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Abstract
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functions which are associated with generalized confluent hypergeometric function.

Keywords: Univalent functions, convex and ¢-convex functions, starlike and g-starlike functions,
g-derivative operator, g-number, generalized confluent hypergeometric function.
2010 MSC: 30C45; 30C50; 30C80.

1. Introduction and Preliminary

Let A denote the class of all functions of the form
f(z)=2z+ Zamzm, z e, (1)
m=2

which are analytic in open unit disk U := {z € C : |z] < 1} and satisfy the normalization conditions f(0) =0
and f/(0) = 1. Let S be the subclass of A consists of univalent functions in U. Further suppose that §* is
subclass of functions of A which are starlike in U, that is f satisfy the subsequent conditions:

Re{zf/(z)} > 0, VzeU (2)

f(z)
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Let C* is subclass of functions of A which are convex in U, that is f satisfy the following conditions:

Re{W}ZRe{1+ZfH(Z)} >0, VzeU (3)

f'(z) f'(z)

For analytic functions f and g in U we say that the function f is subordinate to the function g and written
as

f(z) < 9(2)

If there exists a Schwarz function w which is analytic in U and w(0) = 0, |w(z)| < 1, such that f(z) = g(w(z))
Further, if g is the function which is univalent in U, then it becomes

f(z) < g(2); 2 € U<« f(0) =g(0) and f(U) C g(U)

Now we define P the class of analytic function with positive real part which is given as
[e.e]
p(z) =14 pmz™; Re(p(z)) >0, z € U.
m=1

Definition 1.1. An analytic function h with h(0) = 1 belongs to the class P[M,N]|, with —1 < N < M <1,
if and only of
14+ M=z

h(z) < TN

The class P[M, N] of analytic functions was introduced and studied by Janowski [6], who showed that
h € P[M, N] if and only if there exists a function p € P, such that

(M 1)) — (M- 1)
"= N e (v - <Y

Definition 1.2. [6] (i) A function f € A is in the class S*[M, N|, with —1 < N < M <1, if and only if

2f'(z) 1+ Mz
f(z) = 1+ Nz

(4)
(i) A function f € A is in the class C*[M, N], with —1 < N < M < 1, if and only if

f'(z) 1+ Mz

1 .
* f(2) h 1+ Nz

Definition 1.3. The g-number [m|, defined in [15] for q € (0,1), is given by

1_ m
17q , if meC,
mly =1 e
3 qk:1+q+q2+"'+qm_17 if meN:={1,2,...}.

k=0

Definition 1.4. [I5] The q-derivative Dy f of a function f is defined as

Fo)-fla)
Dyf(s)=0 T aoge 0 T FECMO

f/(o)v if z2=0,

provided that f'(0) exists, and 0 < ¢ < 1.
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From the Definition it follows immediately that

. Y f(z) — _
élgi Dqf(z) = égﬁ Ta-qz f(2).

For a function f € A which has the power expansion series of the form (1.1), it is easy to check that
[e.@]
Dyf(z) =1+ Z[m]qamzm’l, z e,
m=2

as it was previously defined by Srivastava and Bansal [14], although the g-derivative operator D, was pre-
sumably first applied by Ismail et. al. [5] to study a g-extension of the class S* of starlike functions in U
(see [5], [3], [13]).

Definition 1.5. A function f € A is in the class S; if and and only if

z 1 1
——D,f(z —'<,Z€U. 5
R =rie ®)
It is observed that, as ¢ — 17 the closed disk
R S D
1—gq 1—gq

becomes the right-half plane and the class S; of g-starlike functions diminishes to the acquainted class S*.
Consistently, by with the principle of subordination among analytic functions, we can rewrite the inequality

as

z 1+ 2
Z D f(z) < 6
f(Z) q ( ) ( )
One way to generalize the class S*[M, N| of Definition [1.2]is to replace in (4] the function (1+Mz)/(1+

Nz) by the function (1+2)/(1—gz) which is involved in (). The appropriate definition of the corresponding
g-extension S;[M, N] is specified below.

1—qz

Definition 1.6. A function f € A is said to be in the class S;[M, N| if and only if

2D f(z) _ (M +1)Q(z) — (M —1)

1) vrnee) - v e v
where 1+ 2
Q) = 72—
which by using the definition of the subordination can be written as follows:
Z';qégz) < 6(2),
where

(M+1)z+2+ (M —1)qz
(N+1)z+2+ (N —-1)gz

Remark 1.1. (i) It is easy to check that

¢(2) :=

,—1<N<M<1,qe(0,1).

lim S;[M,N] = S*[M, N].

q—1-

Also, Sy[1, 1] =: Sy, where Sy is the class of functions introduced and studied by Ismail et. al [3].
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(i) If w is a Schwarz function, from the definition of Q we get that

1 1
‘Q(Z)_l—q <ﬁ’ z e,
and from it follows
(N = 1)L — (a1 — 1)
() = 2Dy f(2) z e U.

(N + 1) 70 — (M + 1)
From these computations we conclude that a function f € A is in the class S [M, N, if and only if

(N-)ZBeL —(—1) 1
(

(N+1)ZB (1) 1-g] 1-g

In itdAZs special case when M =1 —28 and N = —1, with 0 < 8 < 1, the function class S;[M, N]
reduces to the function class S;(3) which was presented and deliberated by Agrawal and Sahoo [1.

(iii) By means of the well-known AlexzanderaAZs theorem [, the class C;[M, N] of q-convez functions
can be defined in the following way:

f€CIM,N] & 2D, f(2) € S;[M, N].

The confluent hypergeometric function in the series form is given by

F&mz) =) Ei)ﬁj’: vz €C,

where 7 is neither zero nor a negative integer and the series is convergent for &, 1. Now the generalized
confluent hypergeometric function (normalized function) is defined as

m=0

- (f)mszrl . ) .
F(&n;z) = Z o (By using convolution of two functions)
m=0 mi
> (g)mflzm

- , 8

4 a1 ®)
where (), is the Pochhammer symbol defined as
(B)m = { 1 ifm=0

T BB+D)B+2)...(B+m—1) ifmeN
_IrB+m)
=13

and
In this paper we determine sufficient conditions for g-starlike functions and ¢-convex functions associated
with confluent hypergeometric function by using following sufficient conditions obtained by Srivastava [15]:

Lemma 1.1. [15] A function f € A is in the class S;[M, N|, if it satisfying the following condition

> (2 Jo + (N +1)[mlg = (M +1) [)|am| < [N — M | (9)

m=2
Lemma 1.2. [13] A function f € A is in the class Cj[M, N, if it satisfying the following condition
[e.e]

[mlq(2qlm — g + |(N + D[mlg — (M + 1) |)]am| < |N = M | (10)

m=2
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2. Main Results

Theorem 2.1. Let Ej, j € {1,2}, be defined as follows:
(i) If £ > 0 and v > 0, then E; is given by

Ei(&7,9) = 1iq{(q+N+2+M(1—q))F(f;v;l)

(N4 3)F(&5q) — (M + N +2)(1 q>}.

(ii) If £,€ C\ {0} and v > 0, then Es is given by

Es(&7,q) = 11q{(q+N+2+M(1—q))F(\fl;’y; 1)

— (N + 3aF (i) — O+ N+ 2)(1 - ).
If for any j € {1,2} the inequality
Ej(€,7,q) <IN — M|
holds, then function zF'(§;7; ) belongs to the class Sy[M, NJ.
Proof. Since

F(&;2 _Z+Z )'zm,zEIU,

according to Lemma any function f € A is in the class S; [M, N] if it satisfies the inequality (9). Then,
for f(z) := 2F(&;7; 2) it is sufficient to show that (9) holds, for

_ (f)m—l . 1—q™
= mam A =T
Using the triangle’s inequality we get
> alm =1y + (N +1)[m]g — (M + 1)))]an|
m=2
gZQq |am|+2 N+11 |am|+2 (M +1)|an|
m=2 m=2 m=2
> (2¢+ (N +1 N +3
- ( D ) |am|—Z<1+_;q|am|. (1)
=2 m=2
Case (i) If £ > 0 and v > 0, from we get
> (2qlm — 1]y + [(N + 1)[mly — (M + 1))|an]
m=2
2q+(N+1) > > (g)ml N+3OO mlq
< |l ——+(M+1
—< T D)2 o 1—qu:2 1)
1
= ol N 2 M) (FlE:1) = 1) — (V + 3a(FEmi g 1)}
1_q{(q+N+2+M1—q) (&7 1) — (N +3)qF (&7 9)

~(M+N+2)(1-q)} = Ei(£,7,0)
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and the assumption of the theorem implies (9)), that is zF(&;7; 2) € S;[M, N|.
Case (i) If £ € C\ {0}, v > 0, from we have

ANgE

(2q[m — 1g + |(N + 1)[m]q — (M + 1)[)|an|
m=2
2q + (N = N3 (©mag™ '
S( 1—q M+1> - 1)' 1—q = |(Vm-1(m —1)!
_ (2¢+(N+1) = m| N+43 = [(©mlg™
_( 1—gq MH)mZ Y] 1—qqmz1 ()mm! (12)
Since |(a)n| < (|a])n, from (12), we deduce that
Z lg + (N +1)[m]g — (M + 1)) |am
=2
2¢+ (N +1) o (€Dm (N +3)g g~ (1EDma™
< l—gq (M+1)>m221(7)m'm' l—gq mzl Jmm!

1—q{(q+N+2+M(1_Q))(F(Iﬁl;'y;l)—1)

— (N +3)q(F([&];v;q) — 1)}

1—g¢q

— (N +3)qF(I€;v:9) — (M + N +2)(1 — q)} =: E2(&,1,7,9)-

{(q+ N2+ M(1— ) F(iglv: 1)

and the assumption of the theorem implies (9)), that is zF'(£;7; 2) € S;[M, NJ. O

For the special case M =1—-28,0 < 3 <1,and N = —1, we have S;[1 — 23, —1] =: §;() and Theorem
reduces to the following result:

Corollary 2.1. Let E7, j € {1,2}, be defined as follows:
(1) If € > 0 and v > 0, then EY is given by

E1(&,n,7,q) == 11(]{2(1 — B —q)F (& 1)

—2qF(&7v;9) —2(1 - p)(1 —Q)}-

(i1) If £ € C\ {0} and v > 0, then E; is given by

B3(€n1.0) = {201~ B0~ ) Flllii 1)

~2qF (el viq) — 201~ B)(1 - q>}.

If for any j € {1,2} the inequality
E7(&,7,q) <2(1-5)
holds for 0 < 8 < 1, then function zF(§;; z) belongs to the class S;(53).
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For 8 = 0 the above corollary gives us the next special case:

Example 2.1. Let Ej, Jj € {1,2}, be defined as follows:
(i) If £ > 0 and v > 0, then E; is given by

Bi(€,7,9) = 1iq {2F(&7:1) = 2qF(§v59) —2(1—q) } -

(i1) If £ € C\ {0} and v > 0, then Es is given by

Bal6..0) i= 1 {2F(€ii ) — 20F (Iii) — 201 - ).

If for any j € {1,2} the inequality _
Ej(&,7.9) <2
holds, then function zF'(&;7; ) belongs to the class Sy (0).

Theorem 2.2. Let G;, j € {1,2}, be defined as follows:
(i) If £ > 0 and v > 0, then G is given by

Gi(§,7:9) = u_lc])Q{(N+2+q+M(1—Q))F(€;V;1)
— (M1 —q)+2N +5+q)qF(&7:0) + (N +3)¢*F(&v:.4%)
*(M+N+2)(1—q)2},

(i1) If £ € C\ {0} and v > 0, then G2 is given by

Ga(&,7,q) == (1_1(])2{(N+2 +q+M(1—q)F(|¢;7:1)
— (M(1—q)+2N +5+q)aF (€ v; q) + (N + 3)¢* F(1€];7; ¢°)

—(M+N+2)(1- q)2}.

If for any j € {1,2} the inequality
Gj(&7.9) <IN - M|

holds, then function 2F(§;y; z) belongs to the class C;[M, N].

Proof. Since, according to Lemma any function f € A belongs to the class C; [M, N] if it satisfies the

inequality for
(g)m—l

Vm—1(m — 1)V

and [m], =

am:(
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Using first the triangle’s inequality, we have

Z[m]q(Qq[m - 1]q + ‘(N + 1)[m]q — (M + 1)‘)‘am‘
m=2
< > 2g[mlglm = Uglam| + D (N + 1) [mg|mlglam| + D (M + 1)[m]g|an|

m=2 m=2 m=2

> 1_qm 1_qm71 0 1_qm l_qm

7;2 s el |+m§_:2< LD T

o 1 _
+§;M+n1f\%|
= <2q+(N+1)+<M+1)(1—q)> ]
= — 2 m

—= (I—q)

M+1)(1—q)+2(N+1)+2¢+2 " N+1) m
- Z — Jaml + Z "l
(1 q)
q+N+2+M )+2N+5+q
|am| — q" |am|
A = n;
(13)

N+3 om
+ q"" | am|-
(1_(])27n222 |m|

Case (i) If £ > 0 and v > 0, from we obtain

[e.9]

Z[m]q(Qq[m - 1]q + ‘(N + 1)[m]q — (M + 1)‘)"’%’
m=2
G+N+2+M(1—-q) & N+3 & -
= 1—q)? g_:z )1 1—q2m§_:2 ).q2
M(1—q)+2N 45+ ¢ m
- (1—q)? Z )'q
_ g+ N+2+M(1—q) (f)m N+3 55~ (nm
- (1-q)? mz::l(v)mm' (1-q)? qmzlv
MO +2N 4510 §~ Em
(1—q)? A= () mmd
_ 2
—Q+N+(12_+q])\§(1 2 (F(ﬁ;’r;l)—l)Jr(](\iJ_rziq (F(&vidh) —1)
M(1—q)+2N+5
- M q()ltq);r 9GP via) — 1)

:(1—1(])2{(N+2+Q+M(1_q))F(§;%1)

— (M(1=q) 42N +5+q)qF(&7:9) + (N +3)*F (&7 ¢7)

—4M+N+mu—@ﬂ=mma%w
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Therefore, the assumption of the theorem implies (10]), hence zF(&;v;2) € C;[M, NJ.
Case (ii) If £ € C\ {0}, v > 0, then the inequality leads to

m — g+ |(N +1)[m]g — (M + 1)|)|an|

NMS

o0

‘ N+3
(V)m 1) (1—q)? &= |(v

q+N+2+M1—q i

- (1—q)? —

M(1—q)
(1-¢q)?

ZQ+N+2+M(1_Q) - ’(g)m—1| N+3 i m 1| 2m
(1—q)? - (v)mfl(m—l) (1—q)?

m

L '

m:2
S

M(1—¢q)+2N+5+¢q 1|
B (1_q Z ) )lqm'

Since (a)n| < (Jal)n, the above inequality implies

[m]q(2qfm —1]g + |(N + 1)[m]y — (M +1)|) |am|
m=2

g+N+2+M1-q) = (|&)m N+3
= (1—q)? Z Vmml (1= q)? =

o

M(1—q)+2N+5+q mom
( 61()1_(])2 qQZ (3} ¢

m=1 (V)mm'
g+ N+24+M(1—q) '
B 1—q) (F(gl7.1) = 1) +

- O TS F (efiia) ~ 1)
1

N (1—q)2{(N+2+q+M(1 — ) F(Elv: 1) + (N +3)@F(I€ 7 ¢°)

— (M(1—q)+2N +5+q)qF(I¢l;v:9) — (M + N +2)(1 - Q)2} =:G2(§,7,9)-

(N + 3)¢?
(1—-4¢)?

(F(lglvsa?) = 1)

It follows that the assumption of the theorem implies ([10)), hence 2F'(§;; z) € Ci[M, N].

O

For the special case M =1-23,0 < <1and N = —1, we have C;[1 — 28, —1] =: C;(8), and Theorem

reduces to the following result:
Corollary 2.2. Let G}, j € {1,2}, be defined as follows:
(i) If € > 0 and v > 0, then G7 is given by

G1(&m,7.q) == 1_1(])2{2(1 — B —q)F (&)

(
—2(2-B(1 - q)qF(&7:9) +2°F(&7:¢7) — 2(1 = B)(1 - Q)2}-
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(11) If ¢ € C\ {0} and v > 0, then G5 is given by

" 1
G5(&,7,q) = (1—(])2{2(1 - B - Q))F(|f’§7§ 1)
—2(2- (1 = ))aF (€l a) + 26°F (€] v 4°)
-20- 90 - 0P .
If for any j € {1,2} the inequality
holds for 0 < 8 < 1, then function zF(§;7; z) belongs to the class Cy(f3).
For 8 = 0 the above corollary gives us the next example:
Example 2.2. Let éj, Jj € {1,2}, be defined as follows:
(i) If £ > 0 and v > 0, then G is given by

Gi(&,7.q) = 2{2F(§;7;1) — 4qF(&7: 9)

1
(1-1q)

+2¢°F (&7 ¢%) —2(1 - q)Q}-
(i) If € € C\ {0} and v > 0, then Gs is given by

Gal€ 1) = _2)2{2F<|m 1) — 4gF (€l 7: )

(1
+2¢°F(|€]; ;%) — 2(1 - q)Q}-
If for any j € {1,2} the inequality

Gi(&v.q) <2
holds, then function 2F'(&;7; ) belongs to the class C;(0).
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