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Abstract 

Zinc oxide nanowires (ZnO NWs) can be used in some NEMS applications due to their remarkable chemical, 
physical, mechanical and thermal resistance properties. In terms of the suitability of such NEMS organizations, a 
correct mechanical model and design of ZnO NWs should also be established under different effects. In this study, 
thermal vibration analyses of elastic beam models of ZnO NWs are examined based on Eringen's nonlocal 
elasticity theory. The resulting equation of motion is solved with a finite element formulation developed for the 
atomic size-effect and thermal environment. The vibration frequencies of ZnO NWs with different boundary 
conditions are calculated under nonlocal parameter and temperature change values and numerical results were 
discussed. 

Keywords: Finite element method, nonlocal elasticity, thermal environment, vibration, Zinc Oxide nanowire. 

1. Introduction 

It is seen that people use products with stronger physical, chemical, thermal, mechanical, 
optical, etc. properties. This is possible with the science of nanotechnology that is today’s 
pioneer technology. Nanotechnology is a science that aims to investigate the properties of 
materials with dimensions from 1 nm to 100 nm and to integrate these materials into classical 
applications of science and engineering disciplines. It can be stated that nanotechnology, which 
started its adventure with gave a conference by R. Feynman [1] in 1959, gained a serious 
importance with the discovery of the carbon nanotube material [2,3]. Additionally, properties 
of wide range of nanomaterials such as boron nitride nanotube [4], graphene [5] and metallic 
or molecular nanowires [6-8] are fundamental topics of this discipline. It can be expressed that 
such nanomaterials show their effect in different applications such as sensor, switch, actuator, 
bridge, transistor.  

The structural-electronic applications containing nanomaterials are generally collected under 
the name of nanoelectromechanical systems (NEMS). To perform the accurate mechanical 
analyses of NEMS is essential for NEMS applications to work properly in terms of engineering. 
To perform mechanical analysis via experimental methods requires high operation costs, 
professional expert approaches and long processes. Also, it is a well-known fact that the results 
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obtained by experimental methods do not present results in accordance with the classical 
elasticity theory. These difficulties have been overcome by adapting the mathematical 
approaches developed in different periods to the classical elasticity theory. The new elasticity 
theories, namely, higher-order continuum theories, generally include parameters related to the 
atomic dimensions of nanomaterials. It can be said that nonlocal elasticity theory [9-10], couple 
stress elasticity theory [11,12], strain gradient elasticity theory [13,14], surface energy elasticity 
theory [15,16] and doublet mechanics elasticity theory [17] exemplify for higher-order 
continuum theories.  

The nonlocal elasticity theory states that the stress and strain of other regions adjacent to that 
region must also be taken into consideration in order to calculate the stress and strain in a certain 
region of the atomic structure. Thus, the uncertainty in the strain energy that goes to infinity 
due to atomic factors is resolved. In the 1960s, the studies of Eringen et al. enabled the 
establishment of the nonlocal elasticity theory and the determination of its main principles. It 
can be stated that approximately 45 years later, analyses of continuous mechanical models of 
nanoscaled structures started to be handled with the nonlocal elasticity theory [18-20]. 
Following these, vibration, buckling and bending analyses of nonlocal Euler–Bernoulli nano 
beams are given [21-23]. Lu et al. studied the nonlocal vibration phase velocities of single and 
multi-walled carbon nanotubes by using Euler-Bernoulli and Timoshenko beam theories [24]. 
Numanoğlu examined axial and flexural vibration analyses of different nanowires and 
nanotubes [25]. Axial and torsional vibration analyses of nonlocal nanorods are also available 
in the literature [26-32]. Jalaei and Civalek studied the nonlocal elasticity dynamic instability 
of functionally graded porous beam under magnetic effects resting on viscoelastic foundation 
by employing Navier’s technique and Bolotins’s approach [33]. Apart from these, vibration and 
bending of some nanomaterials are tackled based on the classical theory [34-36]. Civalek 
presented the finite element formulations of plates and shells [37]. On the other hand, it can be 
stated that studies on the use of finite element formulation in mechanical analysis of 
nanostructures with nonlocal elasticity have taken place in the literature [27,28,38-52]. 
Additionally, the free vibration behavior of a functionally graded beam is researched for Euler-
Bernoulli, Timoshenko, Shear and Rayleigh beam theories [53]. Moreover, mechanical 
analyses of different continuous structures have been performed via novel numerical 
approaches such as discrete singular convolution and differential quadrature [54-60].  

In this article, vibration analyses of nanobeams modeled by using zinc oxide nanowires (ZnO 
NWs), which has an important area in the applications of nanotechnology science, are carried 
out with the nonlocal elasticity theory. The temperature effect is considered in the vibration 
analysis. A nonlocal finite element formulation (NL-FEM) is presented for the solution of 
equation of motion. Then, the vibration frequencies of simply supported ZnO NWs are 
calculated via analytical method and NL-FEM and compared. Also, thermal vibration 
frequency results are presented by using NL-FEM for beam models with boundary condition 
that is not possible to be solve analytically. In the solution of nonlocal free vibration, the 
accuracy of the proposed formulation is discussed. Finally, the most general results are 
summarized. 

2. Nonlocal Finite Element Analysis for Thermal Vibration of Nanobeams 

The equation of motion of nonlocal thermal vibration of nano scaled beams according to Euler-
Bernoulli beam theory can be presented as follows: 
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(1) 

where EI  is bending rigidity, ae0  is nonlocal parameter and EA  is axial rigidity. α  defines 
the thermal expansion coefficient. TΔ  is temperature change and w is transverse displacement. 
On the other hand, Aρ  explains volume of unit length and f  is transverse distributed force. 

The solution of Eq. (1) will be performed in this current study by using finite element. The 
fundamental of this solution based on weighted residual method [49]. According to this, average 
weighted residue is written as  
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here, h is weighting function and l is length of finite element. The transverse motion of bending 
finite element is described as 
 
	 wφ=w  (3) 

where φ  is shape function of beam finite element and w is displacement vector. Additionally, 
the first derivation of displacement of bending finite element can be written as 
 

                       Bw==
∂
∂ w
x
w kD  (4) 

where B=φkD  and kD  is defined as kinematic operator. 

The partial integrations of all terms seen in Eq. (2) can be written as  
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If above equations are substituted into Eq. (2) and weighted residual is evanished, the weak 
formulation is attained as follows 
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(6) 

To rearrange Eq. (6), following expressions can be used:  
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Substituting of Eq. (7) into Eq. (6) yields following equation 
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this equation can be written as follows in the matrix form: 
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where K is bending stiffness matrix. cTK ,  and nlTK ,  state the local and nonlocal negative 
stiffness matrices originating from temperature change, respectively. On the other hand, cM  
and nlM  are local and nonlocal mass matrices, respectively. cf  and nlf  express local and 
nonlocal external force vectors, respectively. 

If the 0=f  is taken for free vibration and ( ) ( ) ( )αω −= txWtxw sin,  expression is utilized into 
Eq. (9), the eigenvalue formulation of finite element analysis is obtained as follows: 
 
    [ ] [ ]( ) 0det 2 =− ∑∑ MK ω  (17) 

where [ ]∑ K  and [ ]∑ M  are total stiffness and mass matrices. ω  is natural frequency of 
nanobeam. 

Also, the frequency equation of simply supported beams can be solved analytically. According 
to this, the series expansion as follows, ensures geometric and mechanical boundary conditions 
of simply supported beams:    
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where nW  is unknown series coefficient, n is mode number, L is length of nanobeam. ω  
explains the natural frequency of nanobeam. Additionally, t is time and α  is phase angle. Using 
Eq. (18) into Eq. (1), the following expression can be obtained   
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Substituting of Eq. (20) into Eq. (19) yields the natural frequency equation of simply supported 
nano beams for nonlocal parameter and temperature change: 
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3. Numerical Examples 

In this section, vibration frequencies are calculated for thermal vibration analysis of ZnO NWs. 
The numerical results are given for simply supported (S-S), cantilever (C-F), propped cantilever 
(C-S) and clamped supported (C-C) boundary conditions. In order to include the nano scale 
effect in the analysis, nonlocal elasticity theory is considered. Mechanical properties are taken 
as follows in the thermal vibration analysis: modulus of elasticity GPa58=E  [61], unit 
volume mass 3mkg5600=ρ  [62] and thermal expansion coefficient 16 K109.2 −−×=α  [63]. 
Additionally, the geometric features are chosen as follows: beam length nm20=L  and circular 
cross-section diameter nm2=d . On the other hand, 20 finite elements are used for nonlocal 
finite element analyses.  

In Table 1, the first three mode vibration frequencies of simply supported beams modeled with 
ZnO NWs are calculated and compared with analytical and finite elements for different 
nondimensional nonlocal parameter values. In addition, the frequencies of the beams not under 
temperature change were compared with frequencies of the beams under temperature change. 
First of all, nonlocal expression is a parameter that reduces classical vibration frequencies. By 
the increase of this value reveals, the frequencies of nanoscaled beams more decrease. Also, 
temperature change decreases the frequencies of ZnO NWs. In the case that the nonlocal 
parameter is higher, the temperature factor is more influential. On the other hand, it is seen that 
the values obtained by the finite element method are very close to the analytically calculated 
frequencies. In general, while the increase in the mode number raises the difference between 
calculated values by using the analytical method and NL-FEM, the increase of nonlocal 
parameter decreases this difference. 

In Table 2, the first three mode frequencies of ZnO NWs are tabulated for three different 
boundary conditions and temperature change. Analytical vibration analysis for boundary 
conditions except S-S is not possible in case of nonlocal elasticity. Also, when it is considered 
that the temperature parameter is included in the analysis, an alternative to the analytical method 
has to be used and therefore the analyses are given only with the finite element formulation. 
When the stiffness states between the boundary conditions are compared, it can be said that the 
results obtained are reasonable. The frequencies of the clamped supported beams are the 
highest, while the frequencies of the cantilever beams are the lowest. Additionally, the boundary 
condition in which the nonlocal parameter has the highest effect is C-C. 

Table 1. Comparison of the first three modes flexural frequencies (GHz) of simply supported Zinc 
Oxide nanowires.  

Nonlocal 
parameter 

Mode 
Number 

K0=ΔT   K300=ΔT  
Analytical NL-FEM  Analytical NL-FEM 

00 =Lae  1 6.3190 6.3190  5.8565 5.8565 
2 25.2761 25.2763  24.8265 24.8266 
3 56.8712 56.8731  56.4238 56.4258 

       

15.00 =Lae  1 5.7161 5.7161  5.2002 5.2002 
2 18.3941 18.3942  17.7712 17.7713 
3 32.8423 32.8434  32.0614 32.0625 

       

35.00 =Lae  1 4.2516 4.2516  3.5276 3.5276 
2 10.4628 10.4629  9.3244 9.3244 
3 16.4991 16.4997  14.8841 14.8846 

 
Table 2. The first three modes flexural frequencies (GHz) of Zinc Oxide nanowires with different 

boundary conditions under temperature change. 
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Nonlocal 
parameter 

Mode 
Number 

Boundary Conditions ( K300=ΔT ) 
C-F C-S C-C 

00 =Lae  1 1.5191 9.5326 14.0772 
2 13.4342 31.6055 39.1525 
3 38.9400 66.3446 77.0480 

     

15.00 =Lae  1 1.3875 8.3462 12.2447 
2 10.0411 22.1828 26.9237 
3 23.5060 37.0263 42.2733 

     

35.00 =Lae  1 0.9311 5.5268 8.0226 
2 5.6495 11.5262 13.7018 
3 11.6736 17.1731 19.6303 

 

 

4. Conclusions 

In this study, a vibration analysis is performed for elastic beam models of ZnO NWs based on 
the nonlocal elasticity theory. It is also thought that the beams are under the influence of 
temperature change. Finite element formulation is used to solve the equation of motion. With 
this formulation, frequencies of different vibration modes of ZnO NW beams with different 
boundary conditions are calculated under nondimensional nonlocal parameter and temperature 
change values and the results are discussed. 

In general, it is understood that the atomic scale effect and ambient temperature are definitely 
factors to be taken into account in the dynamic analysis of continuous models of nanoscale 
structures. In addition, it is concluded that the use of finite element formulation based on the 
size effect is an important way for the cases where dynamic analysis cannot be performed by 
analytical methods. It is thought that these results will guide the proper and optimum structural 
designs of NEMS using ZnO NWs. 
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