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ABSTRACT. In this paper, some new fuzzy differential subordinations obtained
by using the integral operator I : A, — Apintroduced in are obtained.

1. INTRODUCTION AND PRELIMINARIES

The notion of differential subordination was introduced by S.S. Miller and P.T.
Mocanu in papers @ and and later developed in . Many other authors have
contributed to the development of this field of research. The notion of fuzzy sub-
ordination was recently introduced by G.I. Oros and Gh. Oros in paper ﬂgﬂ and
the notion of fuzzy differential subordination was introduced by the same authors
in . After that, some papers related to fuzzy differential subordinations have
been published by the same authors, , , and by other authors, such as ,
and .

Similar results on fuzzy differential subordinations obtained by using operators
were recently published in [1], [2].

We next give the notations used throughout the paper:

Let U denote the open disc in the complex plane, let U denote the closed unit
disc in the complex plane and let U = {z € C: |z| = 1}. Let H(U) denote the
class of analytic functions in the unit disc U.

We denote the following classes of analytic functions:

Ay ={feHU): f(2) =2+ an 12" +ap02" 2 +..., 2€U}
Hla,n) = {f e HU): f(z) =a+anz" +an12" +..., z€U}
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230 G. 1. OROS.

for a € C and n € N*;

. Cna ()
S _{feA. Re ) >O,zeU},

the class of starlike functions in U;
zh (z)
9(z)

the class of close-to-convex (univalent) functions.

C{feA:ngS*,Re >O,zeU}

Definition 1. [§, Definition 2.2. b] We denote by Q the set of functions q that are
analytic and injective on U \ E(q), where

E(q) = {C € oU : linéq(z) = oo}
and are such that ¢'(¢) # 0 for ¢ € OU \ E(q). The set E(q) is called exception set.

Lemma A. (8, Lemma 2.2.d] Let ¢ € Q with q(0) = a and let

p(2) =a+anz" +apni12" T+

be analytic in U, with p(z) # a and n > 1. If p is not subordinate to q, then there
exist points zg = roe'®® € U and (, € U \ E(q), and an m > n > 1 for which
p(Uy,) € a(0),

(i) p(z0) = a(Co).

(ii) zop'(20) :H(THC)OQ/(CO) and e

zop" (20 Goq" (Co )

111) Re +1) > mRe (—l—l .

iy e (275 7o)
Definition 2. [13, Definition 1] For f € A,, n € N*, m e N, v € C, let I, be the
integral operator given by I, : A,, — Ay,

Lf(2) = f(2)
m ’7 + 1 : m—1 -1
IN'f(z) = A ' f(z) -7 dt, z€ U,

Al

By using Definition [2, we can prove the following property for this integral
operator:
For fe A, ne N*, m e N, v € C, we have

(oo} ’_y+1 m
If(z) =z + —_— apzk, z e U.
e Z+(7+k) .

Definition 3. [§, p. 4/, [14, p. 36] Let f and F be analytic functions. The function
[ is said to be subordinate to F, written f < F or f(z) < F(z), if there exists a
function w analytic in U, with w(0) = 0 and |w(z)| < 1, such that f(z) = F(w(z)).
If F is univalent, then f < F if and only if f(0) = F(0) and f(U) C F(U).
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Definition 4. [14] A function L(z,t), z € U, t > 0, is a subordination chain if
L(-,t) is analytic and univalent in U for all t > 0, and L(z,t1) < L(z,t2), when
0<t; <ty <o0.

Lemma B. [8 p. 4], [14, p. 159] The function
L(z,t) = a1(t)z + ax(t)2* + .. .,
with aq(t) #0 fort >0 and tlim la1(t)] = oo is a subordination chain if and only

if there exist constant r € (0,1] and M > 0 such that
(i) L(z,t) is analytic in |z| < r for each t > 0, locally absolutely continuous in
t >0 for each |z| <r, and satisfies

|L(z,t)| < Mlay(¢)|, for|z| <r andt > 0;

(1) there exists a function p(z,t) analytic in U for all t € [0,00) and measurable
in [0,00) for each z € U, such that Rep(z,t) >0 for z € U, t € [0,00) and
OL(z,t)  z-0L(2,t) z+0L(z,t)/0z
= plz ) or Re—5rr o

0 U t>0
ot 0z >0 zEU, T2

for |z| < r and for almost all t € [0, 00).

Definition 5. [§, p. 9] The function f € H(U) is called close-to-convex if there
exists a starlike function g such that

2f'(z)
9(2)

In order to use the concept of fuzzy differential subordination, we remember the
following definitions.

Definition 6. [5] A pair (A, Fa), where Fa : X — [0,1] and
A={z € X; 0< Fa(z) <1}

is called fuzzy subset of X. The set A is called the support of the fuzzy set (A, Fa)
and F4 is called the membership function of the fuzzy set (A, Fy).
One can also denote A = supp(A, Fa).

If AC X, then

Re

>0, zeU.

1 if z€A
FA(‘”)_{O it o A (1)
A classical subset of X can be considered as the fuzzy set of X, with the mem-
bership function F4 defined as in (|1)).

Definition 7. (9] Let D C C and let zop € D be a fized point. We take the
functions f,g € H(D). The function f is said to be fuzzy subordinate to g and we
write f <p g or f(2) <r g(z), if there exists a function F : C — [0,1], such that
(i) f(z0) = g(20);
(i1) F(f(2)) < F(g(z)) for all z € D.
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Remark 8. Such function F: C — [0,1] can be considered

|| 1
F(z) = F(2) =
()= 1o P =
Definition 9. [10] Let ¢ : C3 x U — C, a € C, and let h be univalent in U, with
h(0) = ¥(a,0,0), g be univalent in U, with q(0) = a, and p be analytic in U, with
p(0) = a. Also, ¥(p(2), 2p™p" (2); 2) is analytic in U and F : C — [0, 1].

F(z) = |sin|z|

| F(z) = ’cos|z|

If p is analytic in U and satisfies the (second-order) fuzzy differential subordina-
tion
b(p(2), 20"p" (2); 2) < F(h(2)), (2)
i.e.
V(p(2), 2p"p" (2); 2) <F h(z), z € U,
then p is called a fuzzy solution of the fuzzy differential subordination. The uni-

valent function ¢ is called a fuzzy dominant of the fuzzy solution of the fuzzy
differential subordination, or more simple a fuzzy dominant, if

p(2) <r q(z), z€U
for all p satisfying (2)). A fuzzy dominant ¢ that satisfies
q4(z) <r q(2), 2z €U,
for all fuzzy dominants ¢ of is said to be the fuzzy best dominant of . Note

that the fuzzy best dominant is unique up to a rotation in U.

Remark 10. The function F': C — [0,1] can be a function of the form of functions
shown in Remark[3.

2. MAIN RESULTS

Theorem 11. Let q be univalent in U and let 6 and ¢ be analytic functions in a
domain D containing q(U), with ¢(w) # 0, when w € q(U).

Let
1

F:U_)[O71L F(Z):m, z

el

Set
Q(z) = 2¢'(2) - ¢la(2)], h(z) = 0[a(2)] + Q(2),
and suppose that we have

(i) Q is starlike;

o 2l (2) 0'la(2)] | 2Q'(2) s
(ii) l'ie Q) —‘ Re o) + Q0 >0, z€U.
If p is analytic in U, with p(0) = ¢(0), p(U) C D, then
1 < 1 3)

1+ 10[p(2)] + 2p'(2) - 6lp(2)]] ~ 1+ 16[a(2)] + 2¢'(2) - Sla(2)]]’
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that is
F(O[p(2)] + 20'(2) - ¢lp(2)] < F(0la(2)] + 24’ (2) - ¢la(2)])
implies
1 1
e e T M W
that is

F(p(2)) < F(q(2)), 2 €U
and q 1s the fuzzy best dominant, through F.

Proof. From (i) we know that the function @ is starlike and from (ii) we know
that the function h is close-to-convex.
Let the function:

L(z,t) = a1 (t)z + az(t) 2% + ... (5)
= h(z) +1Q(2) = 0[q(2)] + (1 + 1)Q(2)
= 0q(2)] + (1 +1)2¢' () - dla(2)].

This function is analytic in U for all ¢ > 0 and is continuously differentiable on
[0,00) for z € U.
Differentiating with respect to z we obtain

OL(z,t)
0z

= al(t) + QGQ(t)Z + ...

=0'[q(2)]d' (2) + (1 + t){d'(2) - ¥[q(2)]
+2q"(2) - ¢la(2)] + 2¢'(2) - ¢'[q

—
I

=

[

For z = 0 we have
ai(t) = 0'[q(0)] - ¢'(0) + (1 + )¢ (0) - ¢[q(0)]

- 410 oo [ 429

Differentiating with respect to ¢ we obtain

(‘9L((;,t) =Q(2) = 2z¢'(2) - d[q(2)].

+1+t] #0.

We calculate:

z-0L(z,1)/0z o 0'[q(2)] 2Q'(2)
ReSinjor ¢ [¢[q<z>]+(1”) ) }
From (i) and (ii), ¢ > 0, we have
2 OLEN/0: o [0 | 2QE)] | 2@ )
R T [fb[q(z)] * @(zJ“R Qe
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Hence a;(t) # 0, 26lim |a1(t)] = oo and
z+0L(z,t)/0z
OL(z,t)/0t

for z € U and ¢t > 0. Using Lemma B, L(z,t) is a subordination chain which by
Definition [ implies

Re > 0,

L(z,8) < L(z,t) for 0 < s < t. (6)
For t =0, becomes L(z,0) = h(z), then (6) becomes

h(z) < L(z,t), t >0, z € U. (7)
Using and Definition |3 we have

LGty g h(U), ¢ =1, £>0, (8)

Let the function 1 : C2 x U — C,
P(r,s) =0(r) + 5¢(r).

For r = p(z), s = 2p'(2), 2 € U, we have

Y(p(2), 20’ (2)) = O[p(2)] + 2p'(2) - B[p(2)]
which is an analytic function since 6, ¢ and p are analytic functions.
For r = ¢q(z), s = 2¢'(z), we have
¥(q(2),2q'(2)) = 0la(2)] + 2¢'(2) - ¢la(2)], z € U.
Then the fuzzy differential subordination becomes
1 < 1
1+ [¢(p(2), 2p'(2)] = 1+ [P(q(2), 2¢'(2))]
In order to prove that () or (9) implies p is subordinate to function ¢, we apply
Lemma A. For that we assume that the functions p, ¢ and h satisfy the conditions
in Lemma A in the unit disc U.
Assume that function p is not subordinate to function gq.
By Lemma A, there exist points z9 = roe’® € U and ¢, € 90U \ E(q), and
m > n > 1, that satisfy

p(20) = q(Co), 200’ (20) = mCoq' (Co)-

,VzeU. (9)

Then
¥(p(20), 0P’ (20)) = 0[p(20)] + 20p'(20) - ¢[p(20)] (10)
= 0[q(Co)] +mCoq’ (Co) - PlalCo)-
If in Wetaket:m—lzo, then
L(z,m — 1) = 0[q(2)] + mQ(z) = 0[a(2)] + m2q(2) - dla(2)]- (11)
For z = ¢, € OU \ E(q), becomes
L(Coym — 1) = 0[q(Co)] +mCoq'(Co) - ¢la(Co)]s [Col = 1. (12)
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Using and (12)), we have

$(p(20), 200’ (20)) = L(Co,m — 1), 20 € U, o € OU \ E(q). (13)
From , relation is equivalent to
1 1

5 90 (z0) 20p())] = 1+ [0a(Co), mod Co)l (14)

Relation contradicts @, which proves that the assumption we made is false,
hence p is subordinate to g, meaning

1 1
< .
1+[p(2)] = 1+ q(2)]
Since ¢ is the solution of the univalent equation
0la(2)] + 2¢'(2)dla(2)] = h(2),

we have that ¢ is the best dominant. O

Theorem 12. Let g be univalent in U, with q(0) = 1, ¢(z) # 0, z € U, and let
0:C—>C,0(w)=wand ¢:C—C, ¢(w)=—, ¢(w) #0, w+#0. Let

1
F:U—10,1], F(z) = , z€U.

g~

Set

h(z) = 0[p(2)] + Q(2) = 0[p(2)] + 24/ (2) - ¢lq(2)]

and suppose that we have

G 0la(2)]
DR G =%
(i) Re {1 - Zj,(z) - ZZ(S)} >0, zel.
For m € N*, v € C, the function R is analytic in U,
Z[I™f(2)])" 2[I™f(2)] Imf(2)) - I f(z
oy < SO ABICY BRI I
Then )
7 7 7 (15)
AR R fR)) IR I (R)
Ygrer e T :
1
= T4 0] + 24 (@ola]
that is

F(R(2)) < F(h(2))
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implies
1 1
< , z€U,
1+ L f(2)] - I7 f(2)| — 1+ q(2)]

z

that is
F(p(2)) < F(q(2)), z€U

and q s the best dominant.
Proof. We let

Im !, Im

ooy I ) "

z
Using Property ! 1} in (16]) we have

= (v+1™ k
o Z v+k ZJrkZl(v—i—k)msz]
p(z) = =t
z
m Zk_lk‘| .z kzk—l]
_ k= n+1
B z
<1+Z akkz )( ’“1>,
and p(0) = 1.
Differentiating and after a short calculus, we obtain
2 (z) _ AN AN )N L) 17
e R 1y 5 T 3 [ R =1

We let the function
Y :C?*x U — C, (r,s) =yl
r

For r = p(z), s = zp/(z), we obtain

¥(p(2), 2p'(2)) = p(2) +
Using in , we have
Y(p(2), 2p'(2)) = [I
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Since O(w) = w, 0[q(2)] = q(2), ¢(w) = %, ole(z)] = ﬁ, q(z) # 0, we have
o). L

and .

) =0l + Q) =0t + ), s e v (1)
Using and , relation becomes

1 1
< , z€eU. (22)
@) DI
Lo+ 5 o+ 5

In order to prove Theorem [I2] we shall use Theorem[I1] For that, we show that the
necessary conditions are satisfied. Differentiating and after a short calculus,

we have
2Q'(2) 2q"(z)  2q'(2)

Q) =1+ 7(2) — o2 , zeU. (23)
Using (jj) in we have
2Q'(2)
Re ) >0, zeU, (24)

hence the function Q is starlike.
Differentiating (21]) and using (j ) and ., and after a short calculus, we obtain

zh’<> Jla)] 7() | Q)
Reow =™ W) ¢ [<>]+ Q)

[(Z)} Q'(2)
= Re [()]+R Q02 >0, zeU.

1
Since f(w) = w and ¢(w) = —, we obtain
w

O]+ 29/(2) - 0] = () + B, (25)
and
, ()
Olq(2)] + 2¢'(2) - ¢la(2)] = a(z) + ) (26)
Using and in (22)), it becomes
1 1

< .
1+10[p(2)] + zp'(2)9lp(2)l — 1+10[q(2)] + 2¢'(2) - ola(2)]]
Since the conditions from Theorem |11] are satisfied, by applying it, we obtain
1 1

T+ ()] = 1+ 14(2)]
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i.e.
1 < 1
L7 ()] - 17 f(2) | — 14 |q(2)]
z

, zeU.
1+

Since ¢ is the solution of the univalent equation

we have ¢ is the best dominant of . (I

3. EXAMPLE
Let ¢(z) = 1 + z, be an univalent function in U, with ¢(0) = 1 and let the
functions 6 : C — C, f(w) = w and ¢ : C — C, ¢(w) = %, w# 0, w e qU).
If ¢(z) = w, then

6la(z)) = az) = 1 + 2, Blg()] = —— = . zeU

We calcula’;e:
o)) _ g (+2)

(a) Re ] e T =Re(l1+2)>0, z€U;
") s
2q"(z) 20\ _po (1 7
wrre (14505 - 05 =re (1- 1)
= Re >0, zeU;
142 (2)
2q' (2 z .
(c) h(z) = 0la(2)] + Q(2) = q(z) + ) Ltzt 1, 2€U;

(d) p(0) = ¢(0) = 1.
For fe A, f(z) =z+ ng and m = 1, v = 2, we obtain

4 1 [? 4
LDf(z)=1) <z + 322> = 7; /0 (t+ 3t2> tdt

3 [F(. 45 3 (22 4 A
== o) dt=2 (2422
220<+3> 22(3+34

:z+z2.

N

The function

AL fR) | AL E)) L L fE) I f(2)
mrar e :
324422+ (14 22)%(1 + 2)?
B (14 2)(1 +22)
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is analytic and
LIf RV L[f(2)]

. =(14+2)(1+22)

p(z) =
is also an analytic function.
From Theorem [12] we have:

1 1
3z 4422 + (14 22)2(1 + 2)?

)

<
1—1—‘1—!—24—2

1

i (14 2)(1+22) 142
that is ) ) )

7 3z 4422 + (1 +22)*(1 + 2) cr(14-4 z

(1+2)(1+22) 1+ 2
implies
1 1
< , zeU,
T+](14+22)(142)] — 14+ |1+ 2|

that is

F(14+2)(14+22) <F(l1+42), zeU.
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