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Analytical Solutions for Transversely Isotropic Fiber-Reinforced 

Composite Cylinders under Internal or External Pressure 

 

Highlights 

❖ As fiber volume fraction increases, yielding begins at higher strength  

❖ Radial fiber direction gives better results in terms of yielding than axial direction 

❖ Plastic flow takes place at inner radii of the cylinders 

 

Graphical Abstract 

Transversely isotropic fiber reinforced composite cylinders are investigated under internal or external pressure. 

 

Figure. Cross section of the composite cylinders under (a) internal (b) external pressure where P 

denotes pressure 

Aim 

The aim of this study is examining the elastic stresses of pressurized fiber reinforced composite cylinders which 

constitute of transversely isotropic fibers and isotropic matrix material.  

Design & Methodology 

Analytical methods are conducted to analyze stress and displacement field of composite cylinders. In order to 

calculate composite material properties Chamis method is utilized.  

Originality 

Analytical solutions are an important tool for better understanding of engineering problems. Solutions that can be a 

reference for the problem under consideration are obtained.  

Findings 

Radial fiber alignment, which results in better strength than axial one, is also more complex in terms of analytical 

approach. 

Conclusion  

It is observed that fiber volume ratio and fiber direction are important factors affecting elastic limit stress and 

displacements. 
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İç veya Dış Basınç Altındaki Enine İzotropik Fiber 

Takviyeli Kompozit Silindirler için Analitik Çözümler 
Araştırma Makalesi / Research Article 

Ömer Can FARUKOĞLU*, İhsan KORKUT 

Department of Manufacturing Engineering, Gazi University, Ankara, Turkey 

(Geliş/Received : 26.08.2020 ; Kabul/Accepted : 15.09.2020) 

 ÖZ 

Bu makalede iç veya dış basınç altındaki sabit uçlu kalın cidarlı kompozit silindirlerin elastik gerilmelerini incelemektedir. 

Silindirler eş yönlü hizalanmış enine izotropik fiber liflerinden ve izotropik matristen meydana gelmektedir. Aksiyel ve radyal fiber 

yönleri dikkate alınmış ve analitik çözümler buna göre türetilmiştir. Fiber liflerinin yönü ve fiber hacim oranı değişikliğinin elastik 

gerilmeler üzerindeki etkileri analiz edilmiştir. Hem iç hem de dış basınç durumlarında, fiber yönü ve fiber hacim fraksiyonunun, 

silindirlerin elastik davranışını etkileyen önemli parametreler olduğu gözlemlenmiştir. 

Anahtar Kelimeler: Enine izotropi, kompozit silindirler, elastik gerilmeler, chamis methodu. 

Analytical Solutions for Transversely Isotropic Fiber-

Reinforced Composite Cylinders under Internal or 

External Pressure 

ABSTRACT 

This paper deals with the elastic stresses of internally or externally pressurized long thick-walled composite cylinders with fixed 

ends. Cylinders are made of unidirectionally aligned transversely isotropic fibers and isotropic matrix. Axial and radial fiber 

alignments are considered, and analytical solutions are derived accordingly. Effects of fiber direction and fiber volume fraction 

alteration on the elastic limit stresses are analyzed. It is observed for both internal and external pressure cases that fiber direction 

and fiber volume fraction are important parameters which impact the elastic behavior of the cylinders. 

Keywords: Transverse isotropy, composite cylinders, elastic stresses, chamis method.

1. INTRODUCTION  

Prediction of the stresses in axisymmetric geometries 

such as, disks, shafts and cylinders have been studied by 

many researchers since such geometries have often been 

used in engineering fields. Because of the beneficial 

material properties such as low weight, high strength and 

corrosion resistance, composites become popular in 

aerospace and automotive industries. Thus, different 

parts and components have been produced with 

composites. According to the enhancements in 

engineering, first studies on stress analysis are obtained 

for isotropic thick-walled cylinders subjected to internal 

and external pressure which can be found in the 

published books [1, 2]. Stresses of transversely isotropic 

corrugated cylinders are analyzed by Grigorenko and 

Rozhok [3]. Another stress analysis research for 

transversely isotropic cylinders is developed by Sharma 

et al. [4] where the authors  predicted elastic-plastic  

transition of rotating transversely isotropic cylinders 

subjected to internal pressure. For functionally graded 

material cylinders, elastic and/or plastic stress analysis   

under mechanical [5-10] and thermal [11-13] loads have 

been the topic of various articles. When it comes to 

orthotropic cylinders, studies mainly focus on examining 

the stresses due to rotation [14–18].  With the 

developments in material technology, studies have also 

commenced for cylinders made of fiber reinforced 

composite materials. Stresses of filament-wound 

composite cylinders which are subjected to internal 

pressure and thermal loads are studied by Çallıoğlu et. al. 

[19]. For multilayered composite cylinders under thermal 

loads, Akçay and Kaynak [20] proposed analytical 

solutions. Another stress field study is carried out for 

laminated composite cylinders subjected to non-

axisymmetric loading by Starbuck [21]. Ebeid et. al. [22] 

predicted the failure of fiber reinforced pipes by using 

finite element method. In other closely related studies 

[23,24], composite pressure vessels under different loads, 

and winding angle optimization of filament wound 

composite pressure vessels can be found. In the present 

work, long thick-walled cylinders with closed ends are 

considered under internal or external pressure. The 

cylindrical geometry is made of composite material 

which is composed of transversely isotropic fibers and 

isotropic matrix. Elastic limit pressure that causes plastic 

flow in the composite cylinders is calculated by the use 

of Tsai Wu yield criteria. Axial and radial fiber 

alignments are taken into account, and analytical 

approaches are provided for each case. In Figure 1 (a) and 
*Sorumlu yazar (Corresponding Author)  
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(b), axial and radial alignment of the fibers in the 

composite cylinders are displayed where L denotes 

longitudinal or so-called fiber direction of the composite 

material, and T is the transverse direction in global 

coordinates. At Figure 1 (c), lower case l and t presents 

longitudinal and transverse directions in material 

coordinates. Additionally, f and m express fibers and 

matrix respectively. 

 

 

2. CALCULATION OF THE MECHANICAL 

PROPERTIES  

Determination of the mechanical properties of fiber 

reinforced composites is a long and expensive process 

since such materials display different properties in 

various directions. Thus, several models have been 

developed in the past to calculate the mechanical 

properties. In this examination, Chamis method [25, 26] 

is exploited. Fiber volume fraction, mechanical 

properties of the matrix and fibers are inputs to apply this 

method. To be noted that in the calculations of the 

material properties, volume of the voids in the matrix 

material is not considered.   

𝑉𝑓 + 𝑉𝑚 = 1                                                          (1)  

𝑉𝑓  and 𝑉𝑚 point to volume fraction of the fibers and 

matrix. Elastic modulus of the composite material in 

longitudinal direction (𝐸𝐿) is calculated by 

𝐸𝐿 = 𝑉𝑓𝐸𝑙𝑓 + 𝑉𝑚𝐸𝑚                                           (2) 

in which 𝐸𝑙𝑓 and 𝐸𝑚 present the elastic modulus of the 

fibers in longitudinal direction and the elastic modulus of 

the matrix respectively. Elastic modulus of the composite 

material in transverse direction (𝐸𝑇) is 

𝐸𝑇 =
𝐸𝑚

1−√𝑉𝑓(1−
𝐸𝑚
𝐸𝑡𝑓

)
                                           (3) 

where 𝐸𝑡𝑓 is the elastic modulus of the fibers in 

transverse direction. In a similar manner, Poisson’s ratios 

of the composite material are determined. Poisson’s ratio 

of the composite in L-T plane can be found by 

𝑣𝐿𝑇 = 𝑉𝑓𝑣𝑙𝑡𝑓 + 𝑉𝑚𝑣𝑚                                           (4) 

𝑣𝑙𝑡𝑓  is the Poisson’s ratio of the fibers in l-t plane, and 𝑣𝑚 

denotes the Poisson’s ratio of the isotropic matrix. Due 

to material symmetry, Poisson’s ratio of the composite in 

T-L plane is 

𝑣𝑇𝐿 =
𝐸𝑇

𝐸𝐿
𝑣𝐿𝑇                                                                   (5) 

Poisson’s ratio of the composite in T-T plane is given 

below. 

𝑣𝑇𝑇 = 𝑉𝑓𝑣𝑡𝑡𝑓 + 𝑉𝑚(2𝑣𝑚 − 𝑣𝑇𝐿)                             (6) 

in which 𝑣𝑡𝑡𝑓 is Poisson’s ratio of the fibers in t-t plane. 

In order to find elastic limits, it is necessary to define 

tensile and compressive strength of the composite in both  

 

 

axial and transverse directions since such materials fail at 

different strength according to the direction. 

𝑋𝑡 = 𝑉𝑓𝑋𝑡𝑓                                                          (7) 

𝑋𝑐 = 𝑉𝑓𝑋𝑐𝑓                                                          (8) 

𝑋𝑡 and 𝑋𝑐 express tensile and compressive strength of the 

composite material in longitudinal direction. Similarly, 

𝑋𝑡𝑓 and 𝑋𝑐𝑓 denote tensile and compressive strength of 

the fibers in longitudinal direction respectively. Tensile 

(𝑌𝑡) and compressive (𝑌𝑐) strength of the composite 

material in transverse direction are given in Eq.(9) and 

Eq.(10). 

𝑌𝑡 = 𝑌𝑡𝑚[1 − (√𝑉𝑓 − 𝑉𝑓)(1 −
𝐸𝑚

𝐸𝑡𝑓
)]                             (9) 

𝑌𝑐 = 𝑌𝑐𝑚[1 − (√𝑉𝑓 − 𝑉𝑓)(1 −
𝐸𝑚

𝐸𝑡𝑓
)]             (10) 

in which 𝑌𝑡𝑚 and 𝑌𝑐𝑚 are tensile and compressive 

strength of the isotropic matrix. 

 

3. ANALYTICAL SOLUTION 

It is appropriate to use cylindrical polar coordinate 

system (𝑟, 𝜃, 𝑧). Strain-displacement relation for small 

axisymmetric deformations can be derived as 

𝜀𝑟 =
𝑑𝑢𝑟(𝑟)

𝑑𝑟
, 𝜀𝜃 =

𝑢𝑟(𝑟)

𝑟
, 𝜀𝑧 = 0                           (11) 

𝑢𝑟, 𝜀𝑟, 𝜀𝜃 and 𝜀𝑧 signify radial displacement, radial, 

tangential and axial elastic strains respectively. Due to 

the considered fixed ends, axial strain is equal to zero. In 

order to have an elastic solution, compatibility and 

equilibrium equations should be satisfied. Regarding 

compatibility equation is given below. 

𝑟
𝑑𝜀𝜃

𝑑𝑟
+ 𝜀𝜃 − 𝜀𝑟 = 0                                           (12) 

 

Equilibrium equation reads as follows 

𝑑𝜎𝑟

𝑑𝑟
+

1

𝑟
(𝜎𝑟 − 𝜎𝜃) = 0                                          (13) 

Figure 1. (a) Axially aligned cylinders (b) Radially aligned cylinders (c) Unidirectionally aligned fiber reinforced composite 
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in which 𝜎𝑟 and 𝜎𝜃 are radial and tangential elastic 

stresses, in addition 𝜎𝑧 denotes the axial elastic stress. 

3.1. Axially Aligned Cylinders 

In this case, unidirectional fibers in the cylinders are 

aligned in axial direction, and elastic relations are derived 

accordingly. By using Hook’s law, strain-stress relation 

is of the form. 

[

𝜀𝑟

𝜀𝜃

𝜀𝑧

] =

[
 
 
 
    

1

𝐸𝑇
−

𝜐𝑇𝑇

𝐸𝑇
−

𝜐𝐿𝑇

𝐸𝐿

−
𝜐𝑇𝑇

𝐸𝑇
   

1

𝐸𝑇
−

𝜐𝐿𝑇

𝐸𝐿

−
𝜐𝑇𝐿

𝐸𝑇
−

𝜐𝑇𝐿

𝐸𝑇
   

1

𝐸𝐿 ]
 
 
 
 

[

𝜎𝑟

𝜎𝜃

𝜎𝑧

]                           (14) 

If inverse of the above compliance matrix is taken, we 

end up with stress-strain relation. 

[

𝜎𝑟

𝜎𝜃

𝜎𝑧

] =

[
 
 
 
 

1−𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

𝜐𝑇𝑇+𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

𝜐𝐿𝑇(1+𝜐𝑇𝑇)

𝐸𝐿𝐸𝑇∆

𝜐𝑇𝑇+𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

1−𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

𝜐𝐿𝑇(1+𝜐𝑇𝑇)

𝐸𝐿𝐸𝑇∆

𝜐𝑇𝐿(1+𝜐𝑇𝑇)

𝐸𝑇
2∆

𝜐𝑇𝐿(1+𝜐𝑇𝑇)

𝐸𝑇
2∆

1−𝜐𝑇𝑇
2

𝐸𝑇
2∆ ]

 
 
 
 

[

𝜀𝑟

𝜀𝜃

𝜀𝑧

] , 

∆=
(1+𝜐𝑇𝑇)(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿𝐸𝑇
2                                           (15) 

For the axially aligned fibers, stress-strain relation is 

described with the above stiffness matrix. It should be 

noted that both compliance and stiffness matrices are 

symmetric. Since all elastic relations are defined, 

compatibility and equilibrium equations given in Eq.(12) 

and Eq.(13) can be solved. By substituting strain terms 

given in Eq.(11) into Eq.(12), compatibility condition 

gets satisfied. In order to solve the equilibrium equation, 

firstly, elastic strains in Eq.(11) should be substituted to 

Eq.(15). Subsequently, directional stresses given in 

Eq.(15) are substituted into Eq.(13). After several 

algebraic operations we arrive at the below homogeneous 

Cauchy-Euler differential equation. 

𝑟2 𝑑𝑢𝑟
2

𝑑𝑟2 + 𝑟
𝑢𝑟

𝑑𝑟
− 𝑢𝑟 = 0                                         (16) 

General solution of Eq.(16) is 

𝑢𝑟(𝑟) =
𝐶1

𝑟
+ 𝐶2𝑟                                          (17) 

in which 𝐶1 and 𝐶2 are arbitrary constants to be 

determined according to the boundary conditions. Since 

the general solution of the radial displacement is acquired 

at Eq.(17), radial and tangential strains can be found by 

applying Eq.(11) to Eq.(17). 

𝜀𝑟(𝑟) = −
𝐶1

𝑟2 + 𝐶2                                           (18) 

𝜀𝜃(𝑟) =
𝐶1

𝑟2 + 𝐶2                                                         (19) 

If Eq.(18) and Eq.(19) are substituted to Eq.(15), 

directional stresses can be achieved. 

𝜎𝑟(𝑟) = −𝐶1
𝐸𝑇

1+𝜐𝑇𝑇
𝑟−2 + 𝐶2

𝐸𝑇

1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿
            (20) 

𝜎𝜃(𝑟) = 𝐶1
𝐸𝑇

1+𝜐𝑇𝑇
𝑟−2 + 𝐶2

𝐸𝑇

1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿
                 (21) 

𝜎𝑧(𝑟) = 𝐶2 
2𝐸𝐿𝜐𝑇𝐿

1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿
                                         (22) 

For the axially aligned cylinders, which are subjected to 

internal pressure, 𝐶1 and 𝐶2 are attained by using the 

following boundary conditions. 

𝜎𝑟(𝑎) = −𝑃𝑖𝑛 , 𝜎𝑟(𝑏) = 0                                         (23) 

where 𝑎 and 𝑏 denote the inner and outer radius of the 

cylinders, and 𝑃𝑖𝑛  is the elastic limit internal pressure. If 

the conditions given in Eq.(23) are solved with Eq.(20), 

arbitrary constants can be established. 

𝐶1 =  −
𝑎2𝑏2𝑃𝑖𝑛(1+𝜐𝑇𝑇)

𝐸𝑇(𝑎2−𝑏2)
                                           (24) 

𝐶2 = −
𝑎2𝑃𝑖𝑛(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝑇(𝑎2−𝑏2)
                           (25) 

Similarly, when the axially aligned cylinders are under 

external pressure, boundary conditions take the below 

form. 

𝜎𝑟(𝑎) = 0, 𝜎𝑟(𝑏) = −𝑃𝑒𝑥                                          (26) 

in which 𝑃𝑒𝑥  is the elastic limit external pressure. 𝐶1 and 

𝐶2 can be found by applying Eq.(26) to Eq.(20). 

𝐶1 =
𝑎2𝑏2𝑃𝑒𝑥(1+𝜐𝑇𝑇)

𝐸𝑇(𝑎2−𝑏2)
                                          (27) 

𝐶2 =
𝑏2𝑃𝑒𝑥(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝑇(𝑎2−𝑏2)
                                         (28) 

Since the cylindrical geometry has fixed ends, stress 

occurs at the axial direction. Accordingly, axial force is 

calculated with the following integration.  

𝐹𝑧 = ∫ 2𝜋𝑟𝜎𝑧𝑑𝑟
𝑏

𝑎
                                                        (29) 

3.2. Radially Aligned Cylinders 

In this section, transversely isotropic fibers are 

unidirectionally aligned in radial direction, and analytical 

derivations are obtained in this regard. Basic relations 

given in Eqs.(11)-(13) remains the same. On the other 

hand, when fiber direction is altered to radial direction, 

strain-stress relation becomes  

[

𝜀𝑟

𝜀𝜃

𝜀𝑧

] =

[
 
 
 
    

1

𝐸𝐿
−

𝜐𝑇𝐿

𝐸𝑇
−

𝜐𝑇𝐿

𝐸𝑇

−
𝜐𝐿𝑇

𝐸𝐿
   

1

𝐸𝑇
−

𝜐𝑇𝑇

𝐸𝑇

−
𝜐𝐿𝑇

𝐸𝐿
−

𝜐𝑇𝑇

𝐸𝑇
   

1

𝐸𝑇 ]
 
 
 
 

[

𝜎𝑟

𝜎𝜃

𝜎𝑧

]                           (30) 

Stress-strain relation take the below form after fiber 

alignment is shifted 

[

𝜎𝑟

𝜎𝜃

𝜎𝑧

] =

[
 
 
 
 

1−𝜐𝑇𝑇
2

𝐸𝑇
2∆

𝜐𝑇𝐿(1+𝜐𝑇𝑇)

𝐸𝑇
2∆

𝜐𝑇𝐿(1+𝜐𝑇𝑇)

𝐸𝑇
2∆

𝜐𝐿𝑇(1+𝜐𝑇𝑇)

𝐸𝐿𝐸𝑇∆

1−𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

𝜐𝑇𝑇+𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

𝜐𝐿𝑇(1+𝜐𝑇𝑇)

𝐸𝐿𝐸𝑇∆

𝜐𝑇𝑇+𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆

1−𝜐𝐿𝑇𝜐𝑇𝐿

𝐸𝐿𝐸𝑇∆ ]
 
 
 
 

[

𝜀𝑟

𝜀𝜃

𝜀𝑧

]   (31) 

In the above equation, ∆ given in Eq.(15) remains the 

same. In order to satisfy the equilibrium equation, 

Eq.(11) is substituted to Eq.(31). Followingly, 

corresponding stresses in Eq.(31) are substituted to 

Eq.(13). Once again homogeneous Cauchy-Euler type 

differential equation is acquired.  
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𝑟2 𝑑𝑢𝑟
2

𝑑𝑟2 + 𝑟
𝑢𝑟

𝑑𝑟
−

𝑠22

𝑠11
𝑢𝑟 = 0                             (32) 

in which 𝑠11 and 𝑠22 are the stiffness matrix terms of 

Eq.(31). By solving the above differential equation, 

general solution of the radial displacement is achieved. 

𝑢𝑟(𝑟) = 𝐶1𝑟
−𝜆 + 𝐶2𝑟

𝜆 , 𝜆 = √
𝑠22

𝑠11
= √

𝐸𝑇(1−𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿(1−𝜐𝑇𝑇
2)

  (33) 

Implementing Eq.(11) to Eq.(33), radial and tangential 

strains are found. 

𝜀𝑟(𝑟) = 𝐶1𝜆𝑟−𝜆−1 + 𝐶2𝜆𝑟𝜆−1                           (34) 

𝜀𝜃(𝑟) = 𝐶1𝑟
−𝜆−1 + 𝐶2𝑟

𝜆−1                           (35) 

Directional stresses are obtained via substituting Eq.(34) 

and Eq.(35) to Eq.(31). 

𝜎𝑟(𝑟) = 𝐶1
𝐸𝐿(𝜐𝑇𝐿+𝜆(𝜐𝑇𝑇−1))

1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿
𝑟−𝜆−1 +

                                        𝐶2
𝐸𝐿(𝜐𝑇𝐿−𝜆(𝜐𝑇𝑇−1))

1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿
𝑟𝜆−1           (36) 

𝜎𝜃(𝑟) = 𝐶1
𝐸𝑇(1−𝜐𝐿𝑇(𝜆(𝜐𝑇𝑇+1)+𝜐𝑇𝐿))  

(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)(𝜐𝑇𝑇+1)
𝑟−𝜆−1 +

                          𝐶2
𝐸𝑇(1+𝜐𝐿𝑇(𝜆(𝜐𝑇𝑇+1)−𝜐𝑇𝐿))

(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)(𝜐𝑇𝑇+1)
 𝑟𝜆−1            (37) 

𝜎𝑧(𝑟) = 𝐶1
𝐸𝑇(𝜐𝑇𝑇+𝜐𝐿𝑇(𝜐𝑇𝐿−𝜆(𝜐𝑇𝑇+1)))  

(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)(𝜐𝑇𝑇+1)
𝑟−𝜆−1 +

                         𝐶2
𝐸𝑇(𝜐𝑇𝑇+𝜐𝐿𝑇(𝜐𝑇𝐿+𝜆(𝜐𝑇𝑇+1)))  

(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)(𝜐𝑇𝑇+1)
𝑟𝜆−1          (38) 

When the radially aligned cylinders are subjected to 

internal pressure, arbitrary constants are attained by 

applying Eq.(36) to Eq.(23). 

𝐶1 = 
𝑎𝜆+1𝑏2𝜆𝑃𝑖𝑛(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿(𝑎2𝜆−𝑏2𝜆)(𝜐𝑇𝐿+𝜆(𝜐𝑇𝑇−1))
                           (39) 

𝐶2 = −
𝑎𝜆+1𝑃𝑖𝑛(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿(𝑎2𝜆−𝑏2𝜆)(𝜐𝑇𝐿−𝜆(𝜐𝑇𝑇−1))
                               (40) 

In a similar manner, for the externally pressurized 

composite cylinders, which constitutes of radially 

aligned fibers, 𝐶1 and 𝐶2 are achieved with using Eq.(36) 

and Eq.(26). 

𝐶1 = − 
𝑎2𝜆𝑏𝜆+1𝑃𝑒𝑥(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿(𝑎2𝜆−𝑏2𝜆)(𝜐𝑇𝐿+𝜆(𝜐𝑇𝑇−1))
                           (41) 

𝐶2 =
𝑏𝜆+1𝑃𝑒𝑥(1−𝜐𝑇𝑇−2𝜐𝐿𝑇𝜐𝑇𝐿)

𝐸𝐿(𝑎2𝜆−𝑏2𝜆)(𝜐𝑇𝐿−𝜆(𝜐𝑇𝑇−1))
                           (42) 

3.3. Elastic Limits 

In order to find the elastic limits, Tsai-Wu yield criteria 

[27] is utilized. Corresponding criteria in principal 

directions is given below. 

𝜎𝑌(𝑟) = 𝐹1𝜎𝑟 + 𝐹2𝜎𝜃 + 𝐹3𝜎𝑧 + 𝐹11𝜎𝑟
2 + 𝐹22𝜎𝜃

2

+ 𝐹33𝜎𝑧
2 + 2𝐹12𝜎𝑟𝜎𝜃 

                                  +2𝐹13𝜎𝑟𝜎𝑧 + 2𝐹23𝜎𝜃𝜎𝑧 ≤ 1          (43) 

in which 𝐹𝑗 and 𝐹𝑖𝑗 terms are the coefficients of the 

yielding criteria, which are calculated by using tensile 

and compressive strengths of the composite material 

stated in Eq.(7) to Eq.(10). When the fibers are taken in 

axial direction, coefficients become  

𝐹1 = 𝐹2 =
1

𝑌𝑡
−

1

𝑌𝑐
,  𝐹3 =

1

𝑋𝑡
−

1

𝑋𝑐
, 

𝐹11 = 𝐹22 =
1

𝑌𝑡𝑌𝑐
, 𝐹33 =

1

𝑋𝑡𝑋𝑐
,  

𝐹12 =
−1

2√𝑌𝑡𝑌𝑐𝑌𝑡𝑌𝑐
, 𝐹13 = 𝐹23 =

−1

2√𝑋𝑡𝑋𝑐𝑌𝑡𝑌𝑐
                   (44)                                      

In the case of radial fiber alignment, 𝐹𝑗 and 𝐹𝑖𝑗 terms take 

the below forms 

𝐹1 =
1

𝑋𝑡
−

1

𝑋𝑐
, 𝐹2 =  𝐹3 =

1

𝑌𝑡
−

1

𝑌𝑐
, 

𝐹11 =
1

𝑋𝑡𝑋𝑐
, 𝐹22 = 𝐹33 =

1

𝑌𝑡𝑌𝑐
, 

𝐹12 = 𝐹13 =
−1

2√𝑋𝑡𝑋𝑐𝑌𝑡𝑌𝑐
, 𝐹23 =

−1

2√𝑌𝑡𝑌𝑐𝑌𝑡𝑌𝑐
                  (45)

  

Since this study focuses on the elastic stresses, Eq.(43) 

should not exceed 1. As long as Eq.(43) is smaller than 

1, all elastic relations are valid. In this regard, elastic limit 

internal or external pressure values are calculated when 

Eq.(43) is equal to 1. Plastic flow commences when 

𝜎𝑌(𝑟) > 1. 

 

4. NUMERICAL RESULTS 

In order to display numerical examples, geometric 

properties of the cylinders and mechanical properties of 

the composite material should be determined. In this 

regard, inner (𝑎) and outer (𝑏) radii of the cylinders are 

taken as 0.05 m and 0.10 m respectively. Graphite/epoxy 

is utilized as the material of the cylinders. Mechanical 

properties of transversely isotropic graphite fibers and 

isotropic epoxy are given in Table 1. Composite material 

properties are calculated by employing Chamis method 

from Eq.(1) to Eq.(10) with the data given in Table 1. 

Followingly, variables are converted to their non-

dimensional forms to exemplify numerical results more 

conveniently. Normalized variables are exhibited with 

overbars. Correspondingly, radial coordinate of the 

cylinders become  �̅� = 𝑟/𝑏. Directional and yield stresses 

are 𝜎𝑗 = 𝜎𝑗/𝑌𝑐𝑚, 𝜎𝑌(𝑟) = 𝜎𝑌(𝑟). As it is seen yield stress 

does not require normalization because Eq.(43) is already 

in dimensionless form.  Elastic limit pressures take the 

following form �̅�𝑖𝑛 = 𝑃𝑖𝑛/𝑌𝑐𝑚 and �̅�𝑒𝑥 = 𝑃𝑒𝑥/𝑌𝑐𝑚 . 
Normalized radial displacement is �̅�𝑟 = 𝑢𝑟𝐸𝑚/𝑌𝑐𝑚𝑏. 
Axial force becomes �̅�𝑧 = 𝐹𝑧𝑏/𝑌𝑐𝑚 . When fibers are 

axially aligned, arbitrary constants are 𝐶1̅ = 𝐶1/𝑏
2 and 

𝐶2̅ = 𝐶2. On the other hand, when the fibers are taken 

radially  𝐶1̅ = 𝐶1/𝑏
1+𝜆 and 𝐶2̅ = 𝐶2/𝑏

1−𝜆. It should be 

noted that in the following numerical examples all 

directional stresses, radial displacements, radial 

coordinates and regarding variables are exhibited in 

dimensionless forms.  

Table 1. Micromechanical properties of the graphite fibers and epoxy [28] 

𝐸𝑙𝑓 

(GPa) 

𝐸𝑡𝑓 

(GPa) 

𝐸𝑚 

(GPa) 

𝜐𝑙𝑡𝑓  

(-) 

𝜐𝑡𝑡𝑓 

(-) 

𝜐𝑚 

(-) 

𝑋𝑡𝑓 

(MPa) 

𝑋𝑐𝑓 

(MPa) 

𝑌𝑡𝑚 

(MPa) 

𝑌𝑐𝑚 

(MPa) 

230 22 3.4 0.30 0.35 0.30 2067 1999 72 102 
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4.1. Axially Aligned Cylinders Under Internal 

Pressure 

In this case, equations given from (17) to (22) are valid, 

and the boundary conditions presented in Eq.(24) and 

Eq.(25) are used. Axial force is found by using the 

integration given in Eq.(29), and the elastic limit internal 

pressure values are obtained by using Tsai-Wu yield 

criteria with the conditions in Eq.(44). For various 

composite material compositions, which are calculated 

with altering the 𝑉𝑓 values, obtained non dimensional 

results are exhibited below. 

 

Table 2.  Dimensionless results of the axially aligned 

composite cylinders subjected to internal pressure for 

different 𝑉𝑓 

It is displayed in Table 2 that when fiber volume fraction 

increases, cylinders begin yielding at higher internal 

pressure values which can be seen by tracking �̅�𝑖𝑛 . In 

addition, when the applied maximum elastic pressure 

increase, axial force (�̅�𝑧) at the fixed-ends of the cylinders 

also rise. Followingly, corresponding stress and radial 

displacement fields are illustrated graphically. In Figure 

2 (a) (b) and (c), when 𝑉𝑓 enlarges directional stresses in 

all directions ascend. Axial stress is considerably small 

when it is compared to radial and tangential stresses, and 

it does not vary through radius which is in compliance 

with the analytical derivation given in Eq.(22). Another 

aspect is that, under internal pressure, tangential and axial 

stresses are tensile, however, radial stress is compressive. 

It is spotted from Figure 2 (d) that plastic flow 

commences at the inner radii of the cylinders. In addition, 

cylinders radially expand when internally pressurized, 

and as the value of 𝑉𝑓 rises radial displacement descends 

which is depicted by Fig. 2 (e). Composite material gets 

stiffer as the fiber volume fraction rises. Thus, the radial 

displacement reduces.  

 

Figure 2. Dimensionless (a) radial, (b) tangential, (c) axial, (d) 

yield stresses and (e) radial displacement of the 

axially aligned cylinders under internal pressure 

through �̅� 

 

4.2. Axially Aligned Cylinders Under External 

Pressure 

When the composite cylinders are externally pressurized, 

Eq.(17) to Eq.(22) are employed with the boundary 

  𝑉𝑓=0.25  𝑉𝑓=0.50 𝑉𝑓=0.75 

𝐶1̅ 0.002367 0.001665 0.001164 

𝐶2̅ 0.000729 0.000594 0.000480 

�̅�𝑧 0.012750 0.013326 0.014566 

�̅�𝑖𝑛 0.270573 0.282793  0.309180 
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conditions in Eq.(27) and Eq.(28). Calculated results for 

these conditions are presented below. 

 

Table 3.  Dimensionless results of the axially aligned 

composite cylinders subjected to external pressure for 

different 𝑉𝑓 

   𝑉𝑓=0.25   𝑉𝑓=0.50  𝑉𝑓=0.75 

𝐶1̅ -0.002645 -0.001843 -0.001285 

𝐶2̅ -0.003260 -0.002632 -0.002118 

�̅�𝑧 -0.057000 -0.058998 -0.064302 

�̅�𝑒𝑥  0.302395   0.312998   0.341136  

 

According to the obtained results in Table 3, as expected, 

strength of the cylinders enhances with the increase of  𝑉𝑓  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is observed by comparing elastic limit external 

pressure values. Moreover, In Table 3, dimensionless 

axial force terms have negative sign in front which 

indicates that when composite cylinders are under 

external pressure, axial force is compressive. 

Incrementing  𝑉𝑓 cause enlargement to axial force at the 

ends of the cylinders. All the normalized directional 

stresses are compressive under external pressure. Once 

again, axial stress does not alter with the radii of the 

cylinders as in the previously illustrated internal pressure 

case. Figure 3 (d) presents that even though the cylinders 

are externally pressurized yielding begins at 𝑟 = 𝑎. This 

situation is explained by the fact that directional stress 

difference is maximum at the inner diameter of cylinders. 

Additionally, directional stresses expand with the 

increase of fiber volume fraction. In this boundary 

condition, composite cylinders shrink in radial direction 

which is plotted at Fig 3 (e). This shrinkage is the highest 

at the inner radii of the cylinders since yielding begins 

there. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dimensionless (a) radial, (b) tangential, (c) axial, (d) 

yield stresses and (e) radial displacement of the 

axially aligned cylinders under external pressure 

through �̅� 

 

4.3. Radially Aligned Cylinders Under Internal 

Pressure 

Eq.(33) to Eq.(38) are applied for the radially aligned 

composite cylinders subjected to internal pressure, and 

arbitrary constants given in Eq.(39) and Eq.(40) are used. 

Axial force at the fixed-ends are calculated by employing 

Eq.(38) to Eq.(29) with the corresponding boundary 

conditions. Additionally, �̅�𝑖𝑛is found by utilizing Eq.(43) 

with Eq.(45). Under these terms, acquired outcomes are 

demonstrated at Table 4.   
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Table 4.  Dimensionless results of the radially aligned 

composite cylinders subjected to internal pressure for 

different 𝑉𝑓 

  𝑉𝑓=0.25  𝑉𝑓=0.50 𝑉𝑓=0.75 

𝐶1̅ 0.001914 0.001520 0.001188 

𝐶2̅ 0.001366 0.001161 0.000923 

�̅�𝑧 0.041410 0.040954 0.039864 

�̅�𝑖𝑛 0.361459  0.395519  0.439980  

 

When fiber direction is switched from axial to radial, 

composite cylinders begin yielding at greater elastic limit 

internal pressure values which is understood by checking 

�̅�𝑖𝑛 in Table 2 and Table 4. By comparing Fig 2 (a)-(b) 

with Fig 4 (a)-(b), one can comprehend that radial and 

tangential stress distribution profiles of the axially and 

radially aligned cylinders are similar to each other, but 

radial fiber alignment creates higher elastic stresses. On 

the other hand, axial stress of the axially (Fig 2 (c)) and 

radially (Fig 4 (c)) aligned cylinders exhibit difference. 

The reason of this difference is observed by comparing 

Eq.(22) and Eq.(38). Eq.(22) is independent of the radial 

coordinate, however Eq.(38) is a function of 𝑟, and much 

sophisticated due to 𝜆 term. When the radial 

displacements of the axially (Fig 2 (e)) and radially (Fig 

4 (e)) aligned cylinders under internal pressure are 

compared, it is noticed that displacement profiles 

moderately alter especially at 𝑟 = 𝑎. The cause of this 

alteration is found with monitoring Eq.(17) and Eq.(33). 

The term 𝜆  in Eq.(33) influences the displacement of the 

radially aligned cylinders. 
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Figure 4. Dimensionless (a) radial, (b) tangential, (c) axial, (d) yield stresses and (e) radial displacement of the radially 

aligned cylinders under internal pressure through �̅� 
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4.4. Radially Aligned Cylinders Under External 

Pressure 

In this final case, boundary conditions stated in Eq.(41) 

and Eq.(42) are operated from Eq.(33) to Eq.(38). 

Achieved results for various 𝑉𝑓 are presented at the 

following table and figures. 

 

Table 5.  Dimensionless results of the radially aligned 

composite cylinders subjected to external pressure for 

different 𝑉𝑓 

   𝑉𝑓=0.25   𝑉𝑓=0.50  𝑉𝑓=0.75 

𝐶1̅ -0.002981 -0.002328 -0.001767 

𝐶2̅ -0.003525 -0.002705 -0.002068 

�̅�𝑧 -0.086645 -0.080117 -0.075670 

�̅�𝑒𝑥  0.362273  0.373638   0.401372  

 

 

 

s noticed from Table 5, �̅�𝑒𝑥 increases with higher 𝑉𝑓, and 

�̅�𝑧 is compressive which is in compliance with the case 

given in section 4.2. When the cylinders are externally 

pressurized, radially aligned cylinders start yielding at 

higher �̅�𝑒𝑥  values than the axially aligned ones. This 

comparison is validated by checking the results in Table 

3 and Table 5. Radial and tangential elastic stress 

distributions of the axially (Fig 3 (a)-(b)) and radially 

(Fig 5 (a)-(b)) aligned cylinders are similar. On the other 

hand, these radial and tangential stresses are moderately 

higher when fibers are radially aligned. Conversely, axial 

stresses of the axially (Fig 3 (c)) and radially (Fig 5 (c)) 

aligned cylinders deviate from each other. When Fig 3 (e) 

and Fig 5 (e) are cross checked, it is acquired that 

displacements of the externally pressurized cylinders 

relatively vary at 𝑟 = 𝑏. This change is, once again, 

resulted by the term 𝜆. 

 

 

 
 

Figure 5. Dimensionless (a) radial, (b) tangential, (c) axial, (d) yield stresses and (e) radial displacement of the radially 

aligned cylinders under external pressure through �̅� 
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5. CONCLUDING REMARKS 

The aim of this study is investigating the elastic limit 

stress and displacement field of long thick-walled fiber 

reinforced composite cylinders in the framework of 

elasticity. In this regard, analytical derivations are 

obtained for cylinders which have unidirectionally 

aligned fibers in axial and radial directions, and solutions 

are presented for internal and external pressure cases. In 

order to find the elastic limits Tsai-Wu yield criteria is 

employed. Throughout the applied cases, yielding takes 

place at the inner surface of the cylinders because of the 

directional stress difference which is at apex point in  𝑟 =
𝑎. On the other hand, it is hard to make a statement as 

transversely isotropic fibers always fail at the inner 

radius. For different composite material properties, fiber 

alignments, wall thicknesses, or different failure criteria, 

these structures may start yielding elsewhere. As 

expected, values of the composite material properties rise 

with the increment of 𝑉𝑓. Therefore, the higher 𝑉𝑓 is the 

higher elastic limit internal or external pressure values 

become. Another important point that should be 

mentioned is when fiber direction is taken radially, 

cylinders start yielding at the higher elastic limits. Thus, 

if axial and radial fiber alignment are compared, radial 

direction would be the preferred direction for better 

performance. 
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