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Abstract. In this paper we investigate the existence of the periodic solu-
tions of a nonlinear impulsive differential system with piecewise alternately
advanced and retarded arguments, in short IDEPCAG, that is, the argument
is a general step function. We consider the critical case, when associated linear
homogeneous system admits nontrivial periodic solutions. Criteria of existence
of periodic solutions of such system are obtained. In the process we use the
Green’s function for impulsive periodic solutions and convert the given the
IDEPCAG into an equivalent integral equation system. Then we construct
appropriate mappings and employ Krasnoselskii’s fixed point theorem to show
the existence of a periodic solution of this type of nonlinear impulsive differ-
ential systems. We also use the contraction mapping principle to show the
existence of a unique impulsive periodic solution. Appropriate examples are
given to show the feasibility of our results.

1. Introduction

Among the functional differential equations, Myshkis [27] proposed to study
differential equations with piecewise constant arguments: DEPCA. The theory of
scalar DEPCA of the type

dx(t)

dt
= f(t, x(t), x(β(t))), β(t) = [t] or β(t) = 2

[
t+ 1

2

]
, (1)

where [·] signifies the greatest integer function, was initiated in [8,33] and has been
developed by many authors [6, 20, 28, 35, 36, 38]. DEPCA are hybrid equations,

2020 Mathematics Subject Classification. Primary 34A37, 34K13; Secondary 34A38, 34B27,
37C25.

Keywords and phrases. Impulsive differential equation, piecewise constant arguments of gen-
eralized type, Green’s function, periodic solutions, fixed point theorems.

kschiu@umce.cl
0000-0002-3823-5898.

c©2021 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

15



16 K.-S. CHIU

because they combine the characteristics of continuous systems and discrete equa-
tions. The continuity of a solution in points that unite two consecutive intervals
implies the existence of recursive relations for the solution in such points. The
equations are thus similar in structure to those found in certain “sequentially con-
tinuous”models of the dynamic ones of the disease of the treaty by S. Busenberg
and K. L. Cooke [5]. Others applications of DEPCA are discussed in [35].
These kinds of systems can usually be formulated as first or second order differ-

ential equations with piecewise constant arguments. Examples in practice include
machinery driven by servo units, charged particles moving in a piecewise constantly
varying electric field, and elastic systems impelled by a Geneva wheel.
Impulsive differential equations arise naturally in the description of physical and

biological phenomena that are subjected to instantaneous changes at some time
instants called moments. For a good account on this theory, which has seen a
significant development over the past decades we refer the interested reader to the
monographs [26,31] and the references therein.
There are many papers that study the qualitative behaviours of the impulsive

differential equations [22,25,37]. Among these investigations stability and instabil-
ity problems are very interesting. Impulses can make unstable systems stable and
stable systems can become unstable after impulse effects [2, 24].
To the best of our knowledge, there are only a few papers involving impulsive

differential equations with piecewise constant arguments [3, 12,16,21,23,37].
In 2000, Wiener and Lakshmikantham [37] proved the existence and uniqueness

of solutions of the initial value problem

x′(t) = f(t, x(t), x(g(t))), x(0) = x0,

and they gave some oscillation and stability results for the same problem, where f
is a continuous function and g : [0,∞)→ [0,∞), g(t) ≤ t is a step function.
In 2009, F. Karakoc et al. [21] consider the first order linear scalar impulsive

delay differential equation of the type

y′(t) + a(t)y(t) + b(t)y([t− 1]) = 0, t 6= n,

∆y(n) = dny(n), n ∈ N,

and they also studied the existence of oscillatory and periodic solutions, where
a, b : R+ → R continuous functions and dn ∈ R \ {1}, ∆y(n) = y(n+)− y(n−),
y(n+) = lim

t→n+
y(t) and y(n−) = lim

t→n−
y(t).

In 2017, Gizem S. Oztepe et al. [29] consider the second order impulsive differ-
ential equation with a piecewise constant argument of the type

x′′(t)− a2x(t) = bx([t]), t 6= n ∈ Z+, t ≥ 0,

∆x′(n) = dx′(n), n ∈ Z+,

and they gave some oscillatory and periodic results, where a, b, d ∈ R\{0}.
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In 2019, R. Torres et al. [7] consider the impulsive differential equation with
piecewise constant argument of generalized type (IDEPCA of generalized type)
and they gave certain conditions for the existence of an asymptotic equilibrium of
non-linear and semi-linear IDEPCA systems of generalized type.
Recently, Chiu [19], using Green’s function and fixed point theory, obtained some

suffi cient conditions for the existence and uniqueness of periodic (or harmonic) and
subharmonic solutions of quasilinear DEPCA systems of generalized type.
Let Z, N and R be the set of all integers, natural, real and complex numbers,

respectively. Fix two real sequences ti, γi, i ∈ Z, such that ti < ti+1, ti ≤ γi ≤ ti+1
for all i ∈ Z, ti → ±∞ as i → ±∞. Let γ : R → R be a step function given by
γ(t) = γi for t ∈ Ii = [ti, ti+1) and consider the DEPCA (1) with this general γ. In
this case we speak of DEPCA of generalized type, in short DEPCAG. Theory and
practice of DEPCAG have been discussed extensively in [1, 9—11, 13, 14, 17, 18, 30]
and IDEPCA of generalized type have been discussed in [7, 15].
The main purpose of this paper is to establish some simple criteria for the ex-

istence of periodic solutions of a nonlinear system of impulsive differential systems
with alternately of advanced and retarded arguments of generalized type (in short
IDEPCAG):

z′(t) = A(t)z(t) + f
(
t, z(t), z(γ(t))

)
+ g
(
t, z(t), z(γ(t))

)
, t 6= tk, (2a)

∆z|tk = Jk(z(t−k )), k ∈ Z, (2b)

where t ∈ R, A : R → Rn×n, f : R × Rn × Rn → Rn and g : R × Rn × Rn → Rn
and Jk : Rn → Rn are continuous in their respective arguments. Moreover, ∆z(tk)
denotes z(tk)− z(t−k ), where z(t−k ) = lim

h→0−
z(tk + h).

In the analysis, we use the idea of the Green’s function for impulsive periodic
solutions and convert the IDEPCAG system (2a)-(2b) into an equivalent integral
equation. Then we employ Krasnoselskii’s fixed point theorem and show the ex-
istence of an impulsive periodic solution of the IDEPCAG system (2a)-(2b) in
Theorem 13. We also obtain the existence of a unique periodic solution in The-
orem 15 employing the contraction mapping principle as the basic mathematical
tool. Furthermore, appropriate examples are given to show the feasibility of our
results. For example, some new and interesting suffi cient conditions are obtained
to guarantee the existence of the periodic solutions of nonlinear integro-differential
equations with the IDEPCAG system

z′(t) = A(t)z(t) +

∫ t

−∞
C(t, s, z(γ(s)))ds+ g(t, z(t), z(γ(t))), t 6= tk, (3a)

∆z|tk = Jk(z(t−k )), k ∈ Z. (3b)

In our paper we assume that the solutions of the IDEPCAG system (2a)-(2b)
are continuous functions with possible points of discontinuity of the first kind at
tk, k ∈ Z. But the deviating argument γ(t) is discontinuous. Thus, in general, the
right-hand side of the IDEPCAG system (2a)-(2b) has discontinuities at moments
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tk ∈ R, k ∈ Z. As a result, we consider the solutions of the IDEPCAG system
as functions, which are continuous and continuously differentiable within intervals
[tk, tk+1), k ∈ Z.
We use the following definition, which is a version of a definition from [12, 16],

modified for our general case.

Definition 1. A function z is a solution of the IDEPCAG system (2a)-(2b) in R
if

i) z(t) is continuous for t ∈ R with the possible exception of the points t = tk,
k ∈ Z.

ii) z(t) is right continuous and has left-hand limits at the points t = tk, k ∈ Z.
iii) z(t) is differentiable and satisfies (2a) for any t ∈ R with the possible ex-

ception of the points t = tk, k ∈ Z, where one-sided derivatives exist.
iv) z(tk) satisfies the impulsive effects (2b), k ∈ Z.
The rest of the paper is organized as follows. In the next section, we introduce

and show some properties about the Green’s function. Section 3 is devoted to
establishing some criteria for the existence and uniqueness of impulsive periodic so-
lutions of the IDEPCAG system (2a)-(2b). Green’s operator and Banach, Schauder
and Krasnoselskii’s fixed point theorem below are fundamental to obtain the main
results. Furthermore, appropriate examples are provided in the last section to show
the feasibility of our results.

2. Green’s function and periodicity

In this section we state and define the Green’s function for periodic solutions in
impulsive alternately advanced and delayed differential systems (2a)-(2b).
Let I be the n× n identity matrix. Denote by Φ(t, s), Φ(s, s) = I, t, s ∈ R, the

fundamental matrix of solutions of the homogeneous system (4).
From now on the following assumption will be needed:

(Nω) The homogeneous equation
y′(t) = A(t)y(t) (4)

does not admit any nontrivial ω-periodic solution.

Remark 2. For τ ∈ R, the condition (Nω) is equivalent to the matrix (I − Φ(τ + ω, τ))
is non-singular.

Definition 3. Suppose that the condition (Nω) holds. For each t, s ∈ [τ , τ + ω],
the Green’s function for the IDEPCAG system (2a)-(2b) is given by

G(t, s) =

{
Φ(t)(I +D)Φ−1(s), τ ≤ s ≤ t ≤ τ + ω,
Φ(t)DΦ−1(s), τ ≤ t < s ≤ τ + ω,

(5)

where, Φ(t) is a fundamental solution of (4) and

D =
((

Φ−1(τ)Φ(τ + ω)
)−1 − I)−1 . (6)
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We note that the condition (Nω) implies the existence of the matrix D.

Remark 4. In the case of A(t) = diag{ai(t)}i∈{1,...,n}, the Green’s function G(t, s) =
diag {Gi(t, s)}i∈{1,...,n} of the IDEPCAG system (2a)-(2b) has the form

Gi(t, s) =


(

exp(
∫ τ+ω
τ

ai(u)du)
exp(

∫ τ+ω
τ

ai(u)du)−1

)
exp

(∫ s
t
ai(κ)dκ

)
, τ ≤ s ≤ t ≤ τ + ω,(

1

exp(
∫ τ+ω
τ

ai(u)du)−1

)
exp

(∫ s
t
ai(κ)dκ

)
, τ ≤ t < s ≤ τ + ω.

(7)

Lemma 5. Suppose that the condition (Nω) holds. Then the Green’s function
G(t, s) is double ω-periodic, i.e., G(t+ ω, s+ ω) = G(t, s).

Proof of this affi rmation was omitted, as it can be demonstrated in the same
way as Lemma 2.2 in [19].

3. Existence of Periodic Solutions

In this section, we prove the main theorems of this paper, by using Banach,
Schauder and Krasnoselskii’s fixed point theorems, we investigate the existence
and uniqueness of periodic and subharmonic solutions of the IDEPCAG system, so
we recall the IDEPCAG system (2a)-(2b):{

z′(t) = A(t)z(t) + f(t, z(t), z(γ(t))) + g(t, z(t), z(γ(t))), t 6= tk,

∆z|tk = Jk(z(t−k )), k ∈ Z.

Let PC be the set of all n-vector piecewise continuous function z(t) with points
of discontinuity of the first kind at t = tk, k ∈ Z. For this, a natural Banach space
is

PCω = {z(t)| z(t) ∈ PC, z(t+ ω) = z(t)}
with the supremum norm

‖z‖ = sup
t∈R
|z(t)| = sup

t∈[τ,τ+ω]
|z(t)|.

Consider f : R × Rn × Rn → Rn, g : R × Rn × Rn → Rn and Jk : Rn → Rn
are continuous functions. For every t ∈ R, let i = i(t) ∈ Z be the unique integer
such that t ∈ Ii = [ti, ti+1). To obtain our main results, we make the following
assumptions throughout this paper.

Lipschitz conditions:

(Lf ) There exist functions p1, p2 : R→ [0,∞) such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ p1(t) |x1 − x2|+ p2(t)|y1 − y2|, (8)
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for t ∈ R and x1, y1, x2, y2 ∈ Rn. Moreover, α = sup
t∈R
|f(t, 0, 0)| and

∫ τ+ω

τ

[p1(s) + p2(s)] ds ≤ L1, ω ∈ R+, τ ∈ R.

(Lg) There exist functions υ1, υ2 : R→ [0,∞) such that

|g(t, x1, y1)− g(t, x2, y2)| ≤ υ1(t) |x1 − x2|+ υ2(t)|y1 − y2|, (9)

for t ∈ R and x1, y1, x2, y2 ∈ Rn. Moreover, β = sup
t∈R
|g(t, 0, 0)| and

∫ τ+ω

τ

[υ1(s) + υ2(s)] ds ≤ L2, ω ∈ R+, τ ∈ R.

(LJ) There exist functions ℘k : R→ [0,∞), k ∈ Z, such that

|Jk(x1)− Jk(x2)| ≤ ℘k(t)|x1 − x2|, (10)

for t ∈ R and x1, x2 ∈ Rn. Moreover, κ = sup
k∈Z
|Jk(0)| and

i(τ)+p∑
k=i(τ)+1

℘k(t) ≤ L3, p ∈ N, i(τ) ∈ Z.

Periodic conditions:

(P) There exists ω > 0 such that:
1) A(t), f(t, x1, y1) and g(t, x2, y2) are periodic functions in t with a period ω
for all t ≥ τ .

2) There exists p ∈ Z+, for which the sequences {ti}i∈Z, {γi}i∈Z, satisfy the
(ω, p) condition, that is

ti+p = ti + ω, γi+p = γi + ω, for i ∈ Z. (11)

3) The sequence {Ji}i∈Z satisfies

Ji+p = Ji, (12)

some positive integer p ∈ N.

Invariance conditions:

(Mf ) For every R > 0, t ∈ R, |x|, |y| ≤ R, there exist functions m1,m2 : R →
[0,∞) and positive constants ρ1, C1 for which

|f(t, x, y)| ≤ m1(t) |x|+m2(t) |y|+ ρ1, (13)

where
∫ τ+ω
τ

[m1(s) +m2(s)] ds ≤ C1, ω ∈ R+, τ ∈ R.
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(Mg) For every R > 0, t ∈ R, |x|, |y| ≤ R, there exist functions κ1, κ2 : R →
[0,∞) and positive constants ρ2, C2 for which

|g(t, x, y)| ≤ κ1(t) |x|+ κ2(t) |y|+ ρ2, (14)

where
∫ τ+ω
τ

[κ1(s) + κ2(s)] ds ≤ C2, ω ∈ R+, τ ∈ R.
(MJ) For every R > 0, t ∈ R, |x| ≤ R, there exist functions %k : R → [0,∞),

k ∈ Z and positive constants ρ3, C3 for which

|Jk(x)| ≤ %k(t) |x|+ ρ3, (15)

where
i(τ)+p∑
k=i(τ)+1

%k(t) ≤ C3, p ∈ N, i(τ) ∈ Z.

Remark 6. Note that (ω, p) condition is a discrete relation, which moves the in-
terval Ii into Ii+p. Then we have the following consequences:
(i) For any τ ∈ R, the interval [τ , τ + ω] can be decomposed as follows:

[τ , ti(τ)+1] ∪
i(τ)+p−1⋃
j=i(τ)+1

Ij ∪ [ti(τ)+p, τ + ω].

(ii) For t ∈ [ti, ti+1), we have
a) t+ ω ∈ [ti+p, ti+p+1), b) γ(t) + ω ∈ [ti+p, ti+p+1).
Then

γ(t+ ω) = γi(t+ω) = γi(t) + ω = γ(t) + ω.

Using Definition 3, Remark 6 and ω-periodicity of the Green’s function, we have
obtained the following Proposition.

Proposition 7. Suppose that the conditions (Nω) and (P) hold. Let (τ , z(τ)) ∈
R×Rn. Then, z(t) = z(t, τ , z(τ)) is an ω-periodic solution on R of the IDEPCAG
system (2a)-(2b) if and only if z(t) is an ω-periodic solution of the integral equation
system

z(t) =

∫ τ+ω

τ

G(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k )),

(16)

where the Green’s function G(t, s) is defined by (5).
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Proof. If z(t) is an ω-periodic solution of the integral equation system (16), let
t 6= t−k , then we have

d

dt

(∫ τ+ω

τ

G(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

)
= Φ′(t)

∫ t

τ

(I +D)Φ−1(s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+ Φ(t)(I +D)Φ−1(t)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
+ Φ′(t)

∫ τ+ω

t

{
DΦ−1(s)

[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]}
ds

− Φ(t)DΦ−1(t)
[
f(t, z(t), z(γ(t))) + g(t, z(t), z(γ(t)))

]
= A(t)

(∫ τ+ω

τ

G(t, s)[f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))]ds

)
+
[
f(t, z(t), z(γ(t))) + g(t, z(t), z(γ(t)))

]
.

(17)

Similarly,

d

dt

 i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k ))

 = A(t)

 i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k ))

 .

Hence

z′(t) = A(t)z(t) + f(t, z(t), z(γ(t))) + g(t, z(t), z(γ(t))), t 6= tk.

For any t = tj , j ∈ {i(τ) + 1, ..., i(τ) + p}, we have from (16) that

z(tj) =

∫ τ+ω

τ

G(tj , s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

G(tj , tk)Jk(z(t−k )),

(18)

and

z(t−j ) =

∫ τ+ω

τ

G(t−j , s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

G(t−j , tk)Jk(z(t−k )).

(19)
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Therefore

∆z|tj = z(tj)− z(t−j )

=

∫ τ+ω

τ

(
G(tj , s)−G(t−j , s)

) [
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

(
G(tj , tk)−G(t−j , tk)

)
Jk(z(t−k ))

= Jj(z(t
−
j )).

(20)

Thus z(t) is an ω-periodic solution of the IDEPCAG system (2a)-(2b).
Conversely, suppose that z(t) is an ω-periodic of the IDEPCAG system (2a)-(2b).
Now, we solve the IDEPCAG system (2a)-(2b) on Ii(τ) = [ti(τ), ti(τ)+1):

z′(t) = A(t)z(t) + f(t, z(t), z(γi(τ))) + g(t, z(t), z(γi(τ))), t ∈ [ti(τ), ti(τ)+1),

which has the solution given by

z(t) = Φ(t, τ)z(τ) +

∫ t

τ

Φ(t, s)
[
f(s, z(s), z(γi(τ))) + g(s, z(s), z(γi(τ)))

]
ds. (21)

For t→ ti(τ)+1 in (21) and the impulsive effects (2b), we have

z(ti(τ)+1) = Φ(ti(τ)+1, τ)z(τ) +

∫ ti(τ)+1

τ

Φ(ti(τ)+1, s)
[
f(s, z(s), z(γi(τ)))

+ g(s, z(s), z(γi(τ)))
]
ds+ Ji(τ)+1

(
z(t−i(τ)+1)

)
.

(22)

For t → ti(τ)+2 in (21) with τ = ti(τ)+1 and using (22) and the impulsive effects
(2b), we obtain

z(ti(τ)+2) =Φ(ti(τ)+2, τ)z(τ) +

∫ ti(τ)+1

τ

Φ(ti(τ)+2, s)
[
f(s, z(s), z(γi(τ)))

+ g(s, z(s), z(γi(τ)))
]
ds

+

∫ ti(τ)+2

ti(τ)+1

Φ(ti(τ)+2, s)
[
f(s, z(s), z(γi(τ))) + g(s, z(s), z(γi(τ)))

]
ds

+ Φ(ti(τ)+2, ti(τ)+1)Ji(τ)+1(z(t
−
i(τ)+1)) + Ji(τ)+2(z(t

−
i(τ)+2)),
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and in general, by induction, for any i(t) ≥ i(τ):

z(t) = Φ(t, τ)z(τ) +

∫ ti(τ)+1

τ

Φ(t, s)
[
f(s, z(s), z(γi(τ)) + g(s, z(s), z(γi(τ)))

]
ds

+

i(t)−1∑
k=i(τ)+1

∫ tk+1

tk

Φ(t, s)
[
f(s, z(s), z(γk)) + g(s, z(s), z(γk))

]
ds

+

∫ t

ti(t)

Φ(t, s)
[
f(s, z(s), z(γi(t))) + g(s, z(s), z(γi(t)))

]
ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(z(t−k )).

On the other hand, one can easily see that∫ t

τ

f(s, z(s), z(γ(s)))ds =

∫ ti(τ)+1

τ

f(s, z(s), z(γi(τ)))ds

+

i(t)−1∑
k=i(τ)+1

∫ tk+1

tk

f(s, z(s), z(γk))ds

+

∫ t

ti(t)

f(s, z(s), z(γi(t)))ds.

Then, any solution of the IDEPCAG system (2a)-(2b) with the initial condition
z(τ) = ξ can be written as

z(t) = Φ(t, τ)ξ +

∫ t

τ

Φ(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(z(t−k )), τ ∈ R.
(23)

Amongst these solutions, that one will be ω-periodic, for which z(τ) = ξ = z(τ+ω),
by the condition (Nω), (P2) and using (23) we obtain

ξ = (I − Φ(τ + ω, τ))
−1
{∫ τ+ω

τ

Φ(τ + ω, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

Φ(τ + ω, tk)Jk(z(t−k ))

}
.

(24)
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A substitution of (24) into (23) yields

z(t) =Φ(t, τ)(I − Φ(τ + ω, τ))
−1 ×

{∫ τ+ω

τ

Φ(τ + ω, s)
[
f(s, z(s), z(γ(s)))

+ g(s, z(s), z(γ(s)))
]
ds+

i(τ)+p∑
k=i(τ)+1

Φ(τ + ω, tk)Jk(z(t−k ))

}

+

∫ t

τ

Φ(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(t)∑
k=i(τ)+1

Φ(t, tk)Jk(z(t−k )).

(25)

It is easy to check the following identity using properties of the function Φ(t):

Φ−1(τ) (I − Φ(τ + ω, τ))
−1

Φ(τ + ω) =
(
Φ−1(τ + ω)Φ(τ)− I

)−1
.

It follows that

z(t) =

∫ t

τ

Φ(t)
(
I +

(
Φ−1(τ + ω)Φ(τ)− I

)−1)
Φ(s)−1×[

f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))
]
ds

+

i(τ)+p∑
k=i(τ)+1

Φ(t)
(
I +

(
Φ−1(τ + ω)Φ(τ)− I

)−1)
Φ−1(tk)Jk(z(t−k ))

+

∫ τ+ω

t

Φ(t)
(
Φ−1(τ + ω)Φ(τ)− I

)−1
Φ−1(s)×[

f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))
]
ds

+

i(τ)+p∑
k=i(τ)+1

Φ(t)
(
Φ−1(τ + ω)Φ(τ)− I

)−1
Φ−1(tk)Jk(z(t−k )).

By the Definition 3 of the Green’s function for the IDEPCAG system (2a)-(2b), we
give

z(t) =

∫ τ+ω

τ

G(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds

+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k )).
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Hence, the ω-periodic solution of the IDEPCAG system (2a)-(2b) satisfies the in-
tegral equation system (16). The proof is complete. �

In such a case the IDEPCAG system (2a)-(2b) has an ω-periodic solution z(t)
given by the integral equation system (16). Before studying the existence of solu-
tions of integral equation system (16), firstly, we define the Green’s operator for
impulsive periodic solutions of the IDEPCAG system (2a)-(2b).
Consider the Green’s operator = : PCω → PCω by

(=z)(t) =

∫ τ+ω

τ

G(t, s)
[
f(s, z(s), z(γ(s))) + g(s, z(s), z(γ(s)))

]
ds (26)

+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k )).

It is easy to see that the IDEPCAG system (2a)-(2b) has an ω-periodic solution
if and only if the Green’s operator = has one fixed point in PCω.
To prove some existence criteria for ω-periodic solutions of the IDEPCAG system

(2a)-(2b) we use the Banach, Schauder and Krasnoselskii’s fixed point theorem.
Next we state first Krasnoselskii’s fixed point theorem which enables us to prove

the existence of a periodic solution. For the proof of Krasnoselskii’s fixed point
theorem we refer the reader to [34].
Theorem A (Krasnoselskii’s fixed point theorem):

Let S be a closed convex nonempty subset of a Banach space (E, ‖ ·‖). Suppose that
A and B map S into E such that

(i) x, y ∈ S, implies Ax+ By ∈ S,
(ii) A is a contraction mapping,
(iii) B is completely continuous.

Then there exists z ∈ S with z = Az + Bz.

Remark 8. Krasnoselskii’s theorem may be combined with Banach and Schauder’s
fixed point theorems. In a certain sense, we can interpret this as follows: if a com-
pact operator has the fixed point property, under a small perturbation, then this
property can be inherited. The theorem is useful in establishing the existence results
for perturbed operator equations. It also has a wide range of applications to non-
linear integral equations of mixed type for proving the existence of solutions. Thus
the existence of fixed points for the sum of two operators has attracted tremendous
interest, and their applications are frequent in nonlinear analysis. See [4,32,34].

We note that to apply Krasnoselskii’s fixed point theorem we need to construct
two mappings; one is a contraction mapping and the other is completely continuous.
Therefore, we express the Green’s operator (26) as

(=z)(t) = (Az)(t) + (Bz)(t),
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where A,B : PCω → PCω are given by

(Az)(t) =

∫ τ+ω

τ

G(t, s)f(s, z(s), z(γ(s)))ds, (27)

and

(Bz)(t) =

∫ τ+ω

τ

G(t, s)g(s, z(s), z(γ(s)))ds+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(z(t−k )). (28)

To simplify notations, we introduce the following constant and sets.

cG = max
t,s∈[τ,τ+ω]

|G(t, s)|, S = {z ∈ PCω : ‖z‖ ≤ R} and CR = {z ∈ Rn : ‖z‖ ≤ R} .

(29)

Lemma 9. If (Nω), (P) and (Lf ) hold, A is given by (27) with cGL1 < 1, then A
is a contraction mapping.

Proof. Let A be defined by (27). First we want to show that (Aϕ)(t+ω) = (Aϕ)(t).
Let ϕ ∈ PCω. Then using (27), the periodicity of Green’s function and Remark 6
(ii), we obtain

(Aϕ)(t+ ω) =

∫ τ+2ω

τ+ω

G(t+ ω, s)f
(
s, z(s), z(γ(s))

)
ds

=

∫ τ+ω

τ

G(t+ ω, s+ ω)f
(
s+ ω, z(s+ ω), z(γ(s+ ω))

)
ds

=

∫ τ+ω

τ

G(t+ ω, s+ ω)f
(
s+ ω, z(s+ ω), z(γ(s) + ω)

)
ds

=

∫ τ+ω

τ

G(t, s)f
(
s, z(s), z(γ(s))

)
ds = (Aϕ)(t).

Secondly, we show that is A is a contraction mapping.
Let any ϕ, ζ ∈ PCω. By using (Lf ) then for any t ∈ [τ , τ + ω], we get

‖Aϕ−Aζ‖ = sup
t∈[τ,τ+ω]

|Aϕ(t)−Aζ(t)|

≤ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)|
∣∣f(s, ϕ(s), ϕ(γ(s))

)
− f

(
s, ζ(s), ζ(γ(s))

)∣∣ ds
≤
∫ τ+ω

τ

cG [p1(s) |ϕ(s)− ζ(s)|+ p2(s) |ϕ(γ(s))− ζ(γ(s))|] ds

≤ cG
( ∫ τ+ω

τ

[p1(s) + p2(s)] ds

)
‖ϕ− ζ‖

≤ cGL1 ‖ϕ− ζ‖ .
Hence A defines a contraction mapping. �
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Using the same method, one can show that B is given by (28), may be also a
contraction operator.

Lemma 10. If (Nω), (P), (Lg) and (LJ) hold, B is given by (28) with cG(L2 +
L3) < 1, then B is a contraction mapping.

Lemma 11. If B is defined by (28), then B is completely continuous, i.e., B is
continuous and the image of B is contained in a compact set.

Proof. The proof of the operator B is completely continuous is given in the following
steps.
Step 1: First we prove that B : PCω → PCω is continuous.
As the operator A, a change of variable in (28) we have (Bϕ)(t+ ω) = (Bϕ)(t).

Now, we want to show B is continuous.
The function g(t, x, y) is uniformly continuous on [τ , τ + ω] × CR × CR and

by the periodicity in t, the function g(t, x, y) is uniformly continuous on R ×
CR × CR. The functions Jk are uniformly continuous on CR. Thus, for any
ε′ = ε

cG(ω+p)
> 0, there exists δ = δ(ε) > 0 such that z1, z2 ∈ S, ||z1 − z2|| ≤

δ implies |g (t, z1(t), z1(γ(t)))− g (t, z2(t), z2(γ(t)))| ≤ ε′ for t ∈ [τ , τ + ω] and
|Jk(z1)− Jk(z2)| ≤ ε′. Then ‖Bz1 − Bz2‖ ≤ ε.
In fact, by the continuity of g and Jk, for t ∈ [τ , τ + ω] and z1, z2 ∈ S, we have

|g (t, z1(t), z1(γ(t)))− g (t, z2(t), z2(γ(t)))| ≤ ε′

|Jk(z1)− Jk(z2)| ≤ ε′,

and then

‖Bz1 − Bz2‖ = sup
t∈[τ,τ+ω]

|Bz1(t)− Bz2(t)|

≤ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)| |g (s, z1(s), z1(γ(s)))− g (s, z2(s), z2(γ(s)))| ds

+ sup
t∈[τ,τ+ω]

i(τ)+p∑
k=i(τ)+1

|G(t, tk)|
∣∣Jk(z1(t

−
k ))− Jk(z2(t

−
k ))
∣∣

≤
∫ τ+ω

τ

cGε
′ds+ cG · pε′ ≤ cG(ω + p)ε′ = ε

Thus the operator B is continuous.

Step 2: To show that the image of B is contained in a compact set.
Let x, y ∈ CR and s ∈ [τ , τ + ω], for the continuity of the function g (s, x, y) and

Jk (x), k ∈ {i(τ)+1, ..., i(τ)+p}, there exists Mi > 0, i = 1, 2, such that |g (s, x, y)| ≤
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M1 and |Jk (x) | ≤M2 . Let ϕn ∈ S where n is a positive integer, then we have

‖Bϕn‖ = sup
t∈[τ,τ+ω]

|Bϕn(t)| ≤ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)| |g(s, ϕn(s), ϕn(γ(s)))| ds

+ sup
t∈[τ,τ+ω]

i(τ)+p∑
k=i(τ)+1

|G(t, tk)|
∣∣Jk(ϕn(t−k ))

∣∣
≤ cG

{∫ τ+ω

τ

|g(s, ϕn(s), ϕn(γ(s)))| ds+

i(τ)+p∑
k=i(τ)+1

∣∣Jk(ϕn(t−k ))
∣∣}

≤ cG
(
ωM1 + pM2

)
.

Moreover, a direct calculation (Bϕn(t))
′ shows that

(Bϕn(t))
′

=

∫ τ+ω

τ

G(t, s)g(s, ϕn(s), ϕn(γ(s)))ds+

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(ϕn(t−k ))

′

= A(t)

(∫ τ+ω

τ

G(t, s)g(s, ϕn(s), ϕn(γ(s)))ds

)
+ g(t, ϕn(t), ϕn(γ(t)))

+A(t)

i(τ)+p∑
k=i(τ)+1

G(t, tk)Jk(ϕn(t−k ))

= A(t)Bϕn(t) + g(t, ϕn(t), ϕn(γ(t))).

As A(t) is bounded on [τ , τ + ω] and Bϕn(t), g(t, ϕn(t), ϕn(γ(t)) are bounded on S
and [τ , τ+ω]×S×S, respectively. Thus, the above expression yields ‖(Bϕn)′‖ ≤ L,
for some positive constant L. Hence the sequence (Bϕn) is uniformly bounded and
equi-continuous. The Ascoli-Arzela’s theorem implies that a subsequence

(
Bϕnk

)
of (Bϕn) converges uniformly to a continuous ω-periodic function. Thus B is con-
tinuous and B(S) is a compact set. �
In a similar way, for A we obtain the following lemma.

Lemma 12. If A is defined by (27), then A is completely continuous.

Theorem 13. Assume that the hypotheses (Nω), (P), (Lf ), (Mg) and (MJ) are
satisfied and let R be a positive constant satisfying the inequality

cG
(
L1 + C2 + C3

)
R+ cG

(
(α+ ρ2)ω + ρ3

)
≤ R. (30)

Then the IDEPCAG system (2a)-(2b) has at least one ω-periodic solution in S.

Proof. By Lemma 9, the mapping A is a contraction and it is clear that A : PCω →
PCω.
Also, from Lemma 11, B is completely continuous.
Next, we prove that if ϕ, ζ ∈ S with ‖ϕ‖ ≤ R and ‖ζ‖ ≤ R, then ‖Aφ+ Bζ‖ ≤ R.
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Let ϕ, ζ ∈ S with ‖ϕ‖ ≤ R and ‖ζ‖ ≤ R.
Then

‖Aϕ+ Bζ‖ ≤ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)| |f(s, ϕ(s), ϕ(γ(s))− f(s, 0, 0)| ds

+ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)| |f(s, 0, 0)| ds

+ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)| |g(s, ζ(s), ζ(γ(s)))| ds

+ sup
t∈[τ,τ+ω]

i(τ)+p∑
k=i(τ)+1

|G(t, tk)|
∣∣Jk( ζ(t−k ))

∣∣
≤ cG

( ∫ τ+ω

τ

[p1(s) + p1(s)] ds

)
‖ϕ‖+ αcGω

+ cG

( ∫ τ+ω

τ

[κ1(s) + κ1(s)] ds

)
‖ζ‖+ ρ2cGω

+ cG

(
i(τ)+p∑
k=i(τ)+1

%k(t)

)
‖ζ‖+ ρ3cG

≤ cG
(
L1 + C2 + C3

)
R+ cG

(
(α+ ρ2)ω + ρ3

)
.

We now see that all the conditions of Krasnoselskii’s theorem are satisfied. Thus
there exists a fixed point z in S such that z = Az + Bz. By Proposition 7, this
fixed point is a solution of the IDEPCAG system (2a)-(2b). Hence the IDEPCAG
system (2a)-(2b) has a ω-periodic solution. The proof is completed. �

By the symmetry of the conditions, we will obtain as Theorem 13:

Theorem 14. Assume that the hypotheses (Nω), (P), (Mf ) (Lg) and (LJ) are
satisfied and let R be a positive constant satisfying the inequality

cG (C1 + L2 + L3)R+ cG
(

(β + ρ1)ω + κ
)
≤ R. (31)

Then the IDEPCAG system (2a)-(2b) has at least one ω-periodic solution in S.

Applying the Banach’s fixed point theorem we have:

Theorem 15. Assume that the hypotheses (Nω), (P), (Lf ), (Lg) and (LJ) are
satisfied and let

cG (L1 + L2 + L3) < 1. (32)

Then the IDEPCAG system (2a)-(2b) has a unique ω-periodic solution.

Proof. Let the mapping = be given by (26). For ϕ, ζ ∈ PCω, in view of (26), we
have
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‖=ϕ−=ζ‖ ≤ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)|
∣∣f(s, ϕ(s), ϕ(γ(s))

)
− f

(
s, ζ(s), ζ(γ(s))

)∣∣ ds
+ sup
t∈[τ,τ+ω]

∫ τ+ω

τ

| G(t, s)|
∣∣g(s, ϕ(s), ϕ(γ(s))

)
− g
(
s, ζ(s), ζ(γ(s))

)∣∣ ds
+ sup
t∈[τ,τ+ω]

i(τ)+p∑
k=i(τ)+1

|G(t, tk)|
∣∣Jk(ϕ(t−k ))− Jk( ζ(t−k ))

∣∣
≤ cG (L1 + L2 + L3) ‖ϕ− ζ‖.

This completes the proof by invoking the contraction mapping principle. �

As a direct consequence of the method, Schauder’s theorem imply:

Theorem 16. Suppose the hypotheses (Nω), (P), (Mf ), (Mg) and (MJ) hold.
Let R be a positive constant satisfying the inequality

cG (C1 + C2 + C3)R+ cG
(
(ρ1 + ρ2

)
ω + ρ3

)
≤ R. (33)

Then the IDEPCAG system (2a)-(2b) has at least one ω-periodic solution in S.

To determine criteria for the existence and uniqueness of subharmonic solutions
of the IDEPCAG system (2a)-(2b), from now on we make the assumption:

(Pω) There exists ω = l.c.m. {ω1, ω2, ω3, ω4} > 0, ωiωj is a rational number for all
i, j = 1, 2, 3, 4 such that:
(1) A(t), f(t, x1, y1) and g(t, x2, y2) are periodic functions in t with a pe-

riod ω1, ω2 and ω3, respectively, for all t ≥ τ .
(2) There exists p ∈ Z+, for which the sequences {ti}i∈Z, {γi}i∈Z, satisfy

the (ω4, p) condition.
(3) The sequence {Ji}i∈Z satisfies Ji+p = Ji, some positive integer p ∈ N.

As immediate corollaries of Theorems 13-16, the following results are true.

Corollary 17. Suppose the hypotheses (Nω), (Pω), (Lf ), (Mg), (MJ) and (30)
hold. Then the IDEPCAG system (2a)-(2b) has at least one subharmonic solution
in S.

Corollary 18. Suppose the hypotheses (Nω), (Pω), (Mf ), (Lg), (LJ) and (31)
hold. Then the IDEPCAG system (2a)-(2b) has at least one subharmonic solution
in S.

Corollary 19. Suppose the hypotheses (Nω), (Pω), (Lf ), (Lg), (LJ) and (32)
hold. Then the IDEPCAG system (2a)-(2b) has a unique subharmonic solution.

Corollary 20. Suppose the hypotheses (Nω), (Pω), (Mf ), (Mg), (MJ) and (33)
hold. Then the IDEPCAG system (2a)-(2b) has at least one subharmonic solution
in S.
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4. Applications and Illustrative examples

We will introduce appropriate examples in this section. These examples will
show the feasibility of our theory.
Mathematical modelling of real-life problems usually results in functional equa-

tions, like ordinary or partial differential equations, integral and integro-differential
equations, stochastic equations. Many mathematical formulation of physical phe-
nomena contain integro-differential equations, these equations arises in many fields
like fluid dynamics, biological models and chemical kinetics. So, we first con-
sider nonlinear impulsive integro-differential equations with piecewise alternately
advanced and retarded argument mentioned in the introduction and obtain some
new suffi cient conditions for the existence of the impulsive periodic solutions of
these systems.

Example 21. Consider the following nonlinear impulsive integro-differential equa-
tions with piecewise alternately advanced and retarded argument of generalized type:

z′(t) = A(t)z(t) +

∫ t

−∞
C
(
t, s, z(γ(s))

)
ds+ g(t, z(t), z(γ(t))), t 6= tk, (34a)

∆z|tk = Jk(z(t−k )), k ∈ Z, (34b)

where, the sequences {ti}i∈Z and {γi}i∈Z, satisfy the (ω, p) condition, Jk+p = Jk,
A(t) is a continuous matrix on R, g : R×Rn×Rn → Rn and C : R×R×Rn → Rn are
ω-periodic continuous functions, i.e., for x, y ∈ Rn fixed, g(t + ω, x, y) = g(t, x, y)
and C(t+ ω, s+ ω, y) = C(t, s, y). Moreover, we will refer to the following specific
conditions.
(LC) There exists a continuous function λ : R2 → [0,∞) such that: t, s ∈ R and

for any y1, y2 ∈ Rn we have

|C(t, s, y1)− C(t, s, y2)| ≤ λ(t, s)|y1 − y2|

and sup
t∈R

∫ t
−∞ λ(t, s)ds = M , Mω < L4, sup

t∈R

∫ t
−∞ λ(t, s, 0)ds = µ.

(MC) For every R > 0, t, s ∈ R, |y| ≤ R, there exist λ, β : R2 → [0,∞)
functions and positive constants λ3, ς with λ3ω ≤ C4 for which

|C(t, s, y)| ≤ λ(t, s)|y|+ β(t, s),

where sup
t∈R

∫ t
−∞ λ(t, s)ds = λ3, sup

t∈R

∫ t
−∞ β(t, s)ds = ς.

(C) Let R > 0, t, s ∈ R and y1, y2 ∈ Rn, |yi| ≤ R, i = 1, 2. For any ε > 0 there
exist δ > 0 and λ : R2 → [0,∞) a function such that |y1 − y2| ≤ δ implies

|C(t, s, y1)− C(t, s, y2)| ≤ ελ(t, s), t, s ∈ R,

where sup
t∈R

t∫
−∞

λ(t, s)ds = λ3 <∞.



GREEN’S FUNCTION FOR THE IDEPCAG SYSTEM AND APPLICATIONS 33

Assume that the hypotheses (Nω), (C), (LC), (Mg) and (MJ) are satisfied and

cG (L4 + C2 + C3)R+ cG

(
(µ+ ρ2)ω + ρ3

)
≤ R.

Hence, by Theorem 13, the nonlinear impulsive integro-differential with the IDE-
PCAG system (34a)-(34b) has at least one ω-periodic solution.
Suppose the the hypotheses (Nω), (C), (MC), (Lg), and (LJ) are satisfied and

cG (C4 + L2 + L3)R+ cG

(
(β + ς)ω + κ

)
≤ R.

Then, by Theorem 14, the nonlinear impulsive integro-differential with the IDE-
PCAG system (34a)-(34b) has at least one ω-periodic solution.
If the hypotheses (Nω), (C), (LC), (Lg) and (LJ) are satisfied and let

cG (L4 + L2 + L3) < 1.

Then the nonlinear impulsive integro-differential with the IDEPCAG system (34a)-
(34b) has a unique ω-periodic solution.

Second example, we consider impulsive hybrid neural networks are widely inves-
tigated in the field of nonlinear dynamics, and used to model many applications in
different areas such as pattern recognition, associative memory, and combinatorial
optimization. We construct the example for a model of impulsive neural network
with piecewise alternately advanced and retarded generalized argument below.

Example 22. Consider the following impulsive cellular neural networks with piece-
wise alternately advanced and retarded argument of generalized type:

z′i(t) = −ai(t)zi(t) +
∑m

j=1

[
bij(t) fj(zj(t)) + cij(t)gj(zj(γ(t)))

]
+ di(t), t 6= tk,

(35a)

∆z|tk = Jk(z(t−k )), k ∈ Z, (35b)

where ai, bij, cij and di, 1 ≤ i ≤ m are positive ω1-periodic functions, fj is ω2-
periodic function and gj is ω3-periodic function, γ(t) = γk, if tk ≤ t < tk+1, k ∈ Z,
the sequences {tk}k∈Z and {γk}k∈Z satisfy the (ω4, p) condition and Jk+p = Jk,
p ∈ N, k ∈ Z.
Moreover, we shall introduce the following assumptions:
(LGf ) fj : R→ R is a continuous function for 1 ≤ j ≤ m such that

|fj(x)− fj(y)| ≤ Lf |x− y| ,
where Lf ∈ R+ and fj(t, 0) = 0.
(LGg) gj : R→ R is a continuous function for 1 ≤ j ≤ m such that

|gj(x)− gj(y)| ≤ Lg |x− y| ,
where Lg ∈ R+ and gj(t, 0) = 0.
(Hg) For every R > 0, t ∈ R, |x| ≤ R, there exists positive function ` for which

|gj(t, x)| ≤ `(t) |x| , 1 ≤ j ≤ m,
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where max
1≤i≤m

∑m
j=1

(∫ τ+ω
τ

[cij(s)`(s)] ds
)
≤ C1, ω ∈ R+, τ ∈ R.

(HJ) For every R > 0, t ∈ R, |x| ≤ R, there exist functions %k : R → [0,∞),
k ∈ Z and positive constant C2 for which

|Jk(x)| ≤ %k(t)|x|, (36)

where
i(τ)+p∑
k=i(τ)+1

%k(t) ≤ C2, p ∈ R+, τ ∈ R.

Let us define

ω = l.c.m. {ω1, ω2, ω3, ω4} , b := max
1≤i≤m

∑m

j=1

(
sup

t∈[τ,τ+ω]
bij(t)

)
ω,

c := max
1≤i≤m

∑m

j=1

(
sup

t∈[τ,τ+ω]
cij(t)

)
ω and d := max

1≤i≤m

(
sup

t∈[τ,τ+ω]
di(t)

)
.

As ai is a positive periodic function, it is easy to see the condition (Nω) is
satisfied. If the hypotheses (LGf ), (Hg) and (HJ) are satisfied and

cG(bLf + C1 + C2)R+ cGdω ≤ R.
Hence, by Corollary 17, the IDEPCAG system (35a)-(35b) has at least one ω-
periodic solution, i.e., a subharmonic solution.
If (LGf ), (LGg) and (LJ) are satisfied and

cG(bLf + cLg + L3) < 1.

Then, by Corollary 19, the IDEPCAG system (35a)-(35b) has a unique subhar-
monic solution.

Let us consider another example for impulsive second-order differential equations
with piecewise alternately advanced and retarded argument. In this case, we can
show the existence and uniqueness of periodic solutions following the result of this
paper.

Example 23. Consider the following impulsive second-order differential equations
with piecewise alternately advanced and retarded argument:

y′′(t) +
(
κ2y

2(t) + 3
)
y′(t) + 4y(t)− κ1 sin(πt)y2

(
2

[
t+ 1

2

])
− κ2 cos(πt) = 0, t 6= tk

(37a)

∆y|tk = a(t) · y(t−k ), ∆y′|tk = b(t) · y′(t−k ), k ∈ Z, (37b)

where κ1, κ2 ∈ R, a(·) and b(·) are 2-periodic functions.
According to Eq.(37a), we have γ(t) = 2

[
t+1
2

]
, then tj = 2j − 1, γj = 2j for all

j ∈ Z. Therefore the sequences {ti}i∈Z and {γi}i∈Z satisfy the (2, 1) condition.
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Let z(·) =
(
z1(·), z2(·)

)T
=
(
y(·), y′(·)

)T
, we write the IDEPCA (37a)-(37b) in

the system form

z′(t) =

(
0 1
−4 −3

)
z(t) +

(
0

κ1sin(πt)z21
(
2
[
t+1
2

]))+

(
0

κ2 cos(πt)− κ2z21(t)z2(t)

)
,

∆z|tk =

(
a(t) 0

0 b(t)

)
z(t−k ),

where

A =

(
0 1
−4 −3

)
, f

(
t, z(t), z

(
2

[
t+ 1

2

]))
=

(
0
κ1sin(πt)z21

(
2
[
t+1
2

]) ) ,
and

g

(
t, z(t), z

(
2

[
t+ 1

2

]))
=

(
0
κ2 cos(πt)− κ2z21(t)z2(t)

)
.

As all eigenvalues of the constant coeffi cient matrix A have negative real partes,
then the linear homogeneous system z′(t) = Az(t) does not admit any nontrivial ω-
periodic solution, i.e., the condition (Nω) is satisfied. Let ϕ(t) =

(
ϕ1(t), ϕ2(t)

)T
,

ψ(t) =
(
ψ1(t), ψ2(t)

)T
and define S = {z ∈ Pω, ‖z‖ ≤ R}, where R ∈ R+ satisfies

the condition
cG
(
2Rκ1 + 2R2κ2 + κ3

)
< 1, (38)

where κ3 = max

(
sup

t∈[τ,τ+ω]
a(t), sup

t∈[τ,τ+ω]
b(t)

)
.

Then, for ϕ,ψ ∈ S we have
‖g(·, ϕ(·), ϕ(γ(·)))− g(·, ψ(·), ψ(γ(·)))‖

≤ sup
t∈[τ,τ+ω]

∣∣∣∣( 0
κ2 cos(πt)− κ2ϕ21(t)ϕ2(t)

)
−
(

0

κ2 cos(πt)− κ2ψ21(t)ψ2(t)

)∣∣∣∣
≤ sup

t∈[τ,τ+ω]

∣∣∣∣( κ2 (ψ1(t) + ϕ1(t))ϕ2(t) κ2ψ
2
1(t)

)( ψ1(t)− ϕ1(t)
ψ2(t)− ϕ2(t)

)∣∣∣∣
≤ 2κ2R2 sup

t∈[τ,τ+ω]

∣∣∣∣( ψ1(t)− ϕ1(t)
ψ2(t)− ϕ2(t)

)∣∣∣∣ = 2κ2R2 ‖ϕ− ψ‖ .

In a similar way, for f we have

‖f(·, ϕ(·), ϕ(γ(·)))− f(·, ψ(·), ψ(γ(·)))‖ ≤ 2κ1R‖ϕ− ψ‖ ,
for Jk we obtain ∥∥Jk(ϕ(t−k ))− Jk(ψ(t−k ))

∥∥ ≤ κ3 ‖ϕ− ψ‖ .
By Theorem 15, the IDEPCA (37a)-(37b) has a unique 2-periodic solution in S.
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