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Abstract 

Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian 
applications.  As the usage of these vehicles becomes widespread, the development of controller structures which allow the 
UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear 
mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler 
equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is 
designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude 
control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of 
the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined 
characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, 
and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its 
robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study 
simulation results are obtained using Simulink/MATLAB environment.    
Keywords: Quadrotor, Mathematical Modeling, Sliding Mode Control (SMC), Trajectory Tracking 

QUADROTORLAR İÇİN OPTİMUM KARAKTERİSTİK DENKLEMLİ İKİNCİ 
DERECEDEN KAYAN KİPLİ DENETLEYİCİ TASARIMI  

Özet 

Son zamanlarda, düşük boyutlarda kullanılan dört motorlu mikro insansız hava araçları (İHA) askeri ve sivil 
uygulamalarda karşımıza çıkmaktadır. Kullanım alanlarının giderek genişlemesi ile birlikte, yörünge takibinde daha 
hassas uçuşların gerçekleştirilmesi problemleri adına geliştirilen kontrol yapıları araştırmacılara yeni alanlar açmaktadır. 
Bu amaçlar doğrultusunda, ilk olarak bu çalışmada dört motorlu İHA’nın doğrusal olmayan matematiksel modeli Newton-
Euler denklemleri ile elde edilmiştir. Yörünge takibinde İHA’ya ikinci dereceden kayan kipli denetleyici (SOSMC) 
uygulanmıştır. SOSMC yapısı içerisinde pozisyon ve davranış kontrolünün sağlanması için tek durum değişkenli ve çift 
durum değişkenli alt sistemlere ayrı ayrı uygulanmıştır. Bir sonraki adımda denetleyici katsayıları optimum karakteristik 
denklem kullanılarak bulunmuştur. Referans çalışmaya bağlı kalınarak denklemin sınır değerleri elde edilmiş ve en 
optimum değerler bu sınır değerler içerisinden elde edilmiştir. Son bölümde ise denetleyiciye ait benzetim sonuçları elde 
edilmiş ve referans çalışma ile karşılaştırılması yapılmıştır. Sonuç olarak, elde edilen şekillere göre Optimum karakteristik 
denklem sonuçları daha az kalıcı durum hatası üretmiş ve daha yüksek hassasiyetle yörüngeyi takip etmiştir. Bu sayede 
elde edilen son kontrol yapısı gürbüzlüğünü kanıtlamıştır. Bu çalışmada elde edilen benzetim sonuçları Simulink/MATLAB 
ortamında gerçekleştirilmiştir. 
Anahtar Kelimeler: Quadrotor (İHA), Matematiksel Modelleme, Kayan Kipli Denetleyici, Yörünge Takibi 
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1 Introduction 

From last decade to now, Micro Unmanned Aerial 
Vehicles (micro UAV’s) have gained enormous interest 
when compared to the other robotics applications. There 
are two major reasons behind this growing interest. One 
of them is having reduced mechanical complexity in 
hardware part and the other one is recent developments 
in micro electromechanical systems (MEMS) which 
causes the minimization of the mechanical part and fast 
decision-making mechanism. Besides of this interest 
UAV’s have started to use in many new areas. In military 
applications these air vehicles are used for mapping of an 
unknown dangerous and dirty areas, border security, 
search and rescue operations etc. In civilian applications 
these air vehicles are used for cargo services, traffic 
monitoring, weather monitoring, automatic forest fire 
detection and cinema industry etc. According to the high 
precise missions, UAV’s require robust control 
algorithms to successfully complete this mission [1-7]. 

Quadrotors are one of the most well-known type of micro 
UAV’s. It has four motor with generally rigid symmetric 
structure and ability to vertical take-off and landing 
(VTOL). According to the structure, stable airborne flight 
such as position and attitude tracking achieved with only 
robust flight algorithms when designing the model-based 
controllers. Thus, researchers design mathematical 
model-based controllers, assuming that the quadrotor 
structure is rigid and symmetrical with respect to the 
center. To successfully track position and attitude for 
quadrotors, there are some control approaches in the 
literature. The control algorithms are taken into account 
with respect to the linearity of the controller approaches 
[8-10]. 

PID is one of the most well-known control techniques for 
robotics and also quadrotors. Main advantages of PID 
controller are, easy to understand and adopt to the 
system. Besides of this simplicity, it produces satisfying 
results. Bolandi et. al. presented a control approach for 
stabilization and disturbance rejection for attitude 
control of quadrotor [11]. While tuning the PID 
controller parameters an analytical optimization method 
is used. Argentim et. al. presented a comparison for a 
quadrotor control namely PID, Linear Quadratic 
Regulator (LQR) and PID tuned with LQR loop [12]. In the 
simulation part 10 different attitude are discussed. In 
their results, they found out LQR type of controller was 
robust and produce small steady state error. Hence, they 
had big transition delay. PID controllers were produced 
fast responses to the system but robustness of the overall 
system was pure. While assigning the PID controller 
gains there are several methods, and these methods give 
satisfying results. For this reason, these controllers are 
not enough for high precise flights [13]. 

While deriving the quadrotor’s equation of motion, there 
are nonlinearities inside of the attitude and position 
movements. Beside of the nonlinearities, quadrotor 
systems have parametric uncertainties and many 

disturbance effects such as wind, sensor misreading and 
noises, propeller deflection, center of gravity (cog) shift 
etc. When these nonlinearities and uncertainties are 
considered, nonlinear controller approaches produce 
more promising responses than traditional linear control 
algorithms. Lippiello et al. searched a failure of one of the 
motors on quadrotor [14]. In this fault tolerant control 
method scenario, one motor turned off. Later, 
simulations were validated the proposed backstepping 
control for safely landing. The Sliding Mode Control 
(SMC) method is one of the robust controllers in the 
literature [15-17]. Different type of SMC methods is 
proposed for quadrotors trajectory tracking, attitude and 
position control.  Xu et al. used SMC to control quadrotor 
attitude and position while quadrotor was under 
disturbance effect [18]. In literature, chattering is major 
issue for SMC. Based on switching control law of SMC, 
chattering occurs in the control signals and it may cause 
permanent breakdown on the system. There are several 
methods to eliminate chattering phenomena. Boundary 
layer extension is one of well-known technique in 
literature. Hence, Yang et al. successfully eliminated the 
chattering without using any boundary extension 
function [19]. Overall system stability is guaranteed with 
Lyapunov stability theorem. Zhang et al. proposed a 
second order SMC (SOSMC) method to control attitude 
and position [20]. In that reference study quadrotor 
control algorithm divided into two subsystems. To 
ensure overall system stability SMC coefficients are 
determined with pre-chosen characteristic equation. 

In this work, SOSMC is designed with a new characteristic 
equation. It is foreseen that the proposed characteristic 
equation will provide less oscillations and better flight 
stability with less steady state error since its step 
response is better than the reference characteristic 
equation. To observe less oscillation and better flight 
stability on trajectory, step responses are examined. 
According to the proposed characteristic equation, 
controller coefficients are obtained, and the simulation 
results are proved that proposed characteristic equation 
gives better results than reference trajectory with 
respect to sustained oscillations and steady state errors 
on trajectory tracking.  

The rest of the paper is organized as follow. In the second 
part, mathematical model of system and dynamic 
equation derivations are given. Second order sliding 
mode controller design and required equations which 
demonstrate the controller and guarantee system 
stability is given in section three. In section four the 
numerical simulation results based on predefined 
scenario are given. Moreover, according to trajectory 
performance criteria comparison with reference study 
[20] are given in this section. In addition to the 
comparison, proposed controller better flight stability 
and less oscillation against noises are proved in the 
results.  Concluding remarks are given in Section 5. 
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2 Mathematical Modeling of Flight 

The quadrotor system has four input which are altitude, 
x, y, and yaw (𝜓) angle and six output x, y, z, roll, pitch 
and yaw. Based on input output relations, the system is 
called under-actuated.  

2.1. Coordinate Systems and Quadrotor Structure 

Quadrotor has two coordinate systems, one of them is 
called inertial reference frame and the other one is body 
fixed frame. Translational motion occurs on the three 
direction of inertial reference frame x, y, z and the 
variables (𝜙, 𝜃,𝜓) include rotational motion around 
three axes on the body fixed frame. Fig. 1 is schematic 
diagram of the quadrotor with four rotors. Two pairs of 
rotors (1,3) and (2,4) spins opposite directions 
(Clockwise and Counterclockwise). Thus, the net 
moment with respect to the center of gravity becomes 
zero. In addition to this, the roll (𝜙) rotation can be 
obtained by changing the speed of motors two and four, 
the pitch (𝜃) rotation can be obtained by changing the 
speed of motors one and three, the yaw (𝜓) rotation can 
be obtained by speed differences of neighbor motors. 
And finally, vertical movements can be obtained by equal 
speed of four motors. To mathematically describe 
quadrotor dynamics, system requires two assumptions. 

Figure 1. Schematic diagram of the quadrotor. 

One of them is the quadrotor has a symmetrical structure 
and other one is, the quadrotor’s structure is rigid. 
Following subsection describes the dynamics of the 
quadrotor.   

2.2. Quadrotor Dynamics 

In this section nonlinear dynamical equations of the 
quadrotor derived by using Newton-Euler method. In 
here, body fixed frame coordinates are represented by 
𝐵(𝑂𝑥𝑦𝑧), while inertial reference frame of coordinates 

indicated with 𝐸(𝑂𝑥𝑦𝑧). The vector 𝜂 = [𝜙 𝜃 𝜓]𝑇 and 

the vector 𝜉 = [𝑥 𝑦 𝑧]𝑇  describing the rotorcraft 
orientation and position in coordinate frames 
respectively and where, roll (𝜙) is angle around x-axis, 
pitch (𝜃) is angle around y-axis and yaw (𝜓) is angle 
around z-axis. These angles are bounded as follows; roll 
angle (−

𝜋

2
< 𝜙 <

𝜋

2
) pitch angle (−

𝜋

2
< 𝜃 <

𝜋

2
) and yaw 

angle by (−𝜋 < 𝜓 < 𝜋). With the help of this boundaries, 
quadrotor can avoid unwanted motions in the airborne. 

Rotation matrix is given in equation (1) and it is used for 
transformation from inertial reference coordinates to 
body fixed coordinates. By the help of this equation, 
quadrotor’s angle to position relation is extracted. 

[𝑅𝐵
𝐸] = [

𝑠𝜃𝑐𝜓 𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓𝑐𝜙 𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙
𝑠𝜃𝑠𝜓 𝑠𝜓𝑠𝜃𝑠𝜙 + 𝑐𝜓𝑐𝜙 𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

]     (1) 

R is an orthogonal matrix with determinant equals to 1. 
In here, s(.) and c(.) correspond sine and cosine functions 
respectively. Translational kinematics from body fixed 
frame to inertial frame is as follows. 

   𝜐𝐸 = 𝑅𝐵
𝐸 . 𝜐𝐵        (2) 

In here 𝜐𝐸  and 𝜐𝐵 represents linear velocities on the 
inertial frame and body frame, respectively. Rotational 
kinematics defined as follows between inertial frame and 
body fixed frame. 

                         [

�̇�

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜙𝑠𝑒𝑐𝜃 𝑐𝑜𝑠𝜙𝑠𝑒𝑐𝜃

] [
𝑝
𝑞
𝑟
]            (3) 

In Equation (2) and (3) velocity relation both in inertial 
frame and body frame is described. Final step of deriving 
quadrotor’s nonlinear mathematical model is 
acceleration on both inertial coordinates and body 
coordinates. Equations (4), (5) represent the Newton-
Euler equation. 

𝑚�̈� =  𝑔 + 𝑅𝜏𝑧           (4) 

𝜏𝐵 = 𝐽�̇� + 𝛾 𝑥 (𝐽𝛾)                (5) 

In these equations (4-5) P matrix represents the inertial 
position and 𝛾 shows the angular velocities. Let 𝑋 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12] =
[𝜙, �̇�, 𝜃, �̇�, 𝜓, �̇�, 𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�] 𝜖 ℛ12 represents the state 

variable of nonlinear quadrotor system. Overall state 
space representation can be seen in equation (6). 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

�̇�1 = 𝑥2
�̇�2 = �̈� = 𝑎1𝑥4𝑥6 + 𝑎2𝑥4 + 𝑎3𝑥2 + 𝑏1𝜏𝜙

�̇�3 = 𝑥4
�̇�4 = �̈� = 𝑎4𝑥2𝑥6 + 𝑎5𝑥2 + 𝑎6𝑥4 + 𝑏2𝜏𝜃

�̇�5 = 𝑥6
�̇�6 = �̈� = 𝑎7𝑥2𝑥4 + 𝑎8𝑥6 + 𝑏3𝜏𝜓

�̇�7 = 𝑥8

�̇�8 = �̈� = 𝑎9𝑥8 +
𝜏𝑧

𝑚
(𝐶𝑥1𝑆𝑥3𝐶𝑥5 + 𝑆𝑥1𝑆𝑥5)

�̇�9 = 𝑥10

�̇�10 = �̈� = 𝑎10𝑥10 +
𝜏𝑧

𝑚
(𝐶𝑥1𝑆𝑥3𝑆𝑥5 − 𝑆𝑥1𝐶𝑥5)

�̇�11 = 𝑥12
�̇�12 = �̈� = 𝑎11𝑥12 +

𝜏𝑧

𝑚
(𝐶𝑥1𝐶𝑥3) − 𝑔

                 (6) 

In this state-space representation, 𝑎1 =
𝐽𝑦−𝐽𝑧

𝐽𝑥
, 𝑎2 =

Ω𝑟𝐽𝑟

𝐽𝑥
, 

 𝑎3 =
−𝐾1𝑙

𝐽𝑥
 , 𝑎4 =

𝐽𝑧−𝐽𝑥

𝐽𝑦
 , 𝑎5 =

−Ω𝑟𝐽𝑟

𝐽𝑦
 , 𝑎6 =

−𝐾2𝑙

𝐽𝑦
 , 𝑎7 =

𝐽𝑥−𝐽𝑦

𝐽𝑧
 ,  



Umut Tilki, Ali Can Erust 
Second Order Sliding Mode Controller Design with Optimum Characteristic Equation For Quadrotors 

 

153 

 

𝑎8 =
−𝐾3𝑙

𝐽𝑧
 , 𝑎9 =

−𝐾4

𝑚
 , 𝑎10 =

−𝐾5

𝑚
 , 𝑎11 =

−𝐾6

𝑚
 , 𝑏1 =

𝑙

𝐽𝑥
 , 𝑏2 =

𝑙

𝐽𝑦
 , 𝑏3 =

1

𝐽𝑧
 

In the state equation (6) m denotes the quadrotor mass, 
𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧  denotes the inertia force along the inertial 

reference coordinates. 𝑙 represents the distance from 
motor the center of gravity (cog) of quadrotor and it is 
also used in below equation. 𝐾𝑖(𝑖 = 1,2,3… ) indicates 
the disturbance effect on the quadrotor. The relationship 
between the torques along the axes and angular 
velocities on the rotors are given by Equation (7). 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

𝜏𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

] = [

𝑏
𝑙𝑏
0
−𝑘

𝑏
0
−𝑙𝑏
𝑘

𝑏
−𝑙𝑏
0
−𝑘

𝑏
0
𝑙𝑏
𝑘

] 

[
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

                        (7) 

In here, k represents the lift coefficients of the rotors and 
b represents air dragging coefficients. 

3 Flight Controller Design 

In this section, mathematical modelling of the second 
order sliding mode controller demonstrated.  Flight 
controller algorithm divided into two subsystem which 
are fully actuated and under actuated subsystem. Overall 
trajectory tracking control design and state variables can 
be seen in Figure 2. 

 

Figure 2. Quadrotor control design. 

3.1. Fully Actuated Subsystem Control 

This section describes the fully actuated subsystem 
control algorithm based on second order sliding mode 
controller. The purpose is to ensure state variables 
[𝑥5 , 𝑥11] converge to the desired values [𝑥5𝑑, 𝑥11𝑑].  

The sliding surface equations for the fully actuated 
subsystem is expressed in equation (8) and equation (9). 

𝑠1 = 𝑐𝑧(𝑥11𝑑 − 𝑥11) + (�̇�11𝑑 − �̇�11)                        (8) 

𝑠2 = 𝑐𝜓(𝑥5𝑑 − 𝑥5) + (�̇�5𝑑 − �̇�5)                                         (9) 

In this equation 𝑐𝑧 and 𝑐𝜓 are the coefficients of the 

sliding surface equation.  In the literature there are 
different types of sliding surface reaching law [15]. To 
make the system response as fast as possible, 
exponential reaching law is considered. Proposed 
exponential reaching law selected as �̇�𝑖 = −𝜀𝑖𝑠𝑔𝑛(𝑠𝑖) −
𝑛𝑖𝑠𝑖 . When the reaching law is applied to the sliding 

surface new control input signals 𝑢1 and 𝑢4 are extracted. 
Control input 𝑢1 and 𝑢4 can be seen in equation (10) and 
equation (11). 

𝑢1 = 𝑚.
𝑐𝑧(𝑥11𝑑−𝑥11)+�̇�12+𝑑1+𝜀1𝑠𝑔𝑛(𝑠1)+𝑛1𝑠1

𝑐𝑜𝑠𝑥1 𝑐𝑜𝑠𝑥3
       (10) 

𝑢4 = 𝐽𝑧(𝑐𝜓(𝑥5𝑑 − 𝑥5) + �̇�6 + 𝑑2 + 𝜀2𝑠𝑔𝑛(𝑠2) + 𝑛2𝑠2)         (11) 

where the 𝑑1 = 𝐾3�̇�11/𝑚 and 𝑑2 =  𝐾6�̇�5/𝐽𝑧𝑧  and 
𝜀1, 𝜀2, 𝑛1, 𝑛2 > 0. For the fully actuated subsystem control 
input equations are generated. 

3.2. Under Actuated Subsystem Control  

This section describes the under actuated subsystem 
control algorithm based on second order sliding mode 
controller and the aim is to ensure state variables [𝑥1, 𝑥7] 
and [𝑥3, 𝑥9], converge to the desired values [𝑥1𝑑, 𝑥7𝑑] and 
[𝑥3𝑑, 𝑥9𝑑]. 

The sliding surface equations for the under actuated 
subsystem is expressed as in the following equations.  

𝑠3 = 𝑐1(�̇�7𝑑 − �̇�7) + 𝑐2(𝑥7𝑑 − 𝑥7) + 𝑐3(�̇�3𝑑 − �̇�3𝑑) +
𝑐4(𝑥3𝑑 − 𝑥3)                                                                                       (12) 

𝑠4 = 𝑐5(�̇�9𝑑 − 𝑥9) + 𝑐6(𝑥9𝑑 − 𝑥9) + 𝑐7(�̇�1𝑑 − �̇�1) +
𝑐8(𝑥1𝑑 − 𝑥1)                                                                                 (13) 

Exponential reaching law is applied to the under 
actuated subsystem sliding surfaces and new control 
signals for 𝑢2 𝑎𝑛𝑑 𝑢3 are obtained. 

�̇�3 = 𝑐1(�̇�8𝑑 − �̇�8) + 𝑐2(�̇�7𝑑 − �̇�7) + 𝑐3(�̇�4𝑑 − �̇�4) +
𝑐4(�̇�3𝑑 − �̇�3)                                                                                     (14) 

�̇�4 = 𝑐5(�̇�10 − �̇�10) + 𝑐6(�̇�9𝑑 − �̇�9) + 𝑐7(�̇�2𝑑 − �̇�2) +
𝑐8(�̇�1𝑑 − �̇�1)                                                                                              (15) 

Based on the exponential reaching law and quadrotor 

equation of motion control signals of 𝑢2, 𝑢3 extracted as 

follows. 

𝑢3 =
𝐽𝑦

𝑙
(
𝑐1

𝑐3
(�̇�10 − �̇�10) +

𝑐2

𝑐3
(�̇�9𝑑 − �̇�9) + �̇�2𝑑 +

𝑐4

𝑐3
(�̇�1𝑑 − �̇�1) +

          𝑑3 +
1

𝑐3
(𝜀3𝑠𝑔𝑛(𝑠3) + 𝑛3𝑠3))                    (16) 

𝑢2 =
𝐽𝑥

𝑙
(
𝑐5

𝑐7
(�̇�8𝑑 − �̇�8) +

𝑐6

𝑐7
(�̇�7𝑑 − �̇�7) + �̇�4𝑑 +

𝑐8

𝑐7
(�̇�3𝑑 − �̇�3) +

          𝑑4 +
1

𝑐7
(𝜀4𝑠𝑔𝑛(𝑠4) + 𝑛4𝑠4))             (17) 

In these equations; 𝑑3 = −
�̇�1�̇�5(𝐽𝑧−𝐽𝑥)

𝐽𝑦
+ 𝐾5𝑙�̇�3/𝐽𝑦 and 

𝑑4 = −
�̇�3�̇�5(𝐽𝑦−𝐽𝑧)

𝐽𝑥
+ 𝐾4𝑙�̇�1/𝐽𝑥 and 𝜀3, 𝜀4, 𝑛3, 𝑛4 > 0.  

Last part of the second order sliding mode control is 
calculating of sliding surface coefficients and make sure 
the quadrotor system is stable. For stability issue 

Lyapunov function is chosen as 𝑉𝑖 = 
1

2
𝑠𝑖
2 and time 

derivative of 𝑉𝑖  has to provide the following condition 
�̇�𝑖 = 𝑠𝑖 �̇�𝑖 = −𝜀|𝑠𝑖| − 𝑛𝑖𝑠𝑖

2 ≤ 0. Only under this condition 
all state variables reach and stay on the sliding surface. 
Therefore, the system stability is guaranteed with 
Lyapunov function. 
According to the SOSMC, control input coefficients are 
determined with the similar approach in the reference 

𝑧 �̇� 𝑧𝑑  

𝜓𝑑  

𝑥𝑑𝜃𝑑  

𝜓 �̇� 

𝜃 �̇� 

𝑥 �̇� 

𝜙 �̇� 

𝑦 �̇� 

𝑦𝑑𝜙𝑑  
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[18] by the predefined characteristic equation which is a 
third order proposed characteristic equation. 
 
Table 1. Overall SOSMC Switching Coefficients 
 

 
 

3.3. Switching Coefficient Equation 

This part of the study explains determination of the 
proposed characteristic equation of the second order 
sliding mode controller for coefficients.   

The characteristic equation and the corresponding 
coefficients are expressed as follows: 

𝜆3 − (𝐴22 + 𝑐)𝜆
2+ (𝑐𝐴22 − 𝐴21 − 𝑏𝐴23)𝜆 + 𝑐𝐴21 − 𝑎𝐴23 = 0       (18) 

where; 

𝐴21 = −
𝑐1
𝑐3

𝑢1
𝑚
𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜓 +

𝑐2𝑐4
𝑐1𝑐3

, 𝐴22 =
𝑐2
𝑐1
−
𝑐4
𝑐3
, 𝐴23 =

𝑐2
2

𝑐1𝑐3
, 

 𝑎 = −
𝑐4
𝑐1
, 𝑏 = −

𝑐3
𝑐1
, 𝑐 = −

𝑐2
𝑐1

 

This equation represents the only one state variable of 
the under actuated subsystem such as [𝑥3, 𝑥9]. In order to 
determine the control input coefficients, a third order 
equation is employed. The degrees of the characteristic 
equation should be same with the degree of equation 
(18). Moreover, the behavior of the quadrotor needs to 
reach steady state in a fast time with minimum 
oscillations. Besides overall stability of the whole system 
is required, so the poles of this 3rd order equation should 
be in the left half plane in s-domain. Boundaries of the 
equation are determined based on the reference study 
and optimum characteristic equation for the controller 
find out as follows. 

(𝜆 + 2.2)(𝜆 + 2.2)(𝜆 + 0.5) = 0        (19)  

When equation (18) and (19) compared, final switching 

coefficients are determined. 

𝑐4
𝑐3
= 5,

𝑐1
𝑐3

𝑢1
𝑚
𝑐𝑜𝑠𝑥1 𝑐𝑜𝑠𝑥5 = 12,

𝑐2
𝑐3

𝑢1
𝑚
𝑐𝑜𝑠𝑥1 𝑐𝑜𝑠𝑥5 = 5 

Let 𝑐3 = 1 and then the rest of the coefficients become:  

𝑐1 =
12𝑚

𝑢1𝑐𝑜𝑠𝑥1 𝑐𝑜𝑠𝑥5
,    𝑐2 =

5𝑚

𝑢1𝑐𝑜𝑠𝑥1 𝑐𝑜𝑠𝑥5
,     𝑐4 = 5 

Avoiding of repeating ourselves extraction of sliding 
surface coefficients are done only for 𝑠3, same 
methodology is also applied to 𝑠4 and obtained 
coefficients are found as follows. 

 𝑐5 =
−12𝑚

𝑢1𝑐𝑜𝑠𝑥5
 ,    𝑐6 =

−5𝑚

𝑢1𝑐𝑜𝑠𝑥5
 , 𝑐7 = 1 , 𝑐8 = 5 

Finally switching coefficients of the SOSMC are 
determined based on optimum and stable 3rd order 
characteristic equation. Overall switching coefficients of 
the controller can be seen in following table. On the other 
hand, for fully actuated subsystem regular SMC is applied 
to the system as explained above part. Coefficients of the 
fully actuated subsystem is defined by using trial-error 
method to obtain stability. 
 

4 Simulation Results and Discussion 
In this work quadrotor’s nonlinear equation of motion is 
extracted using Newton-Euler method and proposed 
second order sliding mode controller is applied with 
optimum characteristic equation. Simulations are done 
by using Simulink/MATLAB with the version of R2017b 
using ODE4 solver method and the computer has Intel i7 
processor, 500 Gb SSD. 
In the simulation, proposed characteristic equation 
results and reference characteristic equation results are 
demonstrated in the same graphs. In addition to this, 
same yaw angle, disturbance, air drag coefficients are 
added to the trajectory for fair comparison. As a result, 
both characteristic equation results compared with the 
same properties. 

At the beginning of the simulation, position on the 
inertial frame set to [0 0 0]𝑚 and on the body frame 
coordinates set to [0 0 0]𝑟𝑎𝑑. Quadrotor’s trajectory 
determined with respect to the time. Reference 
trajectory is given as waypoints and time instants 
demonstrated in Table 2. Quadrotor model parameters 
and their units which are used during the simulations can 
be seen in Table 3. These parameters are same with the 
reference study [18] for fair comparison.  

 
Table 2. Reference Trajectory Points 

 

 

In Figure 3, 3D trajectory tracking performance of the 
quadrotor can be seen. The reference trajectory is 
demonstrated by black line. While the blue line 
represents the reference study trajectory performance, 
the red line represents trajectory performance of the 
proposed controller. 

Variables Values Variables Values 

𝑐𝑧 1 𝑐𝜓 1 

𝜀1 0.8 𝜀2 0.8 

𝑛1 2 𝑛2 2 

𝑐1 12𝑚 (𝑢1𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓)⁄  𝑐5 −12𝑚 (𝑢1𝑐𝑜𝑠𝜓)⁄  

𝑐2 5𝑚 (𝑢1𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓)⁄  𝑐6 −5𝑚 (𝑢1𝑐𝑜𝑠𝜓)⁄  

𝑐3 1 𝑐7 1 

𝑐4 6 𝑐8 6 

𝜀3 0.5 𝜀4 0.5 

𝑛3 5 𝑛4 5 

 T=10 T=20 T=30 T=40 T=50 

𝑥𝑟 0.6 0.3 0.3 0.6 0.6 

𝑦𝑟  0.6 0.6 0.3 0.3 0.6 

𝑧𝑟 0.5 0.5 0.5 0.5 0.5 

 𝜓𝑟 0.5 0.5 0.5 0.5 0.5 
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Table 3. Quadrotor Model Parameters 

 
 

 

Figure 3. Quadrotor 3D Trajectory Tracking 

 
Proposed optimum characteristic equation has small 
steady state errors when compared to the reference 
characteristic equation result. Quadrotor inertial 
reference frame movements in 2D can be seen in Figure 
4, 5 and 6 along x, y and z directions. Movements on the 
inertial frame x and y axes have two small scale figures. 
Small scale figures show the detailed version based on 
that time.  When time is 10s. on the y axis there is small 
oscillations which caused by turning point on the axis x 
and added yaw movement. Also, at time 20s on the x axis 
there is a same oscillation according to the quadrotor 
trajectory with added noises and yaw movement during 
the simulation. Through the time 10, 20, 30 and 40 
proposed characteristic equation results have less steady 
state error and less oscillation than reference 
characteristic equation. With this robustness of the 
proposed characteristic equation performance against 
noises proved more stable and it has high precision flight 
ability when compared with the reference characteristic 
equation performance.  Quadrotor body frame angles can 
be seen in Figure 7. Even tough, reference trajectory 
includes simultaneous changes, noises, and orientation 
distortion in body frame coordinates, second order 
sliding mode control with optimum characteristic 

equation performance is also again proved its 
effectiveness.  
 

 

Figure 4. Quadrotor x axis tracking 

 

 

Figure 5. Quadrotor y axis tracking 

 

Figure 6. Quadrotor z axis tracking 

Linear and angular velocity of the quadrotor can be seen 
in Figure 8 and 9 respectively. Finally, Figure 10 shows 

m 1.1 Kg 

L 0.21 m 

Jx=Jy 1.22 Ns2/rad 

Jz 2.2 Ns2/rad 

K 1 Ns/m 

g 9.81 m/s2 

b 5 N/s2 

k 2 N/ms2 
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that quadrotor control input torques. In addition to 
trajectory tracking performance improving, chattering 
effects on the torque inputs are eliminated by using 
saturation function. Small-scaled figures show detailed 
u2 and u3 torques.  

 

Figure 7. Quadrotor Body Frame Tracking 

 

 

Figure 8. Quadrotor Linear Velocities 

 

Figure 9. Quadrotor Angular Velocities 

 

 

 Figure 10. Quadrotor Control Torques 

 

5 Conclusion 

In this study optimum characteristic equation is 
proposed for second order sliding mode controller 
(SOSMC). To obtain characteristic equation, boundaries 
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are selected and optimum third order equation is 
determined based on the refence study. Later, third order 
optimum characteristic equation and quadrotors general 
third order equation is compared with each other and the 
coefficient values of the controller are obtained 
according to the comparison. The effectiveness of the 
proposed characteristic equation results demonstrated 
in trajectory tracking performance of quadrotor. In 
addition to this, comparison between reference 
characteristic equation and proposed characteristic 
equation results observed in the same figures. The 
proposed controller results demonstrate smaller steady 
state error, smaller oscillation and more precise flight 
tracking performance with respect to the reference 
study. Thus, proposed characteristic equation for SOSMC 
proved its robustness against disturbance rejection and 
yaw angle deflection inside the trajectory.  

For a future work, our aim is to design this controller 
structure on a real quadrotor system and test trajectory 
tracking performance. 
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