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Abstract
In this article, we characterize almost quasi-Yamabe solitons and gradient almost quasi-
Yamabe solitons in context of three dimensional Kenmotsu manifolds. It is proven that
if the metric of a three dimensional Kenmotsu manifold admits an almost quasi-Yamabe
soliton with soliton vector field W then the manifold is of constant sectional curvature −1,
but the converse is not true has been shown by a concrete example, under the restriction
ϕW ̸= 0. Next we consider gradient almost quasi-Yamabe solitons in a three dimensional
Kenmotsu manifold.
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1. Introduction
In a complete Riemannian manifold (M, g) the Riemannian metric g admits Yamabe

soliton if it satisfies
1
2

£W g = (ρ − λ)g

for λ ∈ R and a differentiable vector field W known as soliton vector field, where £W

denotes the Lie derivative along W and ρ being the scalar curvature of M . Yamabe solitons
is a special solution of Yamabe flow. The notion of Yamabe flow has been introduced by
Hamilton [7] towards the study of Yamabe metrics on contact Riemannian manifolds. The
Yamabe solitons are known as steady, shrinking and expanding according as λ = 0, λ > 0
and λ < 0 respectively.

Barbosa and Ribeiro [1] introduced the notion of almost Yamabe soliton by generalizing
the Yamabe soliton by setting λ to be a smooth function. Seko and Maeta [14] gave
a complete classification of almost Yamabe soliton in the context of hypersurfaces in
Euclidean spaces.
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The Yamabe soliton is said to be gradient if the soliton vector field W is the gradient
of a C∞ function τ on M . For the case of gradient Yamabe soliton, we have

∇2τ = (ρ − λ)g,

∇2 being the Hessian operator. Huang and Li [8] generalized the concept of gradient
Yamabe soliton by

∇2τ = 1
m

dτ ⊗ dτ + (ρ − λ)g, (1.1)

where m is positive constant and λ ∈ R, and named quasi-Yamabe gradient soliton. It is
obvious that for m → ∞ the gradient quasi-Yamabe soliton renders to gradient Yamabe
soliton.

In the year 2017, Pirhadi and Razavi [12] studied gradient almost quasi-Yamabe soliton
by setting λ to be a smooth function. Recently, Chen [4] has considered almost quasi-
Yamabe solitons on almost cosymplectic manifolds. According to Chen, a Riemannian
metric g admits almost quasi-Yamabe(AQY) soliton if there exists a smooth function λ,
a C∞ vector field W and a positive constant m such that

1
2

£W g = 1
m

W b ⊗ W b + (ρ − λ)g (1.2)

holds, W b being the 1-form associated to W . The (AQY) metric is closed if the 1-form
W b is closed, whereas trivial if W = 0. Furthermore, for m → ∞, the equation (1.2) gives
almost Yamabe soliton. Moreover, the preceding equation gives (AQY) gradient soliton
(g, τ, m, λ) for W = Dτ .

The connected almost contact metric (a.c.m) manifolds with automorphism groups of
maximal dimensions has been classified in the following three classes by Tanno [15] in
1969:

A. Normal homogeneous contact Riemannian manifolds admitting constant ϕ-holomorphic
sectional curvature for K(ζ, U) > 0;

B. Global Riemannian product of a line or a circle and a Kählerian manifold with
constant holomorphic sectional curvature for K(ζ, U) = 0;

C. A wraped product space R ×λ Cn if K(ζ, U) < 0;

K(ζ, U) being the sectional curvature of the plane section which contains the Reeb
vector field ζ and the arbitrary smooth vector field U .

The manifold of the class A were individualized by some tensor equations and have
Sasakian structure. The class B were individualized by some tensor relations which admits
a cosymplectic structure. Kenmotsu [10] obtained some tensor equations to characterize
the manifolds of the class C in 1972 and this type of manifolds are named as Kenmotsu
manifolds. Kenmotsu manifolds has been extensively studied by Pitis in [13].

It is to be noted that in 1872, Lie [11] introduced the concept of contact transforma-
tion to study system of differential equations in geometrical point of view. The contact
geometry has substantial applications in many areas of physics such as mechanics, optics,
control theory, thermodynamics and phase space of dynamical system.

Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons have been
considered by Blaga [2] in the context of Riemannian manifolds. Contact metric manifolds
admitting Quasi-Yamabe solitons have been considered by Dey and De in [5]. Beside this,
Yamabe solitons and quasi-Yamabe solitons have been studied in [6] by Ghosh in Kenmotsu
manifolds. Moreover, Wang [16] studied 3-dimensional Kenmotsu manifolds admitting
Yamabe solitons and the author proved that if a 3-dimensional Kenmotsu manifold admits
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Yamabe soliton, then the manifold is of constant sectional curvature −1 and the Yamabe
soliton is expanding with λ = −6.

Almost quasi-Yamabe soliton is a natural generalization of Yamabe as well as quasi-
Yamabe soliton. Therefore in this manuscript we set the target to generalize the results
which are obtained towards the study of Yamabe and quasi-Yamabe solitons in context of
Kenmotsu manifolds in above mentioned works.

The present paper is constructed as follows: Section 2 begins with the discussion of
the rudiments of Kenmotsu manifolds. Section 3 is devoted to study three dimensional
Kenmotsu manifolds admitting (AQY) solitons and gradient (AQY) solitons. Finally, we
construct a non-trivial example of three dimensional Kenmotsu manifold. Precisely we
prove the below mentioned theorems:
Theorem 1.1. A three dimensional Kenmotsu manifold admitting a closed (AQY) soliton
(g, W, m, λ) is a manifold of constant sectional curvature −1, but the converse is not true,
provided ϕW ̸= 0.
Theorem 1.2. Let a three dimensional Kenmotsu manifold admit gradient (AQY) soliton.
Then either the manifold is of constant sectional curvature −1 or the gradient of the (AQY)
potential function is point-wise collinear with the characteristic vector field ζ.

2. Preliminaries
In this section we discuss the rudiments of Kenmotsu manifolds. An odd dimensional

C∞ manifold M is named to be an a.c.m. manifold if it admits a Reeb vector field ζ, a
(1, 1)-tensor field ϕ, a global 1-form η and a Riemannian metric g satisfying [3]:

ϕ2 = −I + η × ζ, η(ζ) = 1, ϕζ = 0, η(ζ) = 1, (2.1)
η ◦ ϕ = 0, g(U, ζ) = η(U), g(ϕU, ϕV ) = g(U, V ) − η(U)η(U),

where U , V are smooth vector fields on M . It is to be noted that an a.c.m. structure on
a (2n + 1)-dimensional Riemannian manifold M may be considered as a reduction of the
structure group M to U(n) × I.

The fundamental two form Φ of a (2n + 1)-dimensional a.c.m. manifold M is defined
by Φ(U, V ) = g(U, ϕV ), where U, V ∈ χ(M). An a.c.m. manifold is said to be an almost
Kenmotsu manifold if dη = 0 and dΦ = 2η ∧ Φ (see [9]). An almost Kenmotsu manifold is
said to be normal if the tensor Nϕ = [ϕ, ϕ] + 2dη ⊗ ζ vanishes, [ϕ, ϕ] being the Nijenhuis
tensor of ϕ. An almost Kenmotsu manifold is said to be a Kenmotsu manifold if it is
normal [9], and condition of normality can be expressed as

(∇U ϕ)V = g(ϕU, V )ζ − η(V )ϕU, (2.2)
U, V being smooth vector fields on M . In a (2n + 1)-dimensional Kenmotsu manifolds the
following relations are satisfied [10]:

∇U ζ = U − η(U)ζ, (2.3)
K(U, V )ζ = η(U)V − η(V )U, (2.4)

(∇U η)V = g(U, V ) − η(U)η(V ), (2.5)
S(U, ζ) = g(Qζ, U) = −2nζ, (2.6)

for U, V ∈ χ(M), where K, S and Q denotes the curvature tensor, Ricci tensor and Ricci
operator respectively.

Again, in a three dimensional Riemannian manifold, we have
K(U, V )Z = g(V, Z)QU − g(U, Z)QV + S(V, Z)U (2.7)

−S(U, Z)V − ρ

2
{g((V, Z)U − g(U, Z)V )}
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for any vector fields U , V , Z in M3. (2.7) yields

S(U, V ) = (ρ

2
+ 1)g(U, V ) − (ρ

2
+ 3)η(U)η(V ). (2.8)

Making use of (2.8) in (2.7), we have

K(U, V )Z = (ρ

2
+ 2){g(V, Z)U − g(U, Z)V } (2.9)

−(ρ

2
+ 3){g(V, Z)η(U)ζ − g(U, Z)η(V )ζ

+η(V )η(Z)U − η(U)η(Z)V }.

To produce our main theorems, we need the following Lemmas:

Lemma 2.1. In 3-dimensional Kenmotsu manifold (M, ϕ, ζ, η, g) the following relation
holds:

∇ζDρ = 4(ρ + 6)ζ. (2.10)

Proof. In [16], Wang proved that in a 3-dimensional Kenmotsu manifold ζ(ρ) = −2(ρ+6).
By virtue of g(∇U Dρ, V ) = g(∇V Dρ, U) from ζ(ρ) = −2(ρ + 6) we obtain (2.10). This
completes the proof. �

Lemma 2.2 ([4]). For any vector fields U, V on M , for a gradient (AQY) soliton
(M, g, τ, m, λ), we have

K(U, V )Dτ = ρ − λ

m
[(V τ)U − (Uτ)V ] (2.11)

+(U(ρ − λ))V − (V (ρ − λ))U,

D being the gradient operator of g.

3. Proof of the main theorems
Proof of the Theorem 1.1. Let M be a three dimensional Kenmotsu manifold admit-
ting a closed (AQY) soliton (g, W, m, λ). Since W b is closed, equation (1.2) is equivalent
to

∇V W = (ρ − λ)V + 1
m

g(W, V )W. (3.1)

Performing covariant derivative of (3.1) along U , we obtain

∇U ∇V W = (U(ρ − λ))V + (ρ − λ)∇U V (3.2)

+ 1
m

{g(∇U W, V ) + g(W, ∇U V )}W

+ 1
m

g(W, V )∇U W.

Interchanging U and V in the preceding equation yields

∇V ∇U W = (V (ρ − λ))U + (ρ − λ)∇V U (3.3)

+ 1
m

{g(∇V W, U) + g(W, ∇V U)}W

+ 1
m

g(W, U)∇V W.

Again, putting V instead of [U, V ] in (3.1) yields

∇[U,V ]W = (ρ − λ)[U, V ] + 1
m

g(W, [U, V ])W. (3.4)
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Using (3.2)-(3.4) in the well known formula K(U, V )W = ∇U ∇V W −∇V ∇U W −∇[U,V ]W ,
we reveal that

K(U, V )W = (U(ρ − λ))V − (V (ρ − λ))U (3.5)

+ρ − λ

m
{g(W, V )U − g(W, U)V }.

Taking inner product of (3.5) with ζ, we get

g(K(U, V )W, ζ) = {(U(ρ − λ)) − ρ − λ

m
g(U, W )}η(V ) (3.6)

−{(V (ρ − λ)) − ρ − λ

m
g(V, W )}η(U).

On the other hand, in view of (2.4) we infer that
g(K(U, V )W, ζ) = g(U, W )η(V ) − g(V, W )η(U). (3.7)

Comparing the equations (3.6) and (3.7) yields

{(U(ρ − λ)) − ρ − λ

m
g(U, W )}η(V ) (3.8)

−{(V (ρ − λ)) − ρ − λ

m
g(V, W )}η(U)

= g(U, W )η(V ) − g(V, W )η(U).
Replacing U and V by ϕU and ζ respectively and using (2.1) entails that

ϕD(ρ − λ) = (1 + ρ − λ

m
)ϕW. (3.9)

On the other hand, contracting (3.5) over V and utilizing (2.8), we infer that

[ρ
2

+ 1 − 2(ρ − λ)
m

]W − (ρ

2
+ 3)η(W )ζ = −2D(ρ − λ). (3.10)

Applying ϕ on the both sides of (3.10) and using (2.1) yields

[ρ
2

+ 1 − 2(ρ − λ)
m

]ϕW = −2ϕD(ρ − λ). (3.11)

In view of (3.9) and (3.11), we get

(ρ

2
+ 3)ϕW = 0. (3.12)

If we consider ϕW ̸= 0, the preceding equation implies that ρ = −6. For ρ = −6 the
equation (2.9) delivers K(U, V )Z = −{g(V, Z)U − g(U, Z)V }. Therefore we have the
manifold is of constant sectional curvature −1.

In order to show that the converse of the above result is not true here we mention the
following example:
We consider a three dimensional manifold M = {(x, y, z) ∈ R3}, (x, y, z) being the stan-
dard coordinates of R3. Let us consider the vector fields e1, e2, e3 on M be such that

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

We define the Riemannian metric g by g(ei, ej) = δij , for i, j = 1, 2, 3, the 1-form η by
η(U) = g(U, e3) and the (1, 1) tensor field ϕ by ϕ(e3) = 0, ϕ(e2) = e1, ϕ(e1) = −e2, where
U ∈ χ(M).

Then using the well known Koszul’s formulae given by 2g(∇U V, Z) = Ug(V, Z) +
V g(Z, U) − Zg(U, V ) − g(U, [V, Z]) − g(V, [U, Z]) + g(Z, [U, V ]), we calculate the following:

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,

∇e2e3 = e2, ∇e2e2 = −e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.
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In view of above computations it is clear that the manifold satisfies ∇U ζ = U − η(U)ζ for
ζ = e3. Hence the manifold M is a three dimensional Kenmotsu manifold.
Again, using the formula K(U, V )Z = ∇U ∇V Z − ∇V ∇U Z − ∇[U,V ]Z, we calculate the
following independent non-vanishing components of the curvature tensor K:

K(e1, e2)e2 = −e1, K(e1, e3)e3 = −e1

K(e2, e1)e1 = −e2, K(e2, e3)e3 = −e2

K(e3, e1)e1 = −e3, K(e3, e2)e2 = −e3.

From the above expressions of curvature tensors we derive the non-vanishing components
of the Ricci tensor as given below:

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2

and therefore the scalar curvature of this manifold ρ =
∑3

i=1 S(ei, ei) = −6.

Let U = u1e1 + u2e2 + u3e3, V = v1e1 + v2e2 + v3e3 and Z = z1e1 + z2e2 + z3e3. Then it
is easy to verify that K(U, V )Z = −[g(V, Z)U − g(U, Z)V ] i.e., the manifold is of constant
sectional curvature −1.

Now if we consider an arbitrary soliton vector field W = w1e1 + w2e2 + w3e3, then we
see that ∇e1W = −w1e3 + w3e1 and (ρ − λ)e1 + 1

mg(W, e1)W = −(6 + λ)e1 − 1
mw1{w1e1 +

w2e2 + w3e3). Therefore ∇e1W ̸= (ρ − λ)e1 + 1
mg(W, e1)W for any choice of λ, m and

W . Hence the manifold can not admit an almost quasi-Yamabe soliton although it is a 3
dimensional Kenmotsu manifold with constant sectional curvature −1. This finishes the
proof. �

Now, for m → ∞ and λ =constant the (AQY) soliton becomes a Yamabe soliton. Then
from (3.9) and (3.11), we obtain

ϕDρ = ϕW, (3.13)
and

[ρ
2

+ 1]ϕW = −2ϕDρ. (3.14)

respectively. (3.13) and (3.14) yields

(ρ

2
+ 3)ϕW = 0. (3.15)

Hence either ρ = −6 or ϕW = 0. Using ρ = −6 in (2.9) yields K(U, V )Z = −[g(V, Z)U −
g(U, Z)V ] i.e., the manifold is of constant sectional curvature −1. On the other hand, for
ϕW = 0, we have from (3.13) that ϕDρ = 0. Applying ϕ on preceding relation and using
(2.1) and ζρ = −2(ρ + 6)ζ, we have

Dr = −2(ρ + 6)ζ. (3.16)

Taking covariant differentiation of (3.16) along U and making use of (3.16) yields

∇U Dρ = 6(ρ + 6)η(U)ζ − 2(ρ + 6)U. (3.17)

Again, for Yamabe soliton we have the soliton vector field W is conformal with conformal
co-efficient ϱ = ρ − λ. For conformal vector field, we recall the following formula [17]

(£W K)(U, V )Z = g(∇U Dϱ, Z)V − g(∇V Dϱ, Z)U (3.18)
+g(U, Z)∇V Dϱ − g(V, Z)∇U Dϱ.

For m → ∞ and λ =constant, we have from (1.2),

(£W η)U − g(U, £W ζ) = 2(ρ − λ)η(U). (3.19)
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Taking U = ζ in the foregoing equation yields g(£W ζ, ζ) = −(ρ−λ). Taking Lie derivative
of (2.4) along W we use (3.18) and (3.19) to achieve

(£W K)(U, V )£W ζ + g(∇U Dρ, ζ)V − g(∇V Dρ, ζ)U + η(U)∇V Dρ (3.20)
−η(V )∇U Dρ = g(U, £W ζ)V − g(V, £W ζ)U + 2(ρ − λ)[η(U)V − η(V )U ].

Setting V = ζ in (3.20) and making use of (2.4), (2.10) and (3.20), we deduce

∇U Dρ = 2(3ρ + λ + 24)η(U)ζ − 2(ρ + λ + 12)U. (3.21)

Comparing (3.17) and (3.21), we at once obtain λ = −6 i.e., the soliton is expanding.
Therefore we state the following:

Corollary 3.1. Let a three dimensional Kenmotsu manifold admit Yamabe soliton. Then
the manifold is either of constant sectional curvature −1 or the soliton is expanding with
λ = −6.

The above corollary has been proved in [16] by Wang.

Proof of the Theorem 1.2. Let us assume that the metric of a three dimensional Ken-
motsu manifold admits gradient (AQY) soliton. Taking inner product of (2.11) with ζ,
we obtain

g(K(U, V )Dτ, ζ) = ρ − λ

m
{(V τ)η(U) − (Uτ)η(V )} (3.22)

+(U(ρ − λ))η(V ) − (V (ρ − λ))η(U).

In view of (2.4) we have

g(K(U, V )Dτ, ζ) = [(Uτ)η(V ) − (V τ)η(U)]. (3.23)

In view of (3.22) and (3.23), we have
ρ − λ

m
{(V τ)η(U) − (Uτ)η(V )} (3.24)

+(U(ρ − λ))η(V ) − (V (ρ − λ))η(U)
= [(Uτ)η(V ) − (V τ)η(U)].

Replacing U , V by ϕU and ζ respectively in the foregoing equation and making use of
(2.1), we reveal that

(1 + ρ − λ

m
)(ϕU)τ = (ϕU)(ρ − λ). (3.25)

On the other hand, contracting (2.11) with respect to V and making use of (2.8), we infer
that

2(ϕU)(ρ − λ) = 2(ρ − λ

m
(ϕU)τ − (ρ

2
+ 1)(ϕU)τ. (3.26)

Comparing (3.25) and (3.26), we have

(ρ

2
+ 3)(ϕU)τ = 0. (3.27)

Therefore, either ρ = −6 or (ϕU)τ = 0.

Case (i): For ρ = −6, the equation (2.9) gives K(U, V )Z = −{g(V, Z)U − g(U, Z)V }
and the from (2.8) we have S(U, V ) = −2g(U, V ). Therefore in this case the manifold is
Einstein and the sectional curvature of the manifold is −1.

Case (ii): For (ϕU)τ = 0, we apply ϕ and use (2.1) to get (Uτ) = (ζτ)ζ. Therefore we
conclude that the gradient of the (AQY) potential function τ is pointwise collinear with
the characteristic vector field ζ. Hence the proof is completed. �
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