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Abstract
The geometric process is widely applied as a stochastic monotone model in many prac-
tical applications since its introduction. However, it sometimes does not satisfy some
requirements in the real-world applications due to model limitations. For this reason, it is
proposed a new stochastic model which is called doubly geometric process. In the applica-
tions of the doubly geometric process, the estimation problem associated with the process
arises naturally. In this study, the statistical inference problem for the doubly geometric
process is considered by assuming that the distribution of the first interarrival time has
an exponential distribution. The maximum likelihood method is used to estimate the
model parameters of the doubly geometric process and the parameter of distribution. The
joint distribution of the maximum likelihood estimators is obtained. A simulation study
is presented to evaluate the small sample performance of the estimators with different pa-
rameter values. Finally, three real-world-data sets are used to illustrate the applicability
of the methods.
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1. Introduction
The geometric process (GP) has proved to be a powerful tool in various field of statistics

and applied probability since its introduction. Many authors make a significant effort on
the GP and a substantial amount of research are published. For example, the GP is used
as a model in modelling of an epidemic disease [4], software reliability [9,11], maintenance
[15], warranty analysis [2, 8], and electricity prices [5]. The definition of this process is
given as follows.

Let {N(t), t ≥ 0} be a counting process (CP) and {Xk, k = 1, 2, . . .} be the sequence of
nonnegative random variables representing the inter-arrival times of this process. The CP
{N(t), t ≥ 0} is said to be a GP with the ratio a if there exists a real number a > 0 such
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that ak−1Xk for k = 1, 2, . . . generate a renewal process (RP) with a common distribution
function F .

Let {N(t), t ≥ 0} be a GP with the ratio parameter a and Fk be the distribution
function of Xk, k = 1, 2, . . .. The distribution function of the first interarrival time of
a GP uniquely determines the distribution function Fk, that is, Fk(x) = F (ak−1x) for
k = 1, 2, . . .. The sequence {Xk, k = 1, 2, . . .} is stochastically increasing if a < 1 and
stochastically decreasing if a > 1, respectively. When a = 1, the GP reduces to a RP.

Despite the GP is widely used as a stochastic monotone model in many practical ap-
plications, it has some limitations which are given as follows: (1) If the distributions of
the interarrival times have varying shape parameters, the GP will not be used to model
these interarrival times. To elaborate, let us take the Weibull distribution as a distribu-
tion of the first interarrival time of the GP. It is obvious that the distribution of X1 is
F (x) = 1 − e

−( x
β

)α

, x > 0; α, β > 0. From the definition of the GP, the distribution

function of Xk is Fk(x) = F (ak−1x) = 1 − e
−( ak−1x

β
)α

, k = 1, 2, . . .. As can be seen, the
scale parameter ak−1

β depends on k and changes over k’s. However, the shape parameter
α remains constant over k’s since it does not include k. This may restrict the usage of the
GP in wider applications. (2) The GP can only be used for stochastically monotone in-
terarrival times. However, in real world applications, the pattern of the interarrival times
can be non-monotonous. In such cases, the GP will not be the suitable model.

Due to these limitations of the GP, there is a need to propose new models in the
real-world applications. In recent years, many authors have made a significant effort on
developing new methods to model the data from a series of events, see [12–14] for the
details. The current paper focuses on the doubly geometric process (DGP) proposed by
[12] which can overcome the limitations mentioned above. This process is defined in the
following way.

The CP {N(t), t ≥ 0} is said to be a DGP with the parameter a if there exists a real
number a > 0 such that ak−1X

h(k)
k , k = 1, 2, . . . generate a RP with a common distribution

function F where h(k) > 0 is a function of k with h(1) = 1 for k = 1, 2, . . . [12].
Since Wu [12] obtains that the DGP with h(k) = (1+log(k))b outperforms the processes

with the other h(k)’s which are bk−1, blog(k), and 1 + b log(k), h(k) is taken as h(k) =
(1 + log(k))b where b is a real number and log is the logarithm with base 10.

Let {N(t), t ≥ 0} be a DGP with the parameters a and b, and Fk be the distribution
function of {Xk, k = 1, 2, . . .}, then, it is obvious from the definition of the DGP that
Fk(x) = F (ak−1x(1+log(k))b) for k = 1, 2, . . ..

Monotonicity property of the DGP can be given as follows: i) If 0 < a < 1, b < 0,
and P (X1 > 1) = 1 or if 0 < a < 1, 0 < b < 4.898226, and P (0 < X1 < 1) = 1, then
{Xk, k = 1, 2, . . .} is stochastically increasing. ii) If a > 1, b < 0, and P (0 < X1 < 1) = 1
or if a > 1, 0 < b < 4.898226, and P (X1 > 1) = 1, then {Xk, k = 1, 2, . . .} is stochastically
decreasing iii) If (1+log(k+1))−b(log(y)−k log(a))+(1+log(k))−b((k−1) log(a)− log(y))
varies between negative and positive values, then {Xk, k = 1, 2, . . .} is non-monotonous
over k’s, where y represents all possible values on Xk, k = 1, 2, . . . [12].

In the applications of the DGP, the estimation problem of model parameters naturally
arises. In this study, under the assumption that the first interarrival time follows an expo-
nential distribution, we consider the estimation problem of the model parameters of the
DGP. The remainder of this paper is structured as follows: In Section 2, the maximum
likelihood (ML) method is used to obtain the estimators of the model parameters. The as-
ymptotic joint distribution of the ML estimators is given. In Section 3, a simulation study
is performed to evaluate the small sample performance of the estimators with different
parameter values by using the bias and mean square error (MSE) criteria. To illustrate
the applicability of the methods given in previous sections, three real world applications,
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namely the hydraulic system failure data (Data set 1), USS Halfbeak No. 3 propulsion
diesel engine failure data (Data set 2), and the Aircraft 3 data (Data set 3), are considered.
Finally, we present the conclusion part of the study.

2. Statistical inference for the DGP
The exponential distribution is widely used as lifetime distribution in the reliability

context and life testing areas. Its probability density function (pdf) is given by

f(x) = 1
θ

e− x
θ , x > 0; θ > 0.

Note that the expected value and the variance of exponential distribution are θ and θ2,
respectively. Assume that {X1, X2, . . . , Xn} is a data set which comes from a DGP with
ratio parameter a and h(k) = (1 + log(k))b. X1 is distributed as exponential distribution
with mean θ. Then, based on this data set, the log-likelihood function can be obtained as

ln L(a, b, θ) = n(n − 1)
2

ln a − n ln θ − 1
θ

(
n∑

k=1
ak−1x

(1+log(k))b

k

)

+
n∑

k=1
((1 + log(k))b − 1) ln(xk) +

n∑
k=1

ln(1 + log(k))b. (2.1)

By differentiating the log-likelihood function with respect to a, b, and θ, and equating
them to zero, the likelihood equations are

∂ ln L

∂a
= n(n − 1)

2
− 1

θ

n∑
k=1

(k − 1)ak−2x
(1+log(k))b

k = 0,

∂ ln L

∂b
= −1

θ

(
n∑

k=1
ak−1x

(1+log(k))b

k ln xk(1 + log(k))b ln(1 + log(k))
)

+
n∑

k=1
ln xk(1 + log(k))b ln(1 + log(k)) +

n∑
k=1

ln(1 + log(k)) = 0,

and

∂ ln L

∂θ
= −n

θ
+ 1

θ2

n∑
k=1

ak−1x
(1+log(k))b

k = 0.

The ML estimators of the parameters a, b, and θ are obtained by solving the likelihood
equations given above. However, the ML estimators cannot be obtained explicitly. Any
package programme, for example Mathematica, can be used to solve these equations si-
multaneously to obtain the ML estimators of the model parameters a, b, and θ. On the
other hand, the log-likelihood function given in Equation 2.1 can be maximized directly
to obtain the ML estimators of the model parameters a, b, and θ.

By [3], the joint distribution of the ML estimators is an asymptotically normal as n → ∞
with mean vector (a, b, θ) and variance-covariance matrix I−1 as follows: â

b̂

θ̂

 ∼ AN

 a
b
θ

 , I−1

 (2.2)
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where I−1 is the inverse of the Fisher information matrix I. Here,I−1 is given as follows:

I−1 =

u11 u12 u13
u22 u23

u33

 (2.3)

where

u11 = − 12a2((
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ) ln(1 + log(k)))2 − n

n∑
k=1

(1 + ln(ak−1)2

− 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)(0.845569 + ln(θ))))

(ln(1 + log(k))2)/(n((−2 + 6n − 4n2)
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ 12(n − 1)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784 − ln(ak−1)

+ ln(θ)) ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ n(n2 − 1)
n∑

k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)

(0.845569 + ln(θ)))) ln(1 + log(k))2)),

u12 = (6a(n − 1)
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)) − 2
n∑

k=1

(k − 1)(0.422784 − ln(ak−1)

+ ln(θ)) ln(1 + log(k)))/((−2 + 6n − 4n2)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ 12(n − 1)(
n∑

k=1

(0.422784 − ln(ak−1) + ln θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784 − ln(ak−1)

+ ln(θ)) ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ n(n2 − 1)
n∑

k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)

(0.845569 + ln(θ)))) ln(1 + log(k))2),

u13 = −6aθ(2(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ))

ln(1 + log(k)) − n(n − 1)
n∑

k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208+

6 ln(θ)(0.845569 + ln(θ)))) ln(1 + log(k))2)/(n((−2 + 6n − 4n2)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ))

ln(1 + log(k)))2 + 12(n − 1)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784

− ln(ak−1) + ln(θ)) ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ n(n2 − 1)
n∑

k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)

(0.845569 + ln(θ)))) ln(1 + log(k))2)),
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u22 = (n(n2 − 1))/((−2 + 6n − 4n2)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2 + 12(n − 1)

(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ))

ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2 + n(n2 − 1)

n∑
k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)(0.845569+

ln(θ)))) ln(1 + log(k))2),

u23 = (2(n − 1)θ((2n − 1)
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)) − 3
n∑

k=1

(k − 1)(0.422784

− ln(ak−1) + ln(θ)) ln(1 + log(k))))/((−2 + 6n − 4n2)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ))

ln(1 + log(k)))2 + 12(n − 1)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784−

ln(ak−1) + ln(θ)) ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2

+ n(n2 − 1)
n∑

k=1

(1 + ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)(0.845569+

ln(θ)))) ln(1 + log(k))2)

and

u33 = (2θ2(−6(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2 + n(1 − 3n + 2n2)
n∑

k=1

(1+

ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)(0.845569 + ln(θ))))

ln(1 + log(k))2))/(n((−2 + 6n − 4n2)(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2 + 12(n − 1)

(
n∑

k=1

(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ))

ln(1 + log(k)) − 12(
n∑

k=1

(k − 1)(0.422784 − ln(ak−1) + ln(θ)) ln(1 + log(k)))2 + n(n2 − 1)
n∑

k=1

(1+

ln(ak−1)2 − 2 ln(ak−1)(0.422784 + ln(θ)) + 0.16667(4.94208 + 6 ln(θ)(0.845569 + ln(θ))))

ln(1 + log(k))2)).

We give the derivation of I−1 in Appendix.
It can be concluded from the Equation 2.2 that the asymptotic distribution of each

parameter is

â ∼ AN(a, u11),
b̂ ∼ AN(b, u22),
θ̂ ∼ AN(θ, u33).

It is obvious that the estimators â, b̂ and θ̂ are asymptotically unbiased and consistent.
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3. Simulation study
In this section, a simulation study is performed to evaluate the performance of the

estimators of the parameters a, b, and θ by using the bias and MSE criteria. Here, values
of the parameter a are chosen as 0.95, 0.99, 1.01 and 1.05 since the trend is usually small
in practice [7]. To see the effects of the stochastic monotonic property of the DGP on
estimators of the parameters, the parameter b is chosen as 2, -2, 0.5, and -0.5. The mean
θ of the exponential distribution is taken as 2 and 0.5. It can be observed a realization
{X1, X2, . . . , Xn} of a DGP as follows. First, generate a random sample {Y1, Y2, . . . , Yn}
from exponential distribution with mean θ. Then, the transformation

Xk = ( Yk

ak−1 )
1

(1+log(k))b , k = 1, 2, . . . , n

is applied to obtain the data set {X1, X2, . . . , Xn}. Based on this data set, we calculate
the simulated means, biases and MSEs of the parameters a, b, and θ. Throughout the
simulation study, we consider the sample sizes n = 30, 50, and 100 and take the repetition
number as 1000. The simulated means, biases and MSEs of all estimators are given in the
following Tables 1-8.

Table 1. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = 2 and θ = 2.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9442 -0.0058 0.0007 2.0741 0.0741 0.0467 2.1109 0.1109 0.6534
50 0.9467 -0.0034 0.0002 2.0415 0.0415 0.0203 2.0773 0.0773 0.4082

100 0.9487 -0.0014 0.0000 2.0170 0.0170 0.0074 2.0263 0.0263 0.1577

0.99
30 0.9876 -0.0024 0.0006 2.0782 0.0782 0.0478 2.1750 0.1750 0.7563
50 0.9889 -0.0012 0.0001 2.0404 0.0404 0.0205 2.1029 0.1029 0.4355

100 0.9897 -0.0003 0.0000 2.0197 0.0197 0.0075 2.0591 0.0591 0.1833

1.01
30 1.0088 -0.0012 0.0005 2.0706 0.0706 0.0449 2.1239 0.1239 0.6669
50 1.0096 -0.0004 0.0001 2.0425 0.0425 0.0216 2.0846 0.0846 0.4385

100 1.0103 0.0003 0.0000 2.0183 0.0183 0.0074 2.0622 0.0622 0.2087

1.05
30 1.0520 0.0020 0.0006 2.0819 0.0819 0.0462 2.1582 0.1582 0.8438
50 1.0519 0.0019 0.0002 2.0378 0.0378 0.0203 2.1247 0.1247 0.4461

100 1.0511 0.0011 0.0000 2.0144 0.0144 0.0068 2.0703 0.0703 0.2017

Table 2. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = −2 and θ = 2.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9447 -0.0053 0.0007 -1.9226 0.0774 0.0463 2.1767 0.1767 0.8020
50 0.9473 -0.0023 0.0002 -1.9633 0.0368 0.0208 2.0655 0.0655 0.3970

100 0.9489 -0.0011 0.0000 -1.9843 0.0157 0.0072 2.0450 0.0450 0.1772

0.99
30 0.9878 -0.0022 0.0005 -1.9286 0.0715 0.0463 2.1530 0.1530 0.6870
50 0.9885 -0.0015 0.0001 -1.9538 0.0462 0.0203 2.0998 0.0998 0.4620

100 0.9896 -0.0004 0.0000 -1.9785 0.0215 0.0071 2.0434 0.0434 0.1887

1.01
30 1.0087 -0.0013 0.0010 -1.9289 0.0712 0.0606 2.1861 0.1861 0.8032
50 1.0105 0.0005 0.0001 -1.9637 0.0363 0.0195 2.1227 0.1227 0.4339

100 1.0101 0.0001 0.0000 -1.9878 0.0122 0.0072 2.0336 0.0336 0.1823

1.05
30 1.0525 0.0025 0.0006 -1.9238 0.0763 0.0477 2.1652 0.1652 0.7875
50 1.0516 0.0016 0.0002 -1.9622 0.0378 0.0198 2.1244 0.1244 0.4104

100 1.0510 0.0010 0.0000 -1.9852 0.0148 0.0071 2.0685 0.0685 0.3199
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Table 3. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = 0.5 and θ = 2.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9432 -0.0068 0.0008 0.5826 0.0823 0.0471 2.1405 0.1405 0.7726
50 0.9473 -0.0027 0.0002 0.5280 0.0280 0.0201 2.0474 0.0474 0.3559

100 0.9488 -0.0012 0.0000 0.5168 0.0168 0.0070 2.0437 0.0437 0.1769

0.99
30 0.9870 -0.0030 0.0005 0.5714 0.0714 0.0485 2.1306 0.1306 0.7265
50 0.9887 -0.0013 0.0001 0.5434 0.0434 0.0217 2.0685 0.0685 0.4315

100 0.9897 -0.0003 0.0000 0.5164 0.0164 0.0069 2.0462 0.0462 0.1818

1.01
30 1.0094 -0.0006 0.0006 0.5797 0.0797 0.0485 2.1995 0.1995 1.0030
50 1.0098 -0.0002 0.0001 0.5417 0.0417 0.0205 2.0100 0.0100 0.4552

100 1.0101 0.0001 0.0000 0.5167 0.0167 0.0067 2.0091 0.0091 0.1939

1.05
30 1.0538 0.0038 0.0007 0.5665 0.0665 0.0460 2.2196 0.2196 0.9326
50 1.0517 0.0017 0.0002 0.5422 0.0422 0.0210 2.0776 0.0776 0.4333

100 1.0514 0.0014 0.0000 0.5215 0.0215 0.0073 2.0734 0.0734 0.1943

Table 4. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = −0.5 and θ = 2.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9442 -0.0058 0.0007 -0.4244 0.0755 0.0463 2.1501 0.1501 0.7646
50 0.9468 -0.0032 0.0002 -0.4564 0.0436 0.0191 2.0804 0.0804 0.3902

100 0.9484 -0.0016 0.0000 -0.4808 0.0192 0.0072 2.0284 0.0284 0.1943

0.99
30 0.9878 -0.0022 0.0006 -0.4280 0.0720 0.0444 2.1792 0.1792 0.8176
50 0.9895 -0.0005 0.0001 -0.4632 0.0368 0.0211 2.1135 0.1134 0.4164

100 0.9898 -0.0002 0.0000 -0.4871 0.0129 0.0074 2.0546 0.0546 0.1969

1.01
30 1.0083 -0.0017 0.0006 -0.4247 0.0753 0.0496 2.1479 0.1479 0.7872
50 1.0099 -0.0001 0.0001 -0.4562 0.0438 0.0199 2.1279 0.1279 0.4711

100 1.0101 0.0001 0.0000 -0.4875 0.0125 0.0067 2.0363 0.0363 0.1933

1.05
30 1.0530 0.0012 0.0007 -0.4256 0.0744 0.0453 2.1644 0.1644 0.9015
50 1.0522 0.0010 0.0002 -0.4576 0.0424 0.0196 2.1459 0.1459 0.4606

100 1.0509 0.0009 0.0000 -0.4825 0.0175 0.0073 2.0505 0.0505 0.2076

Table 5. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = 2 and θ = 0.5.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9473 -0.0027 0.0005 2.0777 0.0777 0.0457 0.5126 0.0126 0.0378
50 0.9470 -0.0030 0.0002 2.0478 0.0478 0.0207 0.4951 -0.0049 0.0210

100 0.9491 -0.0009 0.0000 2.0145 0.0145 0.0071 0.5016 0.0016 0.0111

0.99
30 0.9912 0.0012 0.0005 2.0841 0.0841 0.0486 0.5161 0.0161 0.0377
50 0.9894 -0.0006 0.0001 2.0431 0.0431 0.0197 0.5048 0.0048 0.0222

100 0.9898 -0.0002 0.0000 2.0186 0.0186 0.0064 0.5004 0.0004 0.0109

1.01
30 1.0116 0.0016 0.0006 2.0680 0.0680 0.0464 0.5184 0.0184 0.0411
50 1.0111 0.0011 0.0001 2.0441 0.0441 0.0203 0.5109 0.0109 0.0239

100 1.0102 0.0002 0.0000 2.0141 0.0141 0.0070 0.5019 0.0019 0.0102

1.05
30 1.0563 0.0063 0.0008 2.0739 0.0739 0.0486 0.5140 0.0140 0.0389
50 1.0541 0.0041 0.0002 2.0454 0.0454 0.0201 0.5180 0.0180 0.0209

100 1.0513 0.0013 0.0001 2.0173 0.0173 0.0073 0.5059 0.0059 0.0105
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Table 6. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = −2 and θ = 0.5.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9481 -0.0019 0.0005 -1.9341 0.0659 0.0418 0.5114 0.0114 0.0326
50 0.9477 -0.0023 0.0001 -1.9562 0.0438 0.0210 0.5024 0.0024 0.0226

100 0.9488 -0.0012 0.0000 -1.9814 0.0186 0.0070 0.4991 -0.0009 0.0102

0.99
30 0.9914 0.0014 0.0005 -1.9258 0.0742 0.0455 0.5142 0.0142 0.0327
50 0.9898 -0.0002 0.0001 -1.9672 0.0328 0.0195 0.5097 0.0097 0.0242

100 0.9900 0.0000 0.0000 -1.9843 0.0157 0.0068 0.4998 -0.0002 0.0098

1.01
30 1.0130 0.0030 0.0005 -1.9270 0.0730 0.0486 0.5208 0.0208 0.0396
50 1.0109 0.0009 0.0001 -1.9525 0.0476 0.0201 0.5036 0.0036 0.0216

100 1.0105 0.0005 0.0000 -1.9814 0.0186 0.0072 0.5023 0.0023 0.0099

1.05
30 1.0543 0.0043 0.0008 -1.9322 0.0678 0.0423 0.5094 0.0094 0.0366
50 1.0529 0.0029 0.0002 -1.9608 0.0392 0.0201 0.5104 0.0104 0.0223

100 1.0515 0.0015 0.0000 -1.9816 0.0183 0.0078 0.5108 0.0108 0.0120

Table 7. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = 0.5 and θ = 0.5.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9466 -0.0034 0.0006 0.5753 0.0753 0.0452 0.5072 0.0072 0.0357
50 0.9478 -0.0022 0.0001 0.5421 0.0421 0.0205 0.5057 0.0057 0.0216

100 0.9492 -0.0008 0.0000 0.5161 0.0161 0.0073 0.5026 0.0026 0.0102

0.99
30 0.9895 -0.0005 0.0005 0.5811 0.0811 0.0518 0.5022 0.0022 0.0363
50 0.9899 -0.0000 0.0001 0.5470 0.0470 0.0200 0.5083 0.0083 0.0220

100 0.9899 -0.0000 0.0000 0.5240 0.0240 0.0074 0.5041 0.0041 0.0094

1.01
30 1.0124 0.0024 0.0007 0.5771 0.0771 0.0496 0.5127 0.0127 0.0419
50 1.0109 0.0009 0.0001 0.5383 0.0383 0.0199 0.5083 0.0083 0.0205

100 1.0100 0.0000 0.0000 0.5148 0.0148 0.0069 0.5011 0.0011 0.0105

1.05
30 1.0567 0.0067 0.0009 0.5789 0.0789 0.0507 0.5152 0.0152 0.0390
50 1.0536 0.0036 0.0002 0.5471 0.0471 0.0215 0.5101 0.0101 0.0212

100 1.0515 0.0015 0.0000 0.5181 0.0181 0.0072 0.5094 0.0094 0.0099

Table 8. The simulated means, biases and MSE’s for the estimators of the pa-
rameters a, b = −0.5 and θ = 0.5.

a n
â b̂ θ̂

Mean Bias MSE Mean Bias MSE Mean Bias MSE

0.95
30 0.9462 -0.0038 0.0006 -0.4263 0.0737 0.0477 0.5102 0.0102 0.0338
50 0.9479 -0.0021 0.0002 -0.4620 0.0380 0.0204 0.5020 0.0020 0.0233

100 0.9492 -0.0008 0.0000 -0.4870 0.0130 0.0075 0.4987 -0.0013 0.0103

0.99
30 0.9906 0.0006 0.0005 -0.4322 0.0678 0.0435 0.5137 0.0137 0.0410
50 0.9902 0.0002 0.0001 -0.4625 0.0375 0.0110 0.5090 0.0090 0.0214

100 0.9899 -0.0001 0.0000 -0.4823 0.0177 0.0077 0.5021 0.0021 0.0111

1.01
30 1.0126 0.0026 0.0006 -0.4113 0.0887 0.0485 0.5136 0.0136 0.0392
50 1.0109 0.0009 0.0001 -0.4665 0.0335 0.0184 0.5083 0.0083 0.0225

100 1.0103 0.0003 0.0000 -0.4822 0.0178 0.0078 0.5019 0.0019 0.0104

1.05
30 1.0564 0.0064 0.0008 -0.4264 0.0736 0.0447 0.5213 0.0213 0.0405
50 1.0528 0.0028 0.0002 -0.4623 0.0377 0.0199 0.5042 0.0042 0.0210

100 1.0513 0.0013 0.0000 -0.4845 0.0155 0.0073 0.5086 0.0086 0.0111



1568 M.H. Pekalp, G. Eroğlu İnan, H. Aydoğdu

By the help of the asymptotic joint distribution of the estimators, the marginal as-
ymptotic distribution of each estimator is obtained, and with marginal distributions, the
statistical properties such as asymptotic unbiasedness, consistency and efficiency can be
investigated. However, convergence rates of the asymptotic properties for these estima-
tors are not explicit. For this reason, it is of importance to evaluate the small sample
performance of the proposed estimators by a simulation study.

According to the simulation results given in Tables 1-8, although the performance of
the ML estimators of the parameters a and b is well even for the sample size n = 30,
this comment cannot be made for the performance of estimator of θ. It seems that the
converges rate for estimator of θ is slower than the others. However, it can be easily seen
that both the bias and MSE values become smaller as n increases for all the estimators of
the parameters.

It is well known that the diagonal elements of I−1, that is u11, u22, and u33, are the
minimum variance bounds (MVBs) for the parameters a, b and θ. The simulated variances
of the ML estimators and corresponding MVB values for a = 0.95, b = 2, and θ = 2 are
given in the following Table 9.

Table 9. The simulated variances and corresponding MVBs values.

n
Simulated Variance MVBs
â b̂ θ̂ â b̂ θ̂

30 0.00064 0.04121 0.64175 0.00057 0.03639 0.52812
50 0.00018 0.01859 0.40265 0.00015 0.01734 0.32417

100 0.00004 0.00708 0.16717 0.00004 0.00671 0.16372

As can be seen from the Table 9 that the simulated variances of the ML estimators and
corresponding MVB values are getting closer as n increases. According to the simulation
study, it can be concluded that the proposed estimators are highly efficient estimators for
the parameters a, b and θ.

4. Applications
In this section, we consider three real world data sets given in [1, 6, 10], namely the

hydraulic system failure data (Data set 1), USS Halfbeak No. 3 propulsion diesel engine
failure data (Data set 2), and the Aircraft 3 data (Data set 3), respectively. Nonhomo-
geneous Poisson process with power law intensity is considered as the model for the Data
set 1 by [6, 7] shows that the GP is the suitable model for the Data set 2. However,
Wu [12] applies the DGP to model Data set 1 and Data set 2 and shows that the DGP
outperforms the other models for these data sets in terms of the root mean square errors
according to the least square method. Since Wu [12] finds the DGP as the suitable model
on Data set 1 and Data set 2, we do not consider model comparisons for these data sets
in this paper. However, for the Data set 3, which is known to be consistent with GP
model [7], it is required to show that the DGP performs better than the GP model. For
this purpose, we consider LogL and AIC as comparison criteria to determine the suitable
model. Moreover, to apply the estimation procedure developed in this study, we need to
show that the data sets come from the DGP with particular exponential distribution. We
propose following approach to see this result. First, we assume that the data sets follow a
DGP with particular exponential distribution. Then, we obtain the ML estimators of the
parameters a, b, and θ for each data set. If we can show that the predictions ŷk’s are iid
exponential random variables then, the DGP with particular exponential distribution can
be used for modeling of the data set. For this purpose, the predictions ŷk’s are obtained
from âk−1x

(1+log(k))b̂

k , k = 1, 2, . . . , n where â and b̂ are the ML estimators of the param-
eters a and b. The Kolmogorov-Smirnov (KS) test is applied to measure the goodness



Doubly geometric process with exponential distribution 1569

of fitness of the predictions for exponential distribution with mean θ̂. By assuming the
Data set 1 and Data set 2 follow a DGP with particular exponential distribution, the ML
estimators of the parameters a, b, and θ, the KS statistic and corresponding p-value are
presented in the following Table 10 for these data sets.

Table 10. ML Estimators, KS Test Statistic and p-value of the data sets.

ML Estimators
â b̂ θ̂ KS Test Statistic p-value

Data set 1 0.931119 0.416095 301.068 0.1288 0.7543
Data set 2 1.03848 -0.109328 574.827 0.1193 0.2439

As seen from Table 10 that the DGP with exponential distribution can be used as model
for the Data set 1 and Data set 2. Thus, estimates of the parameters can be taken as
given in Table 10 above.

Now, consider Data set 3. Let us calculate the ML estimators of the parameters a, b,
and θ for both DGP and GP models for this data set. By using these estimates of the
parameters, the values of LogL and AIC are also calculated and presented in the following
Table 11 together with the estimates of the parameters.

Table 11. Parameter Estimates and LogL and AIC values for DGP and GP
models.

DGP GP
LogL -153.913 -156.349
AIC 313.826 316.697

Estimates
b̂ 0.4122
â 0.9108 â 0.9709
θ̂ 111.905 θ̂ 53.381

It can be concluded from Table 11 that the DGP model is better than the GP model
according to the criteria LogL and AIC. After obtaining this result, we show that Data
set 3 follows a DGP with a particular exponential distribution. For this purpose, the KS
statistic and corresponding p value are presented in the following Table 12 for this data
set.

Table 12. KS Test Statistic and p-value of the Data set 3.

KS Test Statistic p-value
Data set 3 0.0949 0.9342

As can be seen from Table 12, the DGP with exponential distribution can be used as
model for the Data set 3. Thus, estimates of the parameters can be taken as given in
Table 11 above.

5. Conclusions
In this study, statistical inference problem of the DGP which is a novel model in sto-

chastic processes is studied when the distribution of the first interarrival time has an
exponential distribution. The estimators of the parameters a, b, and θ are obtained by
using the ML method. Then, we investigate the statistical properties of the ML estima-
tors. By carrying out an extensive simulation study, the performance of the estimators
is evaluated. It is shown that three real world applications can be fitted by the DGP
model with a particular exponential distribution. For these data sets, the estimates of the
parameters are given.
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Appendix
The derivation of I−1. The second derivations of the log-likelihood function given in
with respect Equation 2.1 to the parameters a, b, and θ are obtained as

∂2LnL

∂a2 = −n(n − 1)
2a2 − 1

θ
(

n∑
k=1

(k − 1)(k − 2)ak−3x
(1+log(k))b

k )

∂2LnL

∂a∂b
= −1

θ
(

n∑
k=1

(k − 1)ak−2x
(1+log(k))b

k ln(xk)(1 + log(k))b ln(1 + log(k)))

∂2LnL

∂a∂θ
= 1

θ2 (
n∑

k=1

(k − 1)ak−2x
(1+log(k))b

k )

∂2LnL

∂b2 = (−1
θ

(
n∑

k=1

ak−1 ln(xk)(1 + log(k))b(ln(1 + log(k)))2x
(1+log(k))b

k

(1 + (1 + log(k))b ln(xk)))) + (
n∑

k=1

ln(xk) ln(1 + log(k)))2(1 + log(k))b
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∂2LnL

∂b∂θ
= 1

θ2 (
n∑

k=1

ak−1x
(1+log(k))b

k ln(xk)(1 + log(k))b ln(1 + log(k)))

∂2LnL

∂θ2 = n

θ2 − 2
θ3 (

n∑
k=1

ak−1x
(1+log(k))b

k ).

Since Yk = ak−1X
(1+log(k))b

k , k = 1, 2, . . . and Yk’s are independent and exponentially
distributed random variables with the same mean θ, it can be easily calculated that for
k = 1, 2, . . ..
E(Yk) = θ,

E(X(1+log(k))b

k ) = θ

ak−1 ,

E(ln(X(1+log(k))b

k )) = −0.577216 + ln(θ) − ln(ak−1),

E(X(1+log(k))b

k ln(X(1+log(k))b

k )) = θ

ak−1 (0.422784 + ln(θ) − ln(ak−1))

and

E(X(1+log(k))b

k (ln(X(1+log(k))b

k ))2) = 1
ak−1 ((0.16667θ(4.94208 + 6 ln(θ)(0.845569 + ln(θ))))

− 2 ln(ak−1)(θ(0.422784 + ln(θ))) + (ln(ak−1))2θ).
Then, the expected values of the second derivatives are

E(−∂2LnL

∂a2 ) = 2n3 − 3n2 + n

6a2 ,

E(−∂2LnL

∂a∂b
) = 1

a
(

n∑
k=1

(k − 1) ln(1 + log(k))(0.422784 + ln(θ) − ln(ak−1))),

E(−∂2LnL

∂a∂θ
) = n − n2

2aθ
,

E(−∂2LnL

∂b2 ) =
n∑

k=1
(ln(1 + log(k)))2(1 + ((0.16667(4.94208 + 6 ln(θ)(0.845569 + ln(θ))))

− 2 ln(ak−1)(0.422784 + ln(θ)) + (ln(ak−1))2)),

E(−∂2LnL

∂b∂θ
) = −1

θ
(

n∑
k=1

ln(1 + log(k))(0.422784 + ln(θ) − ln(ak−1))),

and

E(−∂2LnL

∂θ2 ) = n

θ2 .

Thus, the elements of the Fisher information matrix I are obtained. The inverse of this
matrix is given in Equation 2.3.


