauchy sequence. Then, for every ε > 0, we have

ϑ(ςn, ςm) < ε

for all m,n ≥ n0. Hence, we get ςn = ςm = ς for all m,n ≥ n0. Define the sets Γ = {2n− 1 : n ≥ 1}
and Λ = {2n : n ≥ 1}. Then, we have Γ = Γ0, Λ = Λ0, and ϑ(Γ,Λ) = 1. Moreover, (Γ,Λ) has the
weak p-Property. Let T : Γ→ Λ and ψ : [0,∞)→ [0,∞) be mappings defined as

T (2n− 1) = 2n

for all n ≥ 1 and

ψ(t) =
t

3

for all t ∈ [0,∞). Then, it can be seen that ψ ∈ Ψ and T is a BW b-contraction mapping. Furthermore,
we have T (Γ0) ⊆ Λ0. Hence, all the hypotheses of Theorem 2.2 are satisfied. Therefore, T has a best
proximity point in Γ.

Taking Γ = Λ = 0 in Theorem 2.2, we give the following fixed point result.

Corollary 2.4. Let (0, ϑ) be a complete strong b-metric space with coefficient λ and T : 0 → 0 be
a BW b-contraction mapping. Then, T has a fixed point in 0.

If we take λ = 1 in Theorem 2.2 and Corollary 2.4 , we obtain the following results, respectively.

Corollary 2.5. Let Γ and Λ be closed subsets of complete metric space (0, ϑ) with Γ0 6= ∅ and
T : Γ → Λ be a BW b-contraction mapping. Assume that the pair (Γ,Λ) has the weak p-Property
and T (Γ0) ⊆ Λ0. Then, T has a best proximity point in Γ.

Corollary 2.6. Let (0, ϑ) be a complete metric space and T : 0→ 0 be a BW b-contraction mapping.
Then, T has a fixed point in 0.
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3. Best Proximity Point Results with Proximal Contraction

Definition 3.1. Let Γ and Λ be subsets of strong b-metric space (0, p) and T : Γ→ Λ be a mapping.
T is called a proximal BWb-contraction if the following condition satisfies

ϑ(u1, T ς1) = ϑ(Γ,Λ)
ϑ(u2, T ς2) = ϑ(Γ,Λ)

}
=⇒ ϑ(u1, u2) ≤ ψ(ϑ(ς, %))

for all u1, u2, ς1, ς2 ∈ Γ.

Theorem 3.2. Let (0, ϑ) be a complete strong b-metric space with coefficient λ, and Γ and Λ be
closed subsets of 0 with Γ0 6= ∅. Assume that T : Γ→ Λ be a mapping satisfying T (Γ0) ⊆ Λ0 and Λ is
an approximately compact w.r.t Γ. If T is a proximal BW b-contraction, then T has a best proximity
poit in Γ.

Proof. Let ς0 ∈ Γ0 be an arbitrary point. Since Tς0 ∈ T (Γ0) ⊆ Λ0, there exists ς1 ∈ Γ0 such that

ϑ(ς1, T ς0) = ϑ(Γ,Λ)

Similarly, there exists ς2 ∈ Γ0 such that

ϑ(ς2, T ς1) = ϑ(Γ,Λ)

Since T is a proximal BW b-contraction, we have

ϑ(ς1, ς2) ≤ ψ(ϑ(ς0, ς1))

Continuing this process, we can construct a sequence {ςn} in Γ such that

ϑ(ςn+1, T ςn) = ϑ(Γ,Λ) (9)

and
ϑ(ςn, ςn+1) ≤ ψ(ϑ(ςn−1, ςn))

for all n ∈ N. If there exists n0 ∈ N such that ϑ(ςn0 , ςn0+1) = 0, then the proof is done. Assume that
ϑ(ςn, ςn+1) > 0 for all n ∈ N. Hence, we have

ϑ(ςn, ςn+1) ≤ ψ(ϑ(ςn−1, ςn))

< ϑ(ςn−1, ςn)

for all n ≥ 1. Thus, {ϑ(ςn, ςn+1)} is a nonincreasing sequences in R. Therefore, the sequence
{ϑ(ςn, ςn+1)} is convergent. Hence, there is u ∈ R+ such that

lim
n→∞

ϑ(ςn, ςn+1) = u.

We want to show that u = 0. Suppose that u > 0.

0 < u = lim
n→∞

ϑ(ςn, ςn+1)

≤ lim
n→∞

ψ(ϑ(ςn−1, ςn))

≤ lim sup
n→∞

ψ(ϑ(ςn−1, ςn))

≤ ψ(u)

< u.

This is a contradiction. Therefore, we have limn→∞ ϑ(ςn, ςn+1) = 0. After that, we want to show that
limn,m→∞ ϑ(ςn, ςm) = 0. Assume the contrary. Hence, there are two subsequences {ςnk

} and {ςmk
}

with mk > nk ≥ k and ε > 0 such that

ϑ(ςnk
, ςmk

) ≥ ε (10)
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for all k ≥ 1, where mk is the smallest natural number satisfying (10) corresponding nk. Therefore,
we get

ϑ(ςnk
, ςmk−1) < ε.

Thus, we have

ε ≤ ϑ(ςnk
, ςmk

) (11)

≤ ϑ(ςnk
, ςmk−1) + λϑ(ςmk−1, ςmk

)

< ε+ λϑ(ςmk−1, ςmk
)

Letting k →∞ in (11), limk→∞ p(ςnk
, ςmk

) = ε. Also, we have

ϑ(ςnk
, ςmk

) ≤ λϑ(ςnk
, ςnk+1) + ϑ(ςnk+1, ςmk+1) + λϑ(ςmk+1, ςmk

) (12)

and
ϑ(ςnk+1, ςmk+1) ≤ λϑ(ςnk+1, ςnk

) + ϑ(ςnk
, ςmk

) + λϑ(ςmk
, ςmk+1). (13)

Taking limit as k →∞ in (12) and (13), we get

lim
k→∞

ϑ(ςnk+1, ςmk+1) = ε.

Then, we have

ε = lim
k→∞

ϑ(ςnk+1, ςmk+1)

≤ lim sup
n→∞

ψ(ϑ(ςnk
, ςmk

))

≤ ψ(ε)

< ε.

This is a contradiction. Hence, limn,m→∞ ϑ(ςn, ςm) = 0 and so {ςn} is a Cauchy sequence in Γ. Since
(ς, ϑ) is a complete strong b-metric space, and Γ is a closed subset of 0, there exists ς∗ ∈ Γ such that

lim
n→∞

ϑ(ςn, ς
∗) = 0 (14)

Also, we have

ϑ(ς∗,Λ) ≤ ϑ(ς∗, T ςn)

≤ λp(ς∗, ςn+1) + ϑ(ςn+1, T ςn)

= λϑ(ς∗, ςn+1) + ϑ(Γ,Λ)

≤ λϑ(ς∗, ςn+1) + ϑ(ς∗,Λ)

From (14), we get ϑ(ς∗, T ςn)→ ϑ(ς∗,Λ) as n→∞. Since Λ is an approximately compact concerning
Γ, there exists a subsequence {Tςnk

} of {Tςn} such that

Tςnk
→ %∗

for some %∗ ∈ Λ. Letting n→∞ in (9), we have

ϑ(ς∗, %∗) = ϑ(Γ,Λ).

Besides, since Tς∗ ∈ Λ0, there exists ξ ∈ Γ0 such that

ϑ(ξ, T ς∗) = ϑ(Γ,Λ)
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Now, assume that ς∗ 6= ςn for all n ∈ N. Then, we have

ϑ(ς∗, ξ) = lim
n→∞

ϑ(ςn+1, ξ)

≤ lim
n→∞

ψ(ϑ(ςn, ς
∗))

< lim
n→∞

ϑ(ςn, ς
∗)

= 0

Assume that ς∗ = ςn for some n ∈ N. Then, we can find a subsequence {ςnk
} of {ςn} such that ς∗ 6= ςnk

for all k ∈ N and so we can consider this subsequence in the above steps. Therefore, ς∗ = ξ and so T
has a best proximity point in Γ.

Example 3.3. Let 0 = [0, 1] ∪ [2,∞) and ϑ : 0× 0→ R be a function defined as

ϑ(ς, %) =


0 , ς = %
3 , ς, % ∈ [0, 1] and ς 6= %

|ς − %| , otherwise

Then, (0, ϑ) is a complete strong b-metric space with coefficient λ ≥ 2. Define the sets Γ = [0, 1] and
Λ = [2,∞), then we have ϑ(Γ,Λ) = 1, Γ0 = {1} and Λ0 = {2}. Let T : Γ → Λ be a mapping defined
as

Tς =

{
2 , ς = 1

ς + 2 , ς ∈ [0, 1)

for all ς ∈ Γ. Then, we have T (Γ0) ⊆ Λ0. Further, we define a function ψ : [0,∞)→ [0,∞) as ψ(t) = t
2

for all t ∈ [0,∞). Then, it can be seen that ψ ∈ Ψ and T is a proximal BW b-contraction mapping.
Moreover, we have T (Γ0) ⊆ Λ0. Hence, all the hypotheses of Theorem 3.2 are satisfied. Therefore, T
has a best proximity point in Γ.

If we take λ = 1 in Theorem 3.2, we obtain the following results, respectively.

Corollary 3.4. Let Γ and Λ be closed subsets of complete metric space (0, ϑ) with Γ0 6= ∅ and
T : Γ → Λ be a proximal BW b-contraction mapping satisfying T (Γ0) ⊆ Λ0. Then, T has a best
proximity point in Γ.

Note that if we take Γ = Λ = 0 in Definition 3.1, then the proximal BW b-contraction mapping
becomes BW b-contraction mapping. Therefore, we can obtain Corollary 2.5 and Corollary 2.6 from
Theorem 3.2.

4. Conclusion

The applications of the fixed point theorems comprise diverse disciplines of mathematics, statistics,
and engineering dealing with various problems such as the theory of differential equations, approxi-
mation theory, potential theory, functional analysis, and topology. In this paper, we obtain some best
proximity point results on strong b-metric spaces and present some generalizations of the fixed point
results.
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