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(Communicated by Kazım İlarslan)

ABSTRACT

We investigate the behavior of a complete flat metric on a surface near a puncture. We call
a puncture on a flat surface regular if it has a neighborhood which is isometric to that of a
point at infinity of a cone. We prove that there are punctures which are not regular if and only
if the curvature at the puncture is 4π. We classify irregular punctures of a flat surface up to
modification equivalence, where two punctures are called modification-equivalent if they have
isometric neighborhoods. We show that there are uncountably many modification-equivalence
classes of punctures on flat surfaces.
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1. Introduction

Flat surfaces are obtained by gluing Euclidean triangles along their edges appropriately. They appear in
several areas of mathematics and physics. For example, they are studied in dynamics of billiard tables. It is
known that each rational polygon can be covered by a flat surface with trivial holonomy group. Such surfaces
are called translation surfaces and have been studied extensively [10]. Also, these surfaces are quite useful in
Teichmüller theory. Together with quadratic differentials, they are used in the proofs of Teichmüller’s theorems
[7]. They appear in quantum gravity and topological quantum field theory as well. See [1] and [4].

These surfaces are interesting for their own sake. For example, Thurston obtained complex hyperbolic
orbifolds from moduli spaces of certain flat spheres [12]. Following Thurston, Bavard and Ghys obtained real
hyperbolic orbifolds from the moduli spaces of certain polygons in the plane [2]. Troyonov introduced certain
geometric structures on Teichmüller spaces by considering the moduli spaces of flat surfaces with prescribed
curvature data [15].

Compact flat surfaces are examples of length spaces. There is a length minimizing geodesic between any
two points of such a surface. [8], [3]. They can be triangulated with finitely many triangles. In addition, Gauss-
Bonnet formula holds for these surfaces. See [13], [14].

Flat surfaces with regular punctures have been studied in [9]. By a regular puncture on a flat surface, we
mean a puncture which has a neighborhood isometric to that of the point at infinity of a cone. Flat surfaces
with possibly irregular punctures have been studied in [11]. We now state the main results of [11]. Let S̄ be a
complete flat surface.

1. S̄ can be triangulated with finitely many types of triangles.

2. Gauss-Bonnet formula holds for S̄.

3. Each loop on S̄ has a geodesic representative in its free homotopy class.
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Our objective is to understand the behavior of a complete flat metric near a puncture. More precisely, we
classify complete flat metrics on a disk with a puncture up to the modification equivalence, where two flat
metrics on a disk are equivalent if they are "same" on a neighborhood of the puncture. Now we state the main
results of the present paper.

Let S̄ be a flat surface.

• If the curvature at a punctured interior point equals to 4π, then there are uncountably many modification-
equivalence classes of complete flat metrics near the puncture.

• If the curvature at a punctured interior point is not equal to 4π, then any complete flat metric is
modification-equivalent to a cone near the puncture.

1.1. Doubly labeled surfaces

In this paper, we use the notation in [11]. A doubly labeled surface is a compact surface together with labeled
points.

Definition 1. Let S be a connected compact topological surface perhaps with boundary B. Let l, p, l′, p′ be finite disjoint
subsets of S so that

• l and p are subsets of the interior of S,
• p′, l′ are subsets of B.

An element in l will be called a labeled interior point. An element in p will be called a punctured interior point. Other
points in the interior of S are called ordinary interior points. An element in B will be called a boundary point. An element
in l′ will be called a labeled boundary point. An element in p′ will be called punctured boundary point. Other points in
the boundary will be called ordinary boundary points. A doubly labeled surface, shortly DL surface, is the tuple

(S,B, l, p, l′, p′)

Also we will use the following notation:

1. SB = S −B.

2. Sl = S − l

3. SB,l = S − (B ∪ l)

4. . . .

We will denote a doubly labeled surface (S,B, l, p, l′, p′) as SL. Underlying compact surface of SL will simply
be denoted by S. Note that DL surfaces can be considered as punctured surfaces with puncture set p ∪ p′.
Indeed, Sp,p′ is the punctured surface that we consider. We point out that the punctured and labeled points
may lie in the boundary.

A cone having angle θ > 0, or equivalently curvature κ = 2π − θ, is the set

{(r, ψ) : r ∈ R≥0, ψ ∈ R/θZ} (1)

with the metric

µ = dr2 + r2dψ2. (2)

We can consider a cone as a DL sphere with one punctured and one labeled interior point. The point (0, 0) is
called vertex or the origin of the cone. We will denote it by v0. Let θ(v0) = θ and κ(v0) = 2π − θ. Note that we
may talk about the point at infinity or the punctured point. We shall denote this point by v∞.

Definition 2. Consider a cone with angle θ > 0.

1. κ(v∞) = 2π + θ is called the curvature at v∞.

2. θ(v∞) = −θ is called the angle at v∞.

We will denote a cone with angle θ by Cθ.
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Definition 3. A cylinder of width r, C0r, is a metric space obtained by identifying edges of an infinite strip in the
Euclidean plane having width r through opposite points.

Observe that a cylinder can be considered as DL sphere with two punctured points. By convention, the angles
at these punctures are 0. We also call a cylinder as a cone of angle 0. Also, again by convention, the curvature
at each of the punctured points, is 2π.

Definition 4. A (flat) cone metric on a DL surface SL is a metric on Sp,p′ so that each point x in Sp,p′ has a neighborhood
isometric to a neighborhood of the apex of the cone Cθ = Cθx or a section of a cone Vθ = Vθx , and

1. l = {y ∈ Sp,B : θy 6= 2π},

2. l′ = {y ∈ B − p′ : θy 6= π}.

Angle at x, θ(x) is defined to be θx. If x ∈ Sp,B , then the curvature at x, κ(x), is defined as 2π − θ(x). If x ∈ B − p′, then
the curvature is κ(x) = π − θ(x). x is called singular if κ(x) 6= 0. Otherwise it is called non-singular.

Note that the conditions 1. and 2. assure that the set of singular points and l ∪ l′ are same. A flat surface with a
flat cone metric is called a flat DL surface.

Definition 5. A punctured interior point on a flat DL surface is called regular if it has a neighborhood isometric to a
neighborhood of the point at infinity of a cone. Otherwise, it is called irregular.

An example of a flat DL surface with an irregular punctured interior point is given in [11]. Also, the curvature
at a punctured interior (or boundary) point of a flat DL surface was defined in [11]. For a DL surface, the
following theorem holds. See [11] for a proof.

Theorem 1 (Gauss-Bonnet formula). Let SL be a complete flat DL surface. The following formula holds:

∑
x∈S

κ(x) = 2πχ(S), (3)

where χ(S) is the Euler characteristics of S.

1.2. Modification

If we have a complete flat metric on a DL surface with boundary, then we can cut a triangle having one
edge incident to the boundary to get another complete flat metric. Note that the behavior of the metric near the
punctures remains unchanged after this operation. By a modification of flat DL surface, we mean the surface
obtained by removing finitely many triangles which are incident to the boundary.

We denote a closed disk with one punctured interior point by DL. We assume that DL has no labeled interior
points and punctured boundary points. As usual, we denote the underlying closed disk by D. Let D̄L be a
closed disk with one punctured boundary point. We assume that D̄L has no labeled interior points or punctured
interior points. We denote the underlying closed disk by D̄.

Proposition 1 ([11]). Each complete cone metric on DL can be modified so that resulting disk does not have any points
with positive curvature on its boundary.

2. Flat metrics on a disk with one punctured point

2.1. Modification Equivalence

Recall that a modification of a flat metric on DL is a flat metric obtained by successively cutting Euclidean
triangles which are incident to its boundary. In this section, we will classify complete flat metrics on DL up
to modification equivalence. Two flat complete metrics µ and η are called the modification equivalent if they
can be modified so that there is an orientation preserving isometry between the resulting complete flat disks.
Lemma 1 implies that any flat complete metric on DL contains a metric with non-positive curvature data in its
equivalence class. Thus, from now on, by a complete flat metric on DL, we mean a metric with non-positive
curvature data. We will also study the case of the disc with one punctured boundary point. Note that one can
define modification equivalence for flat complete metrics on D̄L in a similar way.
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İ. Sağlam

Figure 1. After the modification, curvature at the i-th vertex bi becomes K
n .

2.2. Reducing number of singular points

Let µ be a complete cone metric on DL and K be the total curvature on its boundary. If K = 0 then DL is
modification isometric to a half-cylinder. Therefore we need to consider the case K < 0. We start with a simple
fact.

Lemma 1. Let a1, . . . , ak be real numbers so that not all of them are equal. Let

a =

∑k
i=1 ai
k

(4)

be their avarage. There exists i so that

• ai ≥ a and ai+1 < a, or
• ai < a and ai+1 ≥ a,

where ak+1 = a1.

Lemma 2. Assume that DL has k labeled boundary points. DL can be modified so that resulting metric has also k
singular points and these points have same curvature.

Proof. First label singular points as b1, . . . , bk so that they are in a cyclic order on the boundary. Assume that
not all of the curvatures are equal. By above lemma, there exists i so that either

κi <
K

k
and κi+1 ≥

K

k
.

or,

κi ≥
K

k
and κi+1 <

K

k
,

Let us consider the first case. Remove the triangle with vertices bi, bi+1, b
′
i+1 having angles |κi| − |K|k , |κi+1|, π +

|K|
k − |κi| − |κi+1| from DL, respectively. See Figure 1.

• if κi+1 >
K
k , then resulting metric has less singular points having curvature not equal to K

n ,
• if κi+1 = K

k , then i-th vertex has curvature κi+1 = K
k and i+ 1-th vertex has curvature κi in the resulting

disc.
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Observe that if κi ≥ K
k and κi+1 <

K
k , there is a similar cutting operation with the following properties:

• if κi > K
k then resulting metric resulting metric has less singular points having curvature not equal to K

k .
• if κi = K

k , then i+ 1-th vertex has curvature K
k and i-th vertex has curvature κi+1 in the resulting disc.

Apply the following algorithm to DL repeatedly.

1. If there is an index i so that either
κi >

K

k
and κi+1 <

K

k
,

or,

κi <
K

k
and κi+1 >

K

k
.

apply cutting operation described above. Observe that the number of singular points having curvature
which is not equal to K

k decreases after this operation. Do this repeadetly so that there are no index i
satifying any of the properties above.

2. After the first step, if all curvatures of the singular points of the resulting metric are equal, then we are
done. If this is not the case, we can permute curvatures to get a modification for which there exists i so
that

κi >
K

k
and κi+1 <

K

k
,

or,

κi <
K

k
and κi+1 >

K

k
.

3. Apply the first step to the resulting metric.

Since the number of singular points having curvature not equal to K
k decreases at each run of the algorithm, we

get a cone metric of desired type in finitely many steps.

Lemma 3. Assume that 0 ≤ |K| < π. Let x be a boundary point on DL and L be a half-line originating from x and
directing toward its interior. This disc can be modified so that resulting metric has at most one singular point and no
points except x on L is in the triangles removed during the modification.

Proof. The case K = 0 is trivial since there are no singular points for this case. Desired modification for the cone
metrics having singular points is described in Figure 2. Draw two half lines L1, L2 originating from x making
an angle of π with each other. Gauss-Bonnet formula implies that L1 and L2 intersect only at 2 points, one of
which is x. These lines, together with the boundary of SL, bound a compact region with polygonal geodesic
boundary. We can obtain desired modification by removing this region.

Proposition 2. Assume that n > 0 and K ≤ 0 so that

(n− 1)π ≤ |K| < nπ.

Also assume that the metric has n+m, m ≥ 0 singular points. Let x be one of them and L be a half-line originating
from x and pointing interior of the disc. The metric can be modified so that the resulting metric has n singular points of
negative curvature and the removed triangles contain no points on L other than x.

Proof. We will prove the statement by induction on the number n. The base case n = 1 is done by the Lemma
3. Assume that n ≥ 1 and

nπ ≤ |K| < (n+ 1)π.

Take a cone metric on the disc having n+ 1 +m singular points. Take a boundary segment with vertices x, y
and half-lines L1, L2 making angles π with the segment. See Figure 3. Cut the half plane and glue the half-
lines L1 and L2. By this way we get a new cone metric on the punctured disc so that the total curvature at its
boundary is K′ = K + π, thus satisfies the inequality below:

(n− 1)π ≤ |K′| < nπ.
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İ. Sağlam

Figure 2. Cut the annulus bounded by L1, L2 and the boundary ofDL to obtain a cone metric with one singular point having curvature K.

x
y

L1

L2
L12

L

xy

Figure 3. Remove half plane determined by L1, L2 and boundary segment [x, y] and glue L1 and L2 to get a cone metric of total curvature curvature K′,
(n− 1)π ≤ |K′| < nπ. Modify it, then cut it thorough L12 and add the half plane removed to get a desired modification of the cone metric we started.

Let L12 the half line formed by gluing L1 with L2. We show the vertex obtained by x and y by xy. Observe that
by induction hypothesis, we can modify this new metric so that the resulting metric has n singular points and
removed triangles do not contain any point of L12 except x. Now cut this new punctured disc together with the
induced metric through L12, and glue the half-plane that we removed as in the figure. Resulting cone metric
has n+ 1 singular points and is a modification of the metric we started with. Also observe that compact part
removed during the modification does not intersect with half-line L except at the vertex x.

Theorem 2. Every complete cone metric on DL with total boundary curvature

(n− 1)π ≤ |K| < nπ

can be modified so that resulting metric has n singular points, and curvature of each of these singular points is K
n .

Proof. First modify the metric as in Proposition 2 to get a metric with n singular points of negative curvature.
Modify this new metric as in Lemma 2, to get a metric of desired type.

2.3. The case 0 ≤ |K| < 2π

Lemma 4. If 0 ≤ |K| < 2π, then the puncture on any complete flat metric on DL is regular.
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Figure 4. Glue unlabeled edges of the isosceles triangle to get a flat disk. Then glue this disk withDL to get a cone.

Proof. We know that if K = 0 then DL is isometric to a half-cylinder. Thus the puncture is regular. First assume
that 0 < |K| < π. By Theorem 2, this flat metric can be modified so that there is only one singular point on its
boundary. Let l be the length of its boundary. Take a isosceles triangle with angles−K, π+κ2 , π+κ2 with the length
of the edge opposite to the vertex with angle −K is equal to l. If you glue the equal edges of this triangle and
glue the resulting flat disk with DL, you get the cone C−κ. Hence the puncture is regular. See Figure 4.

Assume that π ≤ |K| < 2π. Then we can modify DL so that it has two singular points of curvature K
2 . Call the

singular points b1 and b2. Observe that the boundary has two components and these components connect b1
and b2. Let l1 and l2 be length of these components. Then we can find two isosceles triangles with the following
properties:

• First triangle has edges of length l1, a, a and the angles at its vertices are α, α, γ. Also the vertex with angle
γ is opposite the edge having length l1.

• Second triangle has edges of length l2, a, a and the angles at its vertices are β, β, γ. Also the vertex with
angle γ′ is opposite the edge having length l1.

• γ + γ′ = −K.

Now glue the triangles along the edges having length a to get a flat disk one singular interior point and two
singular boundary points. Note that the angle at the singular interior point is−κ. If you appropriately glue this
disk with DL along their boundaries, you get the cone C−κ. See Figure 5. Hence the puncture is regular.

2.4. Principal modifications

Regarding Theorem 2 , for each K < 0 so that (n− 1)π ≤ |K| < nπ, we will study modification-equivalence
on the set

C(K, n) = {Flat metrics on DL with n singular boundary points of curvature
K

n
}/isometry

Note that two elements µ and η are equivalent, µ ∼ η, if there is an orientation preserving isometry between
them which respects the labeling of the vertices. Each element in C(K, n) is uniquely determined by the lengths
of the boundary segments of the punctured disc. See [11][Theorem 1]. Let
Ld(µ) = (l[b1, b2], . . . , l[bn, bn+1]), where l[bi, bi+1] is the length of the boundary segment joining bi and bi+1. We
call Ld(µ) as length data of µ. Therefore below map is a bijection:

Ld : C(K, n)→ Rn
+

µ→ Ld(µ),
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Figure 5. Glue the isosceles triangles through the edges having length a to get a flat disk with one singular interior point and two singular boundary points. Then
glue this disk withDL to get a cone.

where R+ is the set of positive real numbers.
We will denote the set of equivalence classes of cone metrics on the disc by

M(K) = M(K, n) := C(K, n)/Modification.

Now we define principal operations which can be thought as maps C(K, n)→ C(K, n).
Let n ≥ 3. Take an element in µ ∈ C(K, n). Fix an index j ∈ {1, 2 . . . n} and a non-negative real number r. From

the punctured disc (together with the metric µ), subtract a quadrangle having angles

(|K
n
|, π − |K

n
|, π − |K

n
|, |K
n
|),

and edge lengths

(r, l[bj , bj+1] + 2r cos (π − K

n
), r, l[bj , bj+1]),

which has the segment [bj , bj+1] as an edge. Since |K|n + |K|
n = 2 |K|n > π, for each r > 0 such a quadrangle exists.

See Figure 6. By this way, we obtain another element in C(K, n), denote this map by

Θj,r : C(K, n)→ C(K, n).

From the Figure 6, description of this map in terms of length data is clear:

Θj,r : Rn
+ → Rn

+

Θj,r([l1, . . . ln]) = [l1, . . . , lj−2, lj−1 + r, lj + 2r cos(π − K

n
), lj+1 + r, lj+2, . . . ] (5)

= [l1, . . . , ln] + [0, . . . , 0,

j−1
↓
r , 2r cos(π − K

n
), r, 0, . . . , 0] (6)

Observe that above formulas imply the following:

1. Θj,0 is identity map on C(K, n) (or on Rn),

2. Θj,r ◦Θj,r′ = Θj,r+r′ ,

3. Θj,r ◦Θj′,r′ = Θj′,r′ ◦Θj,r.
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Figure 6. An example of principal modifications : new cone metric is obtained by removing the quadrilateral in light grey. Note that lj = l[bj , bj+1]

Definition 6. We call semi-group generated by Θj,r’s, either as maps on C(K, n) or Rn
+, the principal semigroup , and

denote it as T = T(K).

Remark 1. Let C be a compact set of DL and µ ∈ C(K, n). There exists an element T in T(K) so that C is a subset of the
removed part of the once punctured sphere after the modification with respect to T.

2.4.1. Circulant matrices We recall the basic properties of the circulant matrices. A circulant matrix C is a m×m
matrix obtained from one column vector c = [c0, . . . , cm−1]T so that columns of C are determined by cyclic
permutations of c as below:

C =


c0 cm−1 . . . c2 c1
c1 c0 cm−1 c2
... c1 c0

. . .
...

cm−2
. . . . . . cm−1

cm−1 cm−2 . . . c1 c0

 .

See [5] for the basic properties of circulant matrices. fC(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 is called
associated polynomial of C.

Let ωj = exp
(
2πıj
n

)
for each j = 0 . . . , n− 1, where ı =

√
−1.

• The set of eigenvalues of C is

{λj = c0 + cn−1ωj + cn−2ω
2
j + . . .+ c1ω

n−1
j : j = 0, 1, . . . , n− 1}. (7)

• Determinant of C, det(C) , is

n−1∏
j=0

(c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j ). (8)

• Rank of C is the n− d where d is the degree of greatest common divisor of the polynomials fC(x) and
xn − 1.

• Eigenvector with eigenvalue λj is

vj = [1, ωj , ω
2
j , . . . , ω

n−1
j ]T , j = 0, 1, . . . , n− 1.

Observe that a circulant matrix is diagonalizable and the eigenvectors of such a matrix do not depend on
the coefficients c0, c1, . . . , cn−1.
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2.4.2. From the principal modifications to the circulant matrices Each Θj,r can be thought as a translation map
Rn → Rn. The vector space of translation maps can be identified with Rn and its canonical basis can be
identified with the basis of Rn that consists of the vectors

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)

. . .

en = (0, 0, . . . , 1)

With respect to this basis, Θj,1 has coordinates

[0, . . . , 0,

j−1
↓
1 , 2 cos(π − K

n
), 1, 0, . . . , 0]T

Therefore the matrix that the coordinates of Θ1,1,Θ1,1, . . . ,Θn,1 form is a circulant matrix with c0 = 1, c1 =
2 cos(π − K

n ), c2 = 1 and cj = 0 if j 6= 0, 1, 2. Call this matrix C.

Lemma 5. If K 6= −2π, then 1 + cos (π − K
n )ωj + ω2

j 6= 0.

Proof. Let ωj = exp
(
2πıj
n

)
. Assume that (n− 1)π ≤ |K| < nπ and n > 3. Then

(
n− 1

n
+ 1)π ≤ π − K

n
< 2π

cos
π

n
≤ cos (π − K

n
) < 1.

In particular, 1
2 < cos (π − K

n ). Now assume that 1 + 2 cos (π − K
n )ωj + ω2

j = 0. It follows that |1 + ω2
j | =

2 cos (π − K
n ) > 2, which is impossible. Hence 1 + 2 cos (π − K

n )ωj + ω2
j 6= 0 for all j. A similar argument shows

that 1 + 2 cos (π − K
n )ωj + ω2

j 6= 0 when n = 3 and κ 6= −2π.

Proposition 3. If κ < −2π, then M(κ) consists of one single point, that is, there are no irregular punctures on DL when
the total curvature on the boundary is not equal to −2π.

Proof. We will show that C(K, n)/T(K) consists of a single point. Clearly this implies that M(κ) consists of one
point. Lemma 5 implies that det(C) 6= 0. Therefore the group generated by Θ1,1, . . . ,Θn,1 is the full group of
translations of Rn. So this group has one orbit. It follows that

C(K, n)/T(K) = Rn
+/T(K)

has only one point.

Now we consider the case K = −2π.

Proposition 4. There is a bijection between M(−2π) and R2
+.

Proof. Consider the map R2
+ →M(−2π) sending (α, β) to the modification-equivalence class of the metric in

C(−2π, 3) having boundary segments of length 1, α, β. Let us denote the modification-equivalence class of the
metric on DL with boundary segment of length a, b, c by [a, b, c]. Since cos(π − 2π

3 ) = 1
2 , it follows that Θ1,r

sends [a, b, c] to [a+ r, b+ r, c+ r]. Therefore it is easy to see that this map is surjective. Now assume that [1, b, c]
and [1, b′, c′] are modification equivalent. It follows that there is an orientation preserving isometry sending
the flat disk DL whose boundary segments have length 1 + r, b+ r, c+ r to the flat disk DL whose boundary
segments have length 1 + r′, b′ + r′, c′ + r′, where r, r′ ≥ 0. It follows that r = r′, b = b′ and c = c′. So the map is
injective.

Now we collect the results in Lemma 4, Proposition 3 and Proposition 4 in a single theorem.

Theorem 3. 1. If K 6= −2π, then M(K) consists of one singular point. In other words there are no complete flat
metrics on DL so that the puncture is irregular when curvature at the puncture is not equal to 4π.

2. M(−2π) ≡ R2
+.
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