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Abstract
This paper is an addition to the series of modification and improvement of the extant distri-
butions which enable them to analyze the new emerging situations efficiently. We develop
a new lifetime distribution by generalizing the Erlang truncated exponential distribution
using the Topp Leone family of distributions. A comprehensive account of mathemat-
ical characteristics such as quantile function, moments, probability weighted moments,
moment generating function, and probability generating function of the proposed distri-
bution is presented. Some reliability measures such as hazard rate function, residual life
function, and reversed residual life function are also provided. Several entropy measures
including Rèyni entropy, Tsallis entropy, cumulative Tsallis entropy, and dynamic cumu-
lative Tsallis entropy are obtained. Besides, the extropy, residual extropy, and cumulative
residual extropy are explored. The unknown parameters of the proposed distribution are
estimated by using the maximum likelihood method. The stability of the model parameters
is examined through the simulation study. The application of our proposed distribution
is explained through three real-life examples and its performance is illustrated through its
comparison with the competent existing distributions.
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1. Introduction
Probability distributions comprehensively analyze different emerging situations and pro-

vide possible solutions leading toward important inferences. Besides the development of
new distributions, the generalization of the classical distributions has been a very at-
tractive practice. The resulting generalized distributions are applied in the modeling of
real-life data sets effectively in almost all the disciplines such as biology, environmental
sciences, survival analysis, medical science, engineering, reliability analysis etc.

The exponential model is widely used in reliability engineering because it has simple ex-
pression and analytical tractability. It is one of the well known classical distributions used
for generalization due to its interesting "lack of memory property". Many generalizations
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of the exponential distribution are available in the literature. Some prominent generalized
distributions are mentioned as; an extended exponentiated exponential distribution by [2],
the extended exponential distribution by [3], generalized exponential distributions by [9],
the beta exponential distribution by [17], and moment distribution by [6].

El-Alosey [7] introduces a new two parameters exponential distribution named as Erlang
truncated exponential (ETEx) distribution. The distribution function (cdf ) of the ETEx
distribution is given as

H(y) = 1 − e−α(1−e−γ)y, y > 0, α, γ > 0, (1.1)

the corresponding density function (pdf) is obtained by differentiating (1.1) and given as

h(y) = α(1 − e−γ)e−α(1−e−γ)y, y > 0, α, γ > 0, (1.2)

where α is the shape parameter and γ is the scale parameter.
Many generalizations of ETEx distribution exist in the literature. Okorie et al. [20]

define Transmuted Erlang truncated exponential distribution, Nasiru et al. [18] present
generalized Erlang truncated exponential distribution, Okorie et al. [22] develop Marshall-
Olkin generalized Erlang truncated exponential distribution, Okorie [21] derives the ex-
tended Erlang truncated exponential distribution, Nasiru et al. [19] introduce Poisson
exponentiated Erlang truncated exponential distribution and Mohsin et al. [14] study the
characterization of the Erlang truncated exponential distribution.

Nadarajah and Kotz [16] propose Topp Leone distribution which is taken as a replace-
ment of Beta distribution. The cdf of Topp Leone distribution is in closed form which
not only increases its scope but also makes it analytically pliable. Al-Shomrani et al. [4]
construct a generalized family of Topp Leone distribution having the following cdf

FT L−H(y) = [H(y)]b[2 − H(y)]b = [1 − (H̄(y))2]b, xϵℜ, b > 0, (1.3)

with the corresponding pdf as

fT L−h(y) = 2bg(t)H̄(y)[1 − (H̄(y))2]b−1, b > 0, (1.4)

where g(y) = H ′(y) and H̄(y) = 1 − H(y).
Since ETEx distribution has a constant failure rate, therefore, it cannot model the in-

tricate situations having a non-constant failure rate as given by [22]. This paper aims to
provide a new lifetime distribution by generalizing the ETEx distribution using Equation
(1.3). The resulting generalized distribution is named as Topp Leone Erlang truncated
exponential (TL-ETEx) distribution. This distribution is capable of modeling the situa-
tions having either constant failure rate or non-constant failure rate. Moreover, we present
three real-life examples from hydrology, reliability and environmental sciences which sup-
port the better fitting of the proposed distribution. We hope this generalization might
help to model the complex situations in real life.

The article is unfolded as: In Section 2, the model is developed and its characteristics
are derived. In Section 3, measures of entropy and extropy are explored. In Section 4,
model parameters are estimated along with the Fisher information matrix. In Section
5, a simulation study is performed. In Section 6, applicability of the proposed model is
establisheded in three different fields. In Section 7, some concluding remarks are stated.

2. TL-ETEx distribution and its characteristics
In this section, the expressions for the cdf and the pdf of the Topp Leone Erlang

truncated exponential (TL-ETEx) distribution are derived along with several of its char-
acteristics and reliability measures.
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The cdf of the TL-ETEx distribution is obtained by inserting Equation (1.3) in Equation
(1.1) as

F (y) =
[
1 − e−2α(1−e−γ)y]b, (2.1)

and the corresponding pdf is derived by differentiating Equation (2.1) as

f(y) = 2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1
, y > 0, α, γ, b > 0, (2.2)

where α and b are the shape parameters and γ is the scale parameter.
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Figure 1. Plots of the pdf of TL-ETEx for different combinations of the para-
metric values.

Figure 1 shows the effect of different values of the parameters on the shape of the
proposed distribution. For the increasing values of the shape parameter α, the curves get
more peaked and distribution becomes right-skewed. It is also observed from the Figure
1(a) that α affects the tail weight of TL-ETEx distribution. As values of α increase, the
tail weight also increases. For increasing values of b, the peaks of curves start decreasing
and the curves move towards the right. It is also obvious from Figure 1(c) that there
appears an abrupt shift in the peak of curves and they start increasing as the values of
γ increase. The cdf and the pdf of the proposed model can be expressed in terms of
the weighted sum of the exponentiated class of distributions. Using the following series
representation by [23]

(1 − z)a =
∞∑

i=0

(−1)iΓ(a + 1)
i!Γ(a + 1 − i)

zi,

the distribution function of the TL-ETEx distribution is written as

F (y) =
∞∑

i=0

(−1)iΓ(b + 1)
i!Γ(b + 1 − i)

(e−2α(1−e−γ)y)i.
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Similarly, the pdf of the proposed distribution is written as

f(y) =
∞∑

i=0

(−1)i2Γ(b + 1)
i!Γ(b − i)

α(1 − e−γ)(e−2α(1−e−γ)y)i+1. (2.3)

Several characteristics such as moments, generating function, entropy, and order statis-
tics can easily be computed by using the exponentiated form of the density function.

2.1. Quantile function
The qth quantile function of the TL-ETEx distribution is given as

yq = − log(1 − q
1
b )

2α(1 − e−γ)
, q ∈ (0, 1).

The quantile function is used to generate the random data. The median of the proposed
model can be obtained by setting q = 1

2 as

Median = − log(1 − 0.5
1
b )

2α(1 − e−γ)
, q ∈ (0, 1).

2.2. Moments
Generally, the moments are an essential part of the distribution. They are used to find

several important characteristics such as mean, variance, skewness, and kurtosis. The
common method to find the raw moments or crude moments of any distribution is given
as

µ′
k =

∫ ∞

−∞
ykdF (x).

Using density function given in Equation (2.3) and assuming w = −2α(i + 1)(1 − e−γ)y
we obtain the expression of moment of the proposed model given as

µ′
k =

∞∑
i=0

(−1)iΓ(b + 1)
i!Γ(b − i)

{ 1
i + 1

}k+1{ 1
2α(1 − e−γ)

}k

Γ(k + 1). (2.4)

For k > 0, we can find different moments. The mean of TL-ETEx distribution is obtained
by inserting k = 1 expressed as

µ′
1 =

∞∑
i=0

(−1)iΓ(b + 1)
i!Γ(b − i)

{ 1
i + 1

}2{ 1
2α(1 − e−γ)

}
Γ(2).

The coefficient of variation (CV ), the coefficient of skewness (CS), and the coefficient of
kurtosis (CK) of the TL-ETEx distribution are obtained as

CV =
√

µ2
µ1

− 1,

CS = µ3 − 3µ2µ1 + 2µ3
1

(µ2 − µ1)
3
2

,

and
CK = µ4 − 4µ3µ1 + 6µ2µ2

1
(µ2 − µ2

1)2 .

Now, the first incomplete moment is used to derive the mean deviation, Bonferroni, and
Lorenz curves. These curves have great influences in economics, reliability, demography,
insurance, and medicine. The incomplete moment of a distribution is defined by

φp(y) =
∫ t

0
ypdF (y).
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Using density function given in Equation (2.3), the incomplete moment of the TL-ETEx
distribution is given as

φp =
∑
i=0

(−1)iΓ(b + 1)
i!Γ(b − i)

{ 1
i + 1

}p+1{ 1
2α(1 − e−γ)

}p

γ(p + 1, 2α(i + 1)(1 − e−γ)).

The mean deviation of Y about mean [m1 = E(|Y −µ′
1|)] and mean deviation of Y about

median [m2 = E(|Y −M |)] are given as m1 = 2µ′
1F (µ′

1)−2φ1(µ′
1) and m2 = µ′

1 −2φ1(M),
respectively, where µ′

1 = E(Y ), M = Median(Y ) = Q(0.5), and F (µ′
1) is calculated from

Equation (2.4) and φ1(t) is the first incomplete moment with p = 1. These equations for
φ1(t) can be used to obtain Bonferroni and Lorenz curves for the given probability π as
B(π) = φ1(q)

πµ′
1

and L(π) = φ1(q)
µ′

1
, respectively, where µ′

1 = E(Y ) and q = Q(π) is quantile
function of Y at π. The (q, s) probability weighted moment (PWM) of Y is defined by

ρq,s =
∫ ∞

0
yqF (y)sf(y)dy.

Following the above expression, the PWM of the TL-ETEx distribution is derived as

ρq,s = Aj,kb∗Γ(q + 1),

where

Aj,k =
∞∑

j,k=0

(−1)j+kΓ(s + 1)Γ(b + 1)
j!, k!Γ(s + 1 − j)Γ(b − k)

,

and

b∗ =
{ 1

j + k + 1

}q+1{ 1
2α(1 − e−γ)

}q

.

2.3. An important distributional property
We present an important distributional property of TL-ETEx distribution as discussed

by [13].

Theorem 2.1. Let Y be a non-negative and absolutely continuous random variable with
pdf

f(y) = 2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1
, y > 0, α, γ, b > 0,

and n-th conditional moment as

E(Y n|Y ≤ z) = 1
F (z)

∫ z

0
yn2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

dy,

if and only if

F (z) =
[
1 − e−2α(1−e−γ)z]b.

Proof of Theorem 2.1. For the necessary condition it can be easily proved that

E(Y n|Y ≤ z) =
∫ z

0
yn h(y)

F (z)
dy.

For the sufficient condition, we will proceed as∫ z
0 yn h(y)

F (z)dy = 1[
1−e−2α(1−e−γ )z

]b

∫ z
0 yn2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

dy. (2.5)

From Equation (2.5), we have∫ z
0 ynh(y)dy = F (z) 1[

1−e−2α(1−e−γ )z
]b

∫ z
0 yn2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

dy. (2.6)
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Differentiating both sides of Equation (2.6) with respect to z, we get

znf(z) = f(z)I1 + F (z)I2I∗ + F (z) 1
F (y)

I3.

where

I1 = 1[
1 − e−2α(1−e−γ)z]b

∫ z

0
yn2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

,

I2 = − 1
2bα(1 − e−γ)e−2α(1−e−γ)z[1 − e−2α(1−e−γ)z]b−1 ,

I3 = zn2bα(1 − e−γ)e−2α(1−e−γ)z[1 − e−2α(1−e−γ)z]b−1
,

I∗ =
∫ z

0
yn2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

.

After some simplification, we have

f(z)
{
zn − W ∗} = F (z)B∗{zn − W ∗}

f(z)
F (z)

= B∗, (2.7)

where

B∗ =
2bα(1 − e−γ)e−2α(1−e−γ)z[1 − e−2α(1−e−γ)z]b−1[

1 − e−2α(1−e−γ)z]b .

Integrating both sides of Equation (2.7) with respect to z from z = y to ∞, we get

− ln F (y) = − ln
[
1 − e−2α(1−e−γ)y]b.

Finally, we have

F (y) =
[
1 − e−2α(1−e−γ)y]b.

�

2.4. Moment generating function and probability generating function
The moment generating function (mgf) of Y is defined as

Mt(Y ) =
∫ ∞

−∞
eytdF (y),

considering eyt =
∑∞

r=0
t!yr!

r! and using pdf given in Equation (2.3), the mgf of the proposed
distribution is given as

Mt(Y ) =
∞∑

i,r=0

t!(−1)iΓ(b + 1)
r!i!Γ(b − i)

{ 1
i + 1

}r+1{ 1
2α(1 − e−γ)

}r

Γ(r + 1).

The general expression to find the probability generating function (pgf) is given as

πy =
∫ ∞

0
tyf(y)dy.

Using ty =
∑∞

m=0
(ln t)mym

m! , the pgf of the TL-ETEx distribution is given as

πy =
∞∑

i,r=0

(ln t)m(−1)iΓ(b + 1)
m!i!Γ(b − i)

{ 1
i + 1

}m+1{ 1
2α(1 − e−γ)

}m

Γ(m + 1).
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2.5. Survival function
The survival function which is used to explain the probability of survival of an item

beyond a given time t for any distribution is given by

R(y) = 1 − F (y),

so the R(y) of the TL-ETEx distribution is derived as

R(y) = 1 −
[
1 − e−2α(1−e−γ)y]b. (2.8)

2.6. Hazard rate function
The hazard rate function of any probability distribution is given as

h(y) = f(y)
1 − F (y)

.

The hazard rate function of TL-ETEx distribution is obtained as

h(y) =
2bα(1 − e−γ)e−2α(1−e−γ)y[1 − e−2α(1−e−γ)y]b−1

1 −
[
1 − e−2α(1−e−γ)y]b .
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Figure 2. Hazard rate plots of TL-ETEx for different combinations of the para-
metric values.

The cumulative hazard rate of the proposed distribution is also given as

H(y) = − log
{

1 −
[
1 − e−2α(1−e−γ)y]b}.

2.7. Residual life and reversed residual life
The mean residual life (MRL) is the expected additional life length for a unit which

survived till time y. The nth moment of the residual life is defined as

πn(t) = E
[
(Y − t)n

∣∣Y > t] = 1
R(t)

∫ ∞

t
(Y − t)nf(y)dy, n = 1, 2, 3, . . .

After some simplifications, the above expression reduces to

πn(t) = 1
R(t)

∞∑
k,r=0

(−t)n−rtk

(
n

r

)∫ ∞

t
yrf(y)dy.



An extended life time distribution: theory, properties and applications 1829

We use Equation (2.3) to solve
∫∞

t yrf(y)dy. After some simplifications, we obtain

πn(t) = 1
R(t)

∞∑
k,r,i,j=0

(−t)n−rtk

(
n

r

)
δiΓ(p + 1, 2α(i + 1)(1 − e−γ)),

where

δi =
∑
i=0

(−1)iΓ(b + 1)
i!Γ(b − i)

{ 1
i + 1

}p+1{ 1
2α(1 − e−γ)

}p

.

We can find the mean residual life (MRL) from the above equation by replacing n = 1.
The nth moment of reserved residual life of any distribution is given as

κn(t) = E
[
(t − Y )n

∣∣Y ≤ t] = 1
F (t)

∫ x

0
(Y − t)nf(y)dt, n = 1, 2, 3, . . .

The above expression can be written as

κn(t) = 1
R(t)

∞∑
k,r=0

(−1)r(t)n−rtk

(
n

r

)∫ t

0
yrf(y)dy.

The nth moment of the reversed residual life of the TL-ETEx distribution is given by

κn(t) = 1
R(t)

∞∑
k,r,j,i=0

(−1)r(t)n−rtk

(
n

r

)
δiγ(p + 1, 2α(i + 1)(1 − e−γ)).

3. Entropy and extropy
In this section, we compute some measures of entropy and extropy. Entropy mea-

sures the average amount of information provided by the findings of a random experiment
whereas extropy is the complementary measure of entropy.

3.1. Renyi entropy
A generalized Renyi entropy of order θ introduced by [25] is given as

Hθ(Y ) = 1
1 − θ

log
∫ ∞

0
(f(y))θdy.

Using f(y) given by Equation (2.2), the above expression for the TL-ETEx distribution
is obtained as

Hθ(Y ) = 1
1 − θ

log
∫ ∞

0
bθ(2α(1 − e−γ))θ(e−2α(1−e−γ)y)θ[1 − e−2α(1−e−γ)y]θ(b−1)

dy.

Using the series representation given in [23], the above expression is reduced as

Hθ(Y ) = 1
1 − θ

log
∫ ∞

0
Mjbθ(2α(1 − e−γ))θ(e−2α(1−e−γ)y)θ+jdy,

where

Mj =
∞∑

j=0
(−1)j Γ(θ(b − 1) + 1)

j!Γ(θ(b − 1) + 1 − j)
.

Transforming z = 2(θ +j)α(1−e−γ)y, and performing some calculation the Renyi entropy
of TL-ETEx distribution is given as

Hθ(Y ) = 1
1 − θ

log
(

Mjbθ(2α(1 − e−γ)
)θ−1

)
.
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3.2. Tsallis entropy
A generalized Tsallis entropy of order θ introduced by[27] is given as

Sθ(Y ) = 1
1 − θ

(
1 −

∫ ∞

0
(f(y))θdy

)
.

Using Equation (2.2) and simplifying the above expression, the Tsallis entropy of the
proposed distribution is obtained as

Sθ(Y ) = 1
1 − θ

(
1 −

(
Mjbθ(2α(1 − e−γ)

)θ−1
))

.

Both entropies have strong relationship with Shannon entropy. For θ → 0, both Renyi
and Tsallis entropies approache to Shannon entropy.

Tsallis entropy plays a key role in several areas such as physics, chemistry, biology,
medicine, and economics. Different applications of Tsallis entropy are discussed by [5].
The major difference between Renyi and Tsallis entropies is that the Tsallis entropy is
nonextensive and nonlogarithmic whereas Renyi is extensive. The relationship between
the both entropies can be expressed as

Hθ(Y ) = 1
1 − θ

log[1 − (θ − 1)Sθ(Y )].

3.3. Cumulative residual Tsallis entropy
The Cumulative Residual Tsallis Entropy (CRTE) of order θ defined by [26] is given as

ηθ(Y ) = 1
1 − θ

(
1 −

∫ ∞

0
(R(y))θdy

)
,

where R(y) = F̄ (y) = 1 − F (y). Considering Equation (2.8), the above expression is
written as

ηθ(Y ) = 1
1 − θ

(
1 −

∫ ∞

0

(
1 − [1 − e−2α(1−e−γ)y]b

)θ
dy

)
.

Using the series representation given by [23], the above expression becomes

ηθ(Y ) = 1
1 − θ

(
1 −

∫ ∞

0
L∗

j,ke−2α(1−e−γ)ykdy

)
, (3.1)

where

L∗
j,k =

∞∑
j,k=0

(−1)j+k Γ(θ + 1)(bj + 1)
j!k!Γ(θ + 1 − j)(bj + 1 − k)

.

After solving Equation (3.1), the CRTE of TL-ETEx distribution is given as

ηθ(Y ) = 1
1 − θ

(
1 − L∗

j,k

1
2kα(1 − e−γ)

)
.

3.4. Dynamic cumulative residual Tsallis entropy
For a random variable Yt with survival function R(y), the dynamic cumulative residual

Tsallis entropy (DCRTE) of order θ is defined as

ηθ(Y ; t) = 1
1 − θ

(
1 − 1

R(t)

∫ ∞

t
(R(y))θdy

)
.

Considering Equation (2.8), the DCRTE of TL-ETEx distribution is given as

ηθ(Y ; t) = 1
1 − θ

(
1 − 1

R(t)
L∗

j,k

eγ+2α(e−γ−1)kt

2α (eγ − 1) k

)
.
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3.5. Residual extropy
The residual extropy proposed by [24] as the measure of residual uncertainty of a random

variable is

J(Y ; t) = − 1
2R(t)2

∫ +∞

t
f(y)2dy.

The residual extropy of TL-ETEx distribution is obtained by using Equation (2.2) and is
given as

J(Y ) = −Tjb2α(1 − e−γ)e−t.

3.6. Cumulative residual extropy
A new measure of extropy called cumulative residual extropy (CRE) introduced by [11]

is

ξJ(X) = −1
2

∫ ∞

0
R(y)2dy.

Using Equation (2.8), the CRE of the proposed distribution is obtained as

ξJ(X) = −t∗
j,k

1
4α(1 − e−γ)k

,

where

t∗
j,k =

∞∑
k=0

3∑
j=0

(−1)j+k Γ(bj + 1)(3)
j!k!Γ(bj + 1 − k)(3 − j)

.

4. Inference
In this section, we discuss the estimation of the unknown parameters of the proposed

distribution by employing the method of maximum likelihood estimation. Let a random
sample, y1, y2, . . . , yn of size n is drawn from the TL-ETEx distribution then the maxi-
mum likelihood estimates (MLEs) of its parameters are obtained by using the following
likelihood (L) function

L =
n∏

i=1
2bα(1 − e−γ)e−2α(1−e−γ)yi

[
1 − e−2α(1−e−γ)yi

]b−1
,

and log-likelihood (l) function

l =n log 2 + n log b + n log α + n log(1 − e−γ) − 2α(1 − e−γ)
n∑

i=1
yi

+ (b − 1)
n∑

i=1
log

[
1 − e−2α(1−e−γ)yi

]
. (4.1)

Taking the partial derivatives of Equation (4.1) with respect to α,γ, and b and setting
resulting equations equal to zero, we obtain a system of three equations in three unknowns
parameters are given as

∂L

∂b
= n

b
+

n∑
i=1

log
(
1 − e−2α(1−e−γ)yi

)
= 0. (4.2)

∂L

∂α
= n

α
− 2

(
1 − e−γ) n∑

i=1
yi + (b − 1)2

(
1 − e−γ) n∑

i=1

yie
−2α(1−e−γ)yi

1 − e−2α(1−e−γ)yi
= 0. (4.3)
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∂L

∂γ
= ne−γ

1 − e−γ
− 2αe−γ

n∑
i=1

yi + (b − 1)2αe−γ
n∑

i=1

yie
−2α(1−e−γ)yi

1 − e−2α(1−e−γ)yi
= 0. (4.4)

It is important to point out here that the resulting analytical solution of the system of
non linear Equations (4.2), (4.3), and (4.4) are unknown. So, the estimates of b̂, α̂, and γ̂
are obtained by solving the system of these equations using some numerical methods.

The Fisher Information matrix I(b, α, γ), assessed by taking the minus expectations of
the second partial derivatives of Equations (4.2), (4.3), and (4.4), is expressed as b̂

α̂
γ̂

 ∼ N


 b

α
γ


 Ĵbb Ĵbα Ĵbγ

Ĵαα Ĵαγ

Ĵγγ


 ,

1
J

= −E

 Jbb Jbα Jbγ

Jαα Jαγ

Jγγ

 .

The entries of the Fisher Information matrix are given as

Ĵbb = − n

b2 ,

Ĵbα =
n∑

i=1

2 (w) yie
−2α(w)yi

1 − e−2α(w)yi
,

Ĵbγ =
n∑

i=1

2αe−γyie
−2α(w)yi

1 − e−2α(w)yi
,

Ĵαα = − n

α2 − (b − 1)
n∑

i=1

4 (w)2 y2
i e−4α(w)yi(

1 − e−2α(w)yi
) 2 −

n∑
i=1

4 (w)2 y2
i e−2α(w)yi

1 − e−2α(w)yi
,

Ĵαγ = − 2e−γ
n∑

i=1
yi − (1 − b)

n∑
i=1

(
4αe−γ (w) y2

i e−4α(w)yi(
1 − e−2α(w)yi

) 2

)

− (b − 1)
n∑

i=1

(
4αe−γ (w) y2

i e−2α(w)yi

1 − e−2α(w)yi
+ 2e−γyie

−2α(w)yi

1 − e−2α(w)yi

)
,

Ĵγγ =ne−γ

(w)2 + 2αe−γ

(
n∑

i=1
yi

)
− (b − 1)

n∑
i=1

(
−4α2e−2γy2

i e−4α(w)yi(
1 − e−2α(w)yi

) 2

)

− (b − 1)
n∑

i=1

(
4α2e−2γy2

i e−2α(w)yi

1 − e−2α(w)yi
+ 2αe−γyie

−2α(w)yi

1 − e−2α(w)yi

)
,

where 1 − e−γ = w.

5. Simulation
In this section, we perform a simulation study to evaluate the performance of MLEs of

the unknown parameters of the TL-ETEx distribution. We generate N = 10000 simula-
tions of the TL-ETEx distribution for different sample sizes n = 50, 250, 500, 1000 using
the following equation

yq = − log(1 − q
1
b )

2α(1 − e−γ)
, q ∈ (0, 1),

where U is a random variable that follows the uniform distribution on the interval [0, 1].
Table 1 lists the average estimated (AE)values of the parameters and their mean square
errors (MSEs).
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Table 1. Average estimated values of the parameters and their mean square errors
for several combinations of the parameters of TL-ETEx distribution.

n True values AE MSEs

α b γ α̂ b̂ γ̂ α̂ b̂ γ̂

0.5 0.5 1 0.5177 0.5313 1.0354 0.0368 0.0470 0.0791
1.5 1.5 0.5 1.5193 1.5298 0.5414 0.0451 0.0741 0.0950

50 2 1.5 2.5 2.0216 1.5222 2.5311 0.0535 0.0307 0.0454
2.5 2 2.5 2.5181 2.0343 2.5311 0.0247 0.0849 0.0547
2.5 0.5 2 2.5223 0.5271 2.0433 0.0563 0.0483 0.1024
0.5 0.5 1 0.5045 0.5069 1.0096 0.0160 0.01901 0.0338
1.5 1.5 0.5 1.5051 1.5081 0.5103 0.0191 0.0258 0.0374

250 2 1.5 2.5 2.0036 1.5065 2.5098 0.0069 0.0165 0.0443
2.5 2 2.5 2.5054 2.0077 2.5099 0.0248 0.0297 0.0375
2.5 0.5 2 2.5042 0.5078 2.0120 0.0091 0.0296 0.0548
0.5 0.5 1 0.5030 0.5037 1.0059 0.0159 0.0165 0.0287
1.5 1.5 0.5 1.5026 1.5039 0.5059 0.0093 0.0157 0.0313

500 2 1.5 2.5 2.0022 1.5036 2.5053 0.0060 0.0147 0.0199
2.5 2 2.5 2.5032 2.0042 2.5055 0.0178 0.0232 0.0202
2.5 0.5 2 2.5025 0.5044 2.0063 0.0086 0.0196 0.0341
0.5 0.5 1 0.5013 0.5016 1.0034 0.0048 0.0053 0.0235
1.5 1.5 0.5 1.5014 1.5023 0.5028 0.0054 0.0153 0.0149

1000 2 1.5 2.5 2.0015 1.5022 2.5033 0.0086 0.0103 0.0263
2.5 2 2.5 2.5017 2.0023 2.5024 0.012 0.0159 0.0096
2.5 0.5 2 2.5014 0.5024 2.0026 0.0066 0.0199 0.0094

Table 1 indicates that the estimates are quite stable and are close to the true values for
different sample sizes. It is observed that in general the average estimated values of the
parameters become close to the true values while the MSEs decrease as n increases.

6. Application
In this section, we study the applicability of the TL-ETEx distribution by means of

three real data sets from the fields of hydrology, reliability, and environmental sciences.
We compare the results of the proposed distribution with some existing distributions. We
consider−2ℓ ( maximized log-likelihood), AIC (Akaike information criterion), and BIC
(Bayesian Information criterion) as the goodness of fit measures. The compared models
are listed below in Table 2.

Table 2. Fitted distributions and their abbreviations.

Model Abbreviations Referrence
Topp Leone Erlang Truncated Exponential TL-ETEx Proposed
Erlang Truncated Exponential ETEx [7]
Exponential Ex [4]
Marshall-Oklin Erlang Truncated Exponential MO-ETEx [21]
Inverse Weibull IEx [12]
Topp Leone Inverse Weibull TL-IW [1]

The first data set represents the level of mercury in 34 albacores caught in the Eastern
Mediterranean used by [15]. The second data set consists of thirty successive values
of March precipitation (in inches) in Minneapolis/St Paul by [10]. The third data set
represents the waiting times (in minutes) before the service of 100 Bank customers which
was examined and analyzed by [8].

The estimated parameters of the fitted distributions, −2ℓ, AIC and BIC are listed in
Tables [3-5] for the selected three data sets, respectively. The values in these tables reveal
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that the TL-ETEx distribution provides better fits than other fitted models. The fitted
density, empirical cdf, and total time on test (TTT) plots of the TL-ETEx distribution
are displayed in Figures 3-5 for the three data sets, respectively. These figures show that
the TL-ETEx distribution fits all data sets adequately. The TTT plot shows that all data
sets have a monotonically increasing hazard rate function.

Table 3. Estimated parameters, −2ℓ, AIC, and BIC for the fitted distributions
for data set I.

Model Parameters −2ℓ AIC BIC
α β γ

TL-ETEx 1.38714 17.2665 2.4083 20.2687 46.53747 51.1165
ETEx 1.1229 1.0662 44.40812 92.8162 95.8689
Ex 0.7363 44.40812 90.8162 92.3426
MO-ETEx 155.9432 4.0686 2.6041 20.7923 47.5847 52.1637
IW 1.2301 62.2802 126.5605 128.0869
TL-IW 2.3288 3.9152 0.4059 22.1965 50.3930 54.9721

Table 4. Estimated parameters, −2ℓ, AIC, and BIC for fitted distributions for
data set II.

Model Parameters −2ℓ AIC BIC
α β γ

TL-ETEx 0.7157728 3.46107 1.6886 38.0942 82.1885 86.3921
ETEx 0.9596 0.9732 45.4744 94.9488 97.7512
Ex 0.7362973 44.40812 90.81625 92.34261
MO-ETEx 9.97431 4.8276 0.3885 39.377 84.754 88.9576
IW 0.8014 69.0502 140.1003 141.5015
TL-IW 1.2951 3.5629 0.3767 40.1633 86.3266 90.5302

Table 5. Estimated parameters, −2ℓ, AIC, and BIC for fitted distributions for
data set III.

Model Parameters −2ℓ AIC BIC
α β γ

TL-ETEx 0.2508 2.1826 0.3814 317.0953 640.1906 648.0061
ETEx 0.2043 0.6842 329.0209 662.0418 667.2521
Ex 0.1012 329.0209 660.0418 662.6469
MO-ETEx 4.1164 1.3268 0.15662 320.712 647.4241 655.2396
IW 0.1922 554.9761 1111.952 1114.557
TL-IW 0.9567 12.5285 0.5246 327.1056 660.2112 668.0267

7. Conclusion
We propose a new lifetime distribution called Topp Leone Erlang truncated exponen-

tial (TL-ETEx) distribution by generalizing the Erlang truncated exponential distribution
using Topp Leone family of distributions. Several important characteristics of the pro-
posed distribution are derived and discussed. The moments of TL-ETEx distribution help
to study its behavior while the graphical representation describes the impact of different
parametric combinations on the peak and the skewness of the proposed distribution. It
is observed from the reliability analysis that the TL-ETEx distribution has increasing,
decreasing and constant failure rates which indicates its ability to handle the versatile
situations. Various types of entropies and extropies are derived which help to find the
average amount of uncertainty in the information provided by the random trials. The
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Figure 3. Fitted density of the TL-ETEx distribution for three data sets.
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Figure 4. Probability plots of the TL-ETEx distribution for three data sets.
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Figure 5. TTT plots of the TL-ETEx distribution for three data sets.

findings of the simulation study reveal that the estimated values of the parameters are
close to their true values which establish their stability. It is also noticed that the esti-
mated values become closer to the true values where as the biases and standard errors
decrease as the samples sizes increase. Three real data sets from hydrology, reliability,
and environmental sciences are modeled by using the TL-ETEx distribution that endorse
its vast application.
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