Sufficient condition for q-starlike and q-convex functions associated with generalized confluent hypergeometric function

Murli Manohar Goura, Pranay Goswamib, Sunil Joshia

aDepartment of Mathematics and Statistics, Manipal University, Jaipur, India.
bSchool of Liberal Studies, Ambedkar University, Delhi, India.

Abstract

The main object of this paper is to investigate and determine a sufficient condition for q-starlike and q-convex functions which are associated with generalized confluent hypergeometric function.

Keywords: Univalent functions, convex and q-convex functions, starlike and q-starlike functions, q-derivative operator, q-number, generalized confluent hypergeometric function.

2010 MSC: 30C45; 30C50; 30C80.

1. Introduction and Preliminary

Let A denote the class of all functions of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m, \quad z \in \mathbb{U},$$

which are analytic in open unit disk $\mathbb{U} := \{z \in \mathbb{C} : |z| < 1\}$ and satisfy the normalization conditions $f(0) = 0$ and $f'(0) = 1$. Let S be the subclass of A consists of univalent functions in \mathbb{U}. Further suppose that S^* is subclass of functions of A which are starlike in \mathbb{U}, that is f satisfy the subsequent conditions:

$$\text{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad \forall z \in \mathbb{U}$$

Email addresses: vishnumurligour@gmail.com (Murli Manohar Gour), pranaygoswami30@gmail.com (Pranay Goswami), sunil.joshi@jaipur.manipal.edu (Sunil Joshi)

Received August 28, 2020, Accepted: December 6, 2020, Online: December 10, 2020.
Let C^* be subclass of functions of A which are convex in U, that is f satisfy the following conditions:

$$
\text{Re}\left\{\frac{(zf'(z))^'}{f'(z)}\right\} = \text{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > 0, \quad \forall z \in U
$$

For analytic functions f and g in U we say that the function f is subordinate to the function g and written as

$$
f(z) < g(z)
$$

If there exists a Schwarz function w which is analytic in U and $w(0) = 0$, $|w(z)| < 1$, such that $f(z) = g(w(z))$

Further, if g is the function which is univalent in U, then it becomes

$$
f(z) < g(z), \quad z \in U \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U)
$$

Now we define P the class of analytic function with positive real part which is given as

$$
p(z) = 1 + \sum_{m=1}^{\infty} p_m z^m; \quad \text{Re}(p(z)) > 0, \quad z \in U.
$$

Definition 1.1. An analytic function h with $h(0) = 1$ belongs to the class $P[M, N]$, with $-1 \leq N < M \leq 1$, if and only if

$$
h(z) < \frac{1 + Mz}{1 + Nz}.
$$

The class $P[M, N]$ of analytic functions was introduced and studied by Janowski [6], who showed that $h \in P[M, N]$ if and only if there exists a function $p \in P$, such that

$$
h(z) = \frac{(M + 1)p(z) - (M - 1)}{(N + 1)p(z) - (N - 1)}, \quad z \in U.
$$

Definition 1.2. [6] (i) A function $f \in A$ is in the class $S^*[M, N]$, with $-1 \leq N < M \leq 1$, if and only if

$$
\frac{zf'(z)}{f(z)} < \frac{1 + Mz}{1 + Nz}.
$$

(ii) A function $f \in A$ is in the class $C^*[M, N]$, with $-1 \leq N < M \leq 1$, if and only if

$$
1 + \frac{f''(z)}{f'(z)} < \frac{1 + Mz}{1 + Nz}.
$$

Definition 1.3. The q-number $[m]_q$ defined in [15] for $q \in (0, 1)$, is given by

$$
[m]_q := \begin{cases}
1 - q^m, & \text{if } m \in \mathbb{C}, \\
\frac{1 - q}{1 - q^m}, & \sum_{k=0}^{m-1} q^k = 1 + q + q^2 + \cdots + q^{m-1}, \quad \text{if } m \in \mathbb{N} := \{1, 2, \ldots\}.
\end{cases}
$$

Definition 1.4. [16] The q-derivative $D_q f$ of a function f is defined as

$$
D_q f(z) := \begin{cases}
\frac{f(z) - f(qz)}{(1 - q)z}, & \text{if } z \in \mathbb{C} \setminus \{0\}, \\
f'(0), & \text{if } z = 0,
\end{cases}
$$

provided that $f'(0)$ exists, and $0 < q < 1$.
From the Definition 1.4 it follows immediately that
\[
\lim_{q \to 1} D_q f(z) = \lim_{q \to 1} \frac{f(z) - f(qz)}{(1-q)z} = f'(z).
\]

For a function \(f \in A \) which has the power expansion series of the form (1.1), it is easy to check that
\[
D_q f(z) = 1 + \sum_{m=2}^{\infty} [m]_q a_m z^{m-1}, \quad z \in U,
\]
as it was previously defined by Srivastava and Bansal [14], although the \(q \)-derivative operator \(D_q \) was presumably first applied by Ismail et al. [5] to study a \(q \)-extension of the class \(S^* \) of starlike functions in \(U \) (see [5], [3], [13]).

Definition 1.5. A function \(f \in A \) is in the class \(S_q^* \) if and only if
\[
\left| \frac{z}{f(z)} D_q f(z) - \frac{1}{1-q} \right| < \frac{1}{1-q}, \quad z \in U.
\]

It is observed that, as \(q \to 1^- \) the closed disk
\[
\left| w - \frac{1}{1-q} \right| < \frac{1}{1-q}
\]
becomes the right-half plane and the class \(S_q^* \) of \(q \)-starlike functions diminishes to the acquainted class \(S^* \).

Consistently, by with the principle of subordination among analytic functions, we can rewrite the inequality (5) as
\[
\frac{z}{f(z)} D_q f(z) \prec \phi(z),
\]
where
\[
\phi(z) := \left(M + 1 \right) z + 2 + \left(M - 1 \right) qz
\]
which by using the definition of the subordination can be written as follows:
\[
\frac{z D_q f(z)}{f(z)} < \phi(z),
\]
where
\[
\phi(z) := \frac{(M + 1)z + 2 + (M - 1)qz}{(N + 1)z + 2 + (N - 1)qz}, \quad -1 \leq N < M \leq 1, \quad q \in (0,1).
\]

Remark 1.1. (i) It is easy to check that
\[
\lim_{q \to 1^-} S_q^*[M,N] = S^*[M,N].
\]

Also, \(S_q^*[1,-1] = S_q^* \), where \(S_q^* \) is the class of functions introduced and studied by Ismail et al. [5].
Lemma 1.2. A function \(f \) from the definition of \(Q \) we get that
\[
\left| Q(z) - \frac{1}{1-q} \right| < \frac{1}{1-q}, \quad z \in U,
\]
and from (7) it follows
\[
Q(z) = \frac{(N - 1)zD_qf(z) - (M - 1)}{(N + 1)zD_qf(z) - (M + 1)}, \quad z \in U.
\]

From these computations we conclude that a function \(f \in A \) is in the class \(S_q^*[M, N] \), if and only if
\[
\left| \frac{(N - 1)zD_qf(z) - (M - 1)}{(N + 1)zD_qf(z) - (M + 1)} - \frac{1}{1-q} \right| < \frac{1}{1-q}, \quad z \in U.
\]

In itâ€™s special case when \(M = 1 - 2\beta \) and \(N = -1 \), with \(0 \leq \beta < 1 \), the function class \(S_q^*[M, N] \) reduces to the function class \(S_q^*(\beta) \) which was presented and deliberated by Agrawal and Sahoo [1].

(iii) By means of the well-known Alexanderâ€™s theorem [2], the class \(C_q^*[M, N] \) of \(q \)-convex functions can be defined in the following way:
\[
f \in C_q^*[M, N] \iff zD_qf(z) \in S_q^*[M, N].
\]

The confluent hypergeometric function in the series form is given by
\[
F(\xi; \eta; z) = \sum_{m=0}^{\infty} \frac{(\xi)_m z^m}{(\eta)_m m!}; \quad \forall z \in \mathbb{C},
\]
where \(\eta \) is neither zero nor a negative integer and the series is convergent for \(\xi, \eta \). Now the generalized confluent hypergeometric function (normalized function) is defined as
\[
zF(\xi; \eta; z) = \sum_{m=0}^{\infty} \frac{(\xi)_m z^{m+1}}{(\eta)_m m!} \quad \text{(By using convolution of two functions)}
\]
\[
= z + \sum_{m=2}^{\infty} \frac{(\xi)_{m-1} z^m}{(\eta)_{m-1} (m-1)!},
\]
where \((\beta)_m \) is the Pochhammer symbol defined as
\[
(\beta)_m = \begin{cases}
1 & \text{if } m = 0 \\
\beta(\beta+1)(\beta+2)\cdots(\beta+m-1) & \text{if } m \in \mathbb{N} \\
\Gamma(\beta+m)/\Gamma\beta & \text{if } m \geq 0
\end{cases}
\]
and
\[
(\beta)_{m+k} = (\beta)_m (\beta+m)_k = (\beta)_k (\beta+k)_m.
\]

In this paper we determine sufficient conditions for \(q \)-starlike functions and \(q \)-convex functions associated with confluent hypergeometric function by using following sufficient conditions obtained by Srivastava [15]:

Lemma 1.1. [15] A function \(f \in A \) is in the class \(S_q^*[M, N] \), if it satisfying the following condition
\[
\sum_{m=2}^{\infty} \frac{(2q[m-1]_q + [(N+1)[m]_q - (M+1)])|a_m|}{|N-M|} < 1
\]

Lemma 1.2. [15] A function \(f \in A \) is in the class \(C_q^*[M, N] \), if it satisfying the following condition
\[
\sum_{m=2}^{\infty} \frac{|m|_q(2q[m-1]_q + [(N+1)[m]_q - (M+1)])|a_m|}{|N-M|} < 1
\]
2. Main Results

Theorem 2.1. Let E_j, $j \in \{1, 2\}$, be defined as follows:

(i) If $\xi > 0$ and $\gamma > 0$, then E_1 is given by

$$E_1(\xi, \gamma, q) := \frac{1}{1-q}\left\{ (q + N + 2 + M(1-q))F(\xi; \gamma, 1) - (N + 3)qF(\xi; \gamma, q) - (M + N + 2)(1-q) \right\}.$$

(ii) If $\xi, \in \mathbb{C} \setminus \{0\}$ and $\gamma > 0$, then E_2 is given by

$$E_2(\xi, \gamma, q) := \frac{1}{1-q}\left\{ (q + N + 2 + M(1-q))F(\xi; \gamma, 1) - (N + 3)qF(\xi; \gamma, q) - (M + N + 2)(1-q) \right\}.$$

If for any $j \in \{1, 2\}$ the inequality

$$E_j(\xi, \gamma, q) < |N - M|$$

holds, then function $zF(\xi; \gamma, z)$ belongs to the class $S^*_q[M, N]$.

Proof. Since

$$zF(\xi; \gamma, z) = z + \sum_{m=2}^{\infty} \frac{(\xi)_{m-1}}{(\gamma)_{m-1}(m-1)!}z^m, z \in U,$$

according to Lemma 1.1 any function $f \in A$ is in the class $S^*_q[M, N]$ if it satisfies the inequality (9). Then, for $f(z) := zF(\xi; \gamma, z)$ it is sufficient to show that (9) holds, for

$$a_m = \frac{(\xi)_{m-1}}{(\gamma)_{m-1}(m-1)!}, \quad \text{and} \quad [m]_q = \frac{1 - q^m}{1 - q}.$$

Using the triangle’s inequality we get

$$\sum_{m=2}^{\infty} \left(2q[m-1]_q + |(N + 1)[m]_q - (M + 1)| \right) |a_m|$$

$$\leq \sum_{m=2}^{\infty} 2q \frac{1 - q^{m-1}}{1-q} |a_m| + \sum_{m=2}^{\infty} (N + 1) \frac{1 - q^m}{1-q} |a_m| + \sum_{m=2}^{\infty} (M + 1) |a_m|$$

$$= \sum_{m=2}^{\infty} \left(\frac{2q + (N + 1)}{1 - q} + (M + 1) \right) |a_m| - \sum_{m=2}^{\infty} \frac{(N + 3)q^m}{1-q} |a_m|. \quad (11)$$

Case (i) If $\xi > 0$ and $\gamma > 0$, from (11) we get

$$\sum_{m=2}^{\infty} \left(2q[m-1]_q + |(N + 1)[m]_q - (M + 1)| \right) |a_m|$$

$$\leq \left(\frac{2q + (N + 1)}{1 - q} + (M + 1) \right) \sum_{m=2}^{\infty} \frac{(\xi)_{m-1}}{(\gamma)_{m-1}(m-1)!} - \frac{N + 3}{1-q} \sum_{m=2}^{\infty} \frac{(\xi)_{m-1}q^m}{(\gamma)_{m-1}(m-1)!}$$

$$= \frac{1}{1-q} \left\{ (q + N + 2 + M(1-q))F(\xi; \gamma, 1) - (N + 3)qF(\xi, \eta; \gamma, q) - (M + N + 2)(1-q) \right\}$$

$$= \frac{1}{1-q} \left\{ (q + N + 2 + M(1-q))F(\xi; \gamma, 1) - (N + 3)qF(\xi; \gamma, q) - (M + N + 2)(1-q) \right\} =: E_1(\xi, \gamma, q),$$
and the assumption of the theorem implies (9), that is \(zF(\xi; \gamma; z) \in S_q^*[M, N] \).

Case (ii) If \(\xi \in \mathbb{C} \setminus \{0\}, \gamma > 0 \), from (11) we have

\[
\sum_{m=2}^{\infty} (2q[m-1]_q + |(N+1)[m]_q - (M+1)|) |a_m| \\
\leq \left(\frac{2q + (N+1)}{1-q} + (M+1) \right) \sum_{m=2}^{\infty} \frac{|(\xi)_{m-1}|}{(\gamma)_{m-1}(m-1)!} \frac{N+3}{1-q} \sum_{m=2}^{\infty} \frac{|(\xi)_{m-1}|q^m}{(\gamma)_{m-1}(m-1)!} \\
= \left(\frac{2q + (N+1)}{1-q} + (M+1) \right) \sum_{m=1}^{\infty} \frac{|(\xi)_m|}{(\gamma)_m m!} \frac{N+3}{1-q} \sum_{m=1}^{\infty} \frac{|(\xi)_m|q^m}{(\gamma)_m m!}.
\]

Since \(|(a)_m| \leq |(a)|_m \), from (12), we deduce that

\[
\sum_{m=2}^{\infty} (2q[m-1]_q + |(N+1)[m]_q - (M+1)|) |a_m| \\
\leq \left(\frac{2q + (N+1)}{1-q} + (M+1) \right) \sum_{m=1}^{\infty} \frac{|(\xi)_m|}{(\gamma)_m m!} \frac{N+3}{1-q} \sum_{m=1}^{\infty} \frac{|(\xi)_m|q^m}{(\gamma)_m m!} \\
= \frac{1}{1-q} \left\{ (q + N + 2 + M(1-q)) \left(F(|\xi|; \gamma; 1) - 1 \right) \\
- (N+3)qF(|\xi|; \gamma; q) - (M + N + 2)(1-q) \right\} =: E_2(\xi, \eta, \gamma, q).
\]

and the assumption of the theorem implies (9), that is \(zF(\xi; \gamma; z) \in S_q^*[M, N] \).

For the special case \(M = 1 - 2\beta \), \(0 \leq \beta < 1 \), and \(N = -1 \), we have \(S_q^*[1 - 2\beta, -1] =: S_q^*(\beta) \) and Theorem 2.1 reduces to the following result:

Corollary 2.1. Let \(E_j^*, j \in \{1, 2\} \), be defined as follows:

(i) If \(\xi > 0 \) and \(\gamma > 0 \), then \(E_1^* \) is given by

\[
E_1^*(\xi, \eta, \gamma, q) := \frac{1}{1-q} \left\{ 2(1 - \beta(1-q)) F(\xi; \gamma; 1) \\
- 2qF(\xi; \gamma; q) - 2(1 - \beta)(1-q) \right\}.
\]

(ii) If \(\xi \in \mathbb{C} \setminus \{0\} \) and \(\gamma > 0 \), then \(E_2^* \) is given by

\[
E_2^*(\xi, \eta, \gamma, q) := \frac{1}{1-q} \left\{ 2(1 - \beta(1-q)) F(|\xi|; \gamma; 1) \\
- 2qF(|\xi|; \gamma; q) - 2(1 - \beta)(1-q) \right\}.
\]

If for any \(j \in \{1, 2\} \) the inequality

\[
E_j^*(\xi, \gamma, q) < 2(1 - \beta)
\]

holds for \(0 \leq \beta < 1 \), then function \(zF(\xi; \gamma; z) \) belongs to the class \(S_q^*(\beta) \).
For $\beta = 0$ the above corollary gives us the next special case:

Example 2.1. Let \tilde{E}_j, $j \in \{1, 2\}$, be defined as follows:

(i) If $\xi > 0$ and $\gamma > 0$, then \tilde{E}_1 is given by

$$
\tilde{E}_1(\xi, \gamma, q) = \frac{1}{1-q} \{2F(\xi; \gamma; 1) - 2qF(\xi; \gamma; q) - 2(1-q)\}.
$$

(ii) If $\xi \in \mathbb{C} \setminus \{0\}$ and $\gamma > 0$, then \tilde{E}_2 is given by

$$
\tilde{E}_2(\xi, \gamma, q) := \frac{1}{1-q} \{2F(|\xi|; \gamma; 1) - 2qF(|\xi|; \gamma; q) - 2(1-q)\}.
$$

If for any $j \in \{1, 2\}$ the inequality

$$
\tilde{E}_j(\xi, \gamma, q) < 2
$$

holds, then function $zF(\xi; \gamma; z)$ belongs to the class $S^*_q(0)$.

Theorem 2.2. Let G_j, $j \in \{1, 2\}$, be defined as follows:

(i) If $\xi > 0$ and $\gamma > 0$, then G_1 is given by

$$
G_1(\xi, \gamma, q) := \frac{1}{(1-q)^2} \left\{ (N+2+q+M(1-q))F(\xi; \gamma; 1) - (M(1-q) + 2N + 5 + q)qF(\xi; \gamma; q) + (N + 3)q^2F(\xi; \gamma; q^2) - (M + N + 2)(1-q)^2 \right\}.
$$

(ii) If $\xi \in \mathbb{C} \setminus \{0\}$ and $\gamma > 0$, then G_2 is given by

$$
G_2(\xi, \gamma, q) := \frac{1}{(1-q)^2} \left\{ (N+2+q+M(1-q))F(|\xi|; \gamma; 1) - (M(1-q) + 2N + 5 + q)qF(|\xi|; \gamma; q) + (N + 3)q^2F(|\xi|; \gamma; q^2) - (M + N + 2)(1-q)^2 \right\}.
$$

If for any $j \in \{1, 2\}$ the inequality

$$
G_j(\xi, \gamma, q) < |N - M|
$$

holds, then function $zF(\xi; \gamma; z)$ belongs to the class $C^*_q[M, N]$.

Proof. Since, according to Lemma 1.2 any function $f \in A$ belongs to the class $C^*_q[M, N]$ if it satisfies the inequality (10) for

$$
a_m = \frac{(\xi)_{m-1}}{(\gamma)_{m-1}(m-1)!}, \quad \text{and} \quad [m]_q = \frac{1 - q^m}{1 - q}.
$$
Using first the triangle’s inequality, we have

$$\sum_{m=2}^{\infty} |m|_q (2q|m-1|_q + |(N+1)|m_q - (M+1)) |a_m|$$

$$\leq \sum_{m=2}^{\infty} 2q|m|_q |m|_q |a_m| + \sum_{m=2}^{\infty} (N+1)|m|_q |m|_q |a_m| + \sum_{m=2}^{\infty} (M+1)|m|_q |a_m|$$

$$= \sum_{m=2}^{\infty} 2q \frac{1-q^m}{1-q} |a_m| + \sum_{m=2}^{\infty} (N+1) \frac{1-q^m}{1-q} |a_m|$$

$$+ \sum_{m=2}^{\infty} (M+1) \frac{1-q^m}{1-q} |a_m|$$

$$= \sum_{m=2}^{\infty} \left(2q + (N+1) + (M+1)(1-q) \right) (1-q)^2 |a_m|$$

$$- \sum_{m=2}^{\infty} \left((M+1)(1-q) + 2(N+1) + 2q + 2 \right) (1-q)^2 q^m |a_m| + \sum_{m=2}^{\infty} \left(\frac{2 + (N+1)}{(1-q)^2} \right) q^{2m} |a_m|$$

$$= \frac{q + N + 2 + M(1-q)}{(1-q)^2} \sum_{m=2}^{\infty} |a_m| - \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} \sum_{m=2}^{\infty} q^m |a_m|$$

$$+ \frac{N + 3}{(1-q)^2} \sum_{m=2}^{\infty} q^{2m} |a_m|.$$ \hspace{1cm} (13)

Case (i) If $\xi > 0$ and $\gamma > 0$, from (13) we obtain

$$\sum_{m=2}^{\infty} |m|_q (2q|m-1|_q + |(N+1)|m_q - (M+1)) |a_m|$$

$$\leq \frac{q + N + 2 + M(1-q)}{(1-q)^2} \sum_{m=2}^{\infty} \frac{\langle \xi \rangle_{m-1}}{\langle \gamma \rangle_{m-1} (m-1)!} + \frac{N + 3}{(1-q)^2} \sum_{m=2}^{\infty} \frac{\langle \xi \rangle_{m-1}}{\langle \gamma \rangle_{m-1} (m-1)!} q^{2m}$$

$$- \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} \sum_{m=2}^{\infty} \frac{\langle \xi \rangle_{m-1}}{\langle \gamma \rangle_{m-1} (m-1)!} q^m$$

$$= \frac{q + N + 2 + M(1-q)}{(1-q)^2} \sum_{m=1}^{\infty} \frac{\langle \xi \rangle}{\langle \gamma \rangle m!} + \frac{N + 3}{(1-q)^2} \sum_{m=1}^{\infty} \frac{\langle \xi \rangle}{\langle \gamma \rangle m!} q^{2m}$$

$$- \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} q \sum_{m=1}^{\infty} \frac{\langle \xi \rangle}{\langle \gamma \rangle m!} q^m$$

$$= \frac{q + N + 2 + M(1-q)}{(1-q)^2} (F(\xi; \gamma; 1) - 1) + \frac{(N + 3)q^2}{(1-q)^2} (F(\xi; \gamma; q) - 1)$$

$$- \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} q(F(\xi; \gamma; q) - 1)$$

$$= \frac{1}{(1-q)^2} \left\{ (N + 2 + q + M(1-q)) F(\xi; \gamma; 1) \right.$$}

$$- (M(1-q) + 2N + 5 + q) q F(\xi; \gamma; q) + (N + 3)q^2 F(\xi; \gamma; q^2)$$

$$- (M + N + 2)(1-q)^2 \right\} =: G_1(\xi, \gamma, q).$$
Therefore, the assumption of the theorem implies (10), hence \(zF(\xi; \gamma; z) \in C_q^*[M, N] \).

Case (ii) If \(\xi \in \mathbb{C} \setminus \{0\} \), \(\gamma > 0 \), then the inequality (13) leads to

\[
\sum_{m=2}^{\infty} [m]_q (2q[m-1]_q + [(N+1)[m]_q - (M+1)]) |a_m| \\
\leq \frac{q + N + 2 + M(1-q)}{(1-q)^2} \sum_{m=1}^{\infty} \frac{|(\xi)_{m-1}|}{(\gamma)_{m-1}(m-1)!} + \frac{N + 3}{(1-q)^2} \sum_{m=1}^{\infty} \frac{|(\xi)_{m-1}|}{(\gamma)_{m-1}(m-1)!} q^{2m} \\
- \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} \sum_{m=2}^{\infty} \frac{|(\xi)_{m-1}|}{(\gamma)_{m-1}(m-1)!} q^m \\
= \frac{q + N + 2 + M(1-q)}{(1-q)^2} (F(|\xi|; \gamma, 1) - 1) + \frac{(N + 3)q^2}{(1-q)^2} (F(|\xi|; \gamma; q^2) - 1) \\
- \frac{M(1-q) + 2N + 5 + q}{(1-q)^2} qF(|\xi|; \gamma; q) \\
= \frac{1}{(1-q)^2} \left\{ (N + 2 + q + M(1-q))F(|\xi|; \gamma; 1) + (N + 3)q^2F(|\xi|; \gamma; q^2) \\
- (M(1-q) + 2N + 5 + q)qF(|\xi|; \gamma; q) - (M + N + 2)(1-q)^2 \right\} =: G_2(\xi, \gamma, q).
\]

It follows that the assumption of the theorem implies (10), hence \(zF(\xi; \gamma; z) \in C_q^*[M, N] \). \(\square \)

For the special case \(M = 1 - 2\beta \), \(0 \leq \beta < 1 \) and \(N = -1 \), we have \(C_q^*[1 - 2\beta, -1] =: C_q^*(\beta) \), and Theorem 2.2 reduces to the following result:

Corollary 2.2. Let \(G_j^* \), \(j \in \{1, 2\} \), be defined as follows:

(i) If \(\xi > 0 \) and \(\gamma > 0 \), then \(G_1^* \) is given by

\[
G_1^*(\xi, \eta, \gamma, q) := \frac{1}{(1-q)^2} \left\{ 2(1 - \beta(1-q))F(\xi; \gamma; 1) \\
- 2(2 - \beta(1-q))qF(\xi; \gamma; q) + 2q^2F(\xi; \gamma; q^2) - 2(1 - \beta)(1-q)^2 \right\}.
\]
(ii) If $\xi \in \mathbb{C} \setminus \{0\}$ and $\gamma > 0$, then G^*_2 is given by

$$
G^*_2(\xi, \gamma, q) := \frac{1}{(1-q)^2} \left\{ 2(1-\beta(1-q)) F(|\xi|; \gamma; 1) \\
- 2(2-\beta(1-q))q F(|\xi|; \gamma; q) + 2q^2 F(|\xi|; \gamma; q^2) \\
- 2(1-\beta)(1-q)^2 \right\}.
$$

If for any $j \in \{1, 2\}$ the inequality

$$
G^*_j(\xi, \gamma, q) < 2(1-\beta)
$$

holds for $0 \leq \beta < 1$, then function $z F(\xi; \gamma; z)$ belongs to the class $C^*_q(\beta)$.

For $\beta = 0$ the above corollary gives us the next example:

Example 2.2. Let \tilde{G}_j, $j \in \{1, 2\}$, be defined as follows:

(i) If $\xi > 0$ and $\gamma > 0$, then \tilde{G}_1 is given by

$$
\tilde{G}_1(\xi, \gamma, q) := \frac{1}{(1-q)^2} \left\{ 2 F(\xi; \gamma; 1) - 4q F(\xi; \gamma; q) \\
+ 2q^2 F(\xi; \gamma; q^2) - 2(1-q)^2 \right\}.
$$

(ii) If $\xi \in \mathbb{C} \setminus \{0\}$ and $\gamma > 0$, then \tilde{G}_2 is given by

$$
\tilde{G}_2(\xi, \gamma, q) := \frac{1}{(1-q)^2} \left\{ 2 F(|\xi|; \gamma; 1) - 4q F(|\xi|; \gamma; q) \\
+ 2q^2 F(|\xi|; \gamma; q^2) - 2(1-q)^2 \right\}.
$$

If for any $j \in \{1, 2\}$ the inequality

$$
\tilde{G}_j(\xi, \gamma, q) < 2
$$

holds, then function $z F(\xi; \gamma; z)$ belongs to the class $C^*_q(0)$.

References

